
Functional DIF
William Plishker, Nimish Sane, Mary Kiemb, Kapil Anand,
Shuvra S. Bhattacharyya
University of Maryland, College Park (Dept. of Electrical and Computer
Engineering)

Chess Seminar
June 5, 2008

2/26

Outline
• Introduction
• Overview of the Dataflow Interchange Format
• Functional DIF
• Preliminary Results
• Demo

3/26

Introduction
• Motivation: dataflow tools can

reduce the time to a functional
prototype

• Problem: going from
heterogeneous dataflow to
implementation is time consuming
and error prone

• Our Solution: Extend popular
dataflow language with inline
functional simulation semantics

1

1

1

1

1

1

[19,22]

11

1

[1,0] [0,1]

(4,15) (7,15)

15

1[1,0]
[0,1]

1

1

(0,15) (0,15)

4/26

DIF Package

5/26

Dataflow Interchange Format
• Describe DF graphs in text

• Simple DIF file:
dif graph1_1 {

topology {
nodes = n1, n2, n3, n4;
edges = e1 (n1, n2),

e2 (n2, n1),
e3 (n1, n3),
e4 (n1, n3),
e5 (n4, n3),
e6 (n4, n4);

}
}

6/26

More features of DIF
• Ports

interface {
inputs = p1, p2:n2;
outputs = p3:n3, p4:n4;

}

• Hierarchy
refinement {

graph2 = n3;
p1 : e3;
p2 : e4;
p3 : e5;
p4 : p3;

}

7/26

More features of DIF
• Production and consumption

production {
e1 = 4096;
e10 = 1024;
...

}
consumption {

e1 = 4096;
e10 = 64;
...

}
• Computation keyword
• User defined attributes

4096

4096

1024
64

8/26

The DIF Language Syntax
dataflowModel graphID {
basedon { graphID; }
topology {

nodes = nodeID, ...;
edges = edgeID (srcNodeID,
snkNodeID), ...; }

interface {
inputs = portID [:nodeID], ...;
outputs = portID [:nodeID], ...; }

parameter {
paramID [:dataType];
paramID [:dataType] = value;
paramID [:dataType] : range; }

refinement {
subgraphID = supernodeID;
subPortID : edgeID;
subParamID = paramID; }

builtInAttr {
[elementID] = value;
[elementID] = id;
[elementID] = id1, id2, ...; }

attribute usrDefAttr{
[elementID] = value;
[elementID] = id;
[elementID] = id1, id2, ...; }

actor nodeID {
computation = stringValue;
attrID [:attrType] [:dataType] = value;
attrID [:attrType] [:dataType] = id;
attrID [:attrType] [:dataType] = id1, ...; }

}

9/26

Need: Functional Sim in DIF Package:

10/26

Functional DIF
• Natural actor description
• Semantic foundation for simulating

deterministic dataflow applications
• Scheduler/simulator for heterogeneous

designs

• All with a focus to get to a correct
implementation faster

11/26

Related Work
• Actor Description Languages

– Xilinx’s CAL, Mathwork’s S-Functions
• Heterogeneous Semantic Formalisms

– Stream Based Functions (SBF)
– Metropolis
– Ptolemy
– Transactors

• Dataflow Design Environments
– Autocoding Toolset from MCCI
– CoCentric System Studio from Synopsis
– Compaan from Leiden University
– Gedae from Gedae Inc.
– Grape from K. U. Leuven
– LabVIEW from National Instruments
– PeaCE from Seoul National University
– Ptolemy II from U. C. Berkeley
– StreamIt from MIT.

12/26

Writing actors in Functional DIF
• Divide actors into a set of modes

– Each mode has a fixed consumption and production behavior
• Write the enabling conditions for each mode
• Write the computation associated with each mode

– Including next mode to enable and then invoke
• For example, consider a standard Switch:

Production & consumption
behavior of switch modes

Control
Mode

True
Mode

False
Mode

Mode transition diagram
between switch modesSwitch Actor

Switch

1

1

[1,0]

[0,1]False
Output

True
Output

Control

Data

13/26

Semantic Foundation
• Enable-Invoke Dataflow (EIDF)

– Enabling Function, ε, for an actor, a:

• Ta, the number of input tokens on each edge
• Ma, the set of modes associated with actor a
• B is the Boolean set of {true, false}

– Invoking function, κ (Non-Deterministic)

• Ia,Oa, input and output tokens consumed by this mode
• Pow(Ma), set of valid next modes

• Core Functional Dataflow (CFDF)
• Modify invoke to be deterministic by making one unique next mode:

14/26

Semantic Hierarchy
• DIF Graph -capture basic dataflow

features (nodes, edges, tokens,
etc)

• EIDF – Functional,
nondeterministic dataflow

• CFDF – Deterministic dataflow

• Many popular forms of dataflow
are directly supported by CFDF
– SDF needs only one mode
– CSDF phases correspond to

modes

• Functional DIF integrates CFDF
into the DIF package

re
fin

em
en

t

15/26

Generalized Schedule Trees
• Represents a schedule

as a tree with internal
nodes representing
iteration counts

• Leaves represent an
actor invocation

• Execution may be
guarded using the
enabling function of
CFDF

Example GST of a CFDF application

Subtree
iterations

Guarded actor
invocations

16/26

Functional DIF Application Design Features

• Supports
Heterogeneous
Composition

• Unit testing to
determine models of
actors

• Heterogeneous
Simulator
– Simulating is as simple as

walking the schedule tree

Example design using CSDF and BDF

17/26

Results: Polynomial Evaluation Accelerator (PEA)

• Polynomial Evaluation is a commonly used primitive
in communication area.

• The degree of P and the coefficients change in run
time.

• There are four types of instructions.
– Reset (RST), Store Polynomial (STP), Evaluate

Polynomial (EVP), Evaluate Block (EVB)

∑
=

×=
in

k

k
ki xCxP

0
)(

18/26

Dataflow Modeling of PEA Testbench

Polynomial
Evaluation
Accelerator

Control
Input
Buffer

Result
Output
Buffer

Data
Input
Buffer

Status
Output
Buffer

19/26

The modes of PEA
Mode behavior Consumption Production

Control Data Result Status
Normal Wait for an instruction 1 0 0 0

RST Reset all of the
coefficients

0 0 0 0

STP Store coefficients 0 1 0 1
EVP Evaluate the value of P 0 1 1 1
EVB Evaluate block 0 1 1 1

20/26

Enable method pseudocode of PEA
Bool A.enable(x1, x2, …, xn, mode){

if (mode = Normal) then
if(there is 1 token in Control buffer) then return true;
else return false;

else if (mode = RST) then return true;
else if (mode = STP) then

if (there is 1 token in Data buffer) then return true;
else return false;

else if (mode = EVP) then
if(there is 1 token in Data buffer) then return true;
else return false;

else if (mode = EVB) then
if (there is 1 token in Data buffer) then return true;
else return false;

end if;
}

21/26

Invoke method pseudocode of PEA
nextMode A.invoke(x1, x2, …, xn, mode){

if (mode = Normal) then
Decode instruction token
return next mode based on instruction

else if (mode = RST) then
Reset all of the coefficients;

else if (mode = STP) then
Store coefficient for Pi(x);
if(not done storing coefficients) then return STP mode;

else if (mode = EVP) then
Evaluate Pi(x);

else if (mode = EVB) then
Evaluate Pi(x);
if(not done with block) then return EVB mode;

end if;
return Normal mode;

}

22/26

PEA Results

Simulation times of Verilog and Functional DIF for
two different sets of instructions

23/26

Heterogeneous Example: Dual CSDF PEAs
1

1

1

1

1

1

[19,22]

11

1

[1,0] [0,1]

(4,15) (7,15)

15

1[1,0]
[0,1]

1

1

(0,15) (0,15)

1

1

11

1

22

22

1

1

1

1

1

1

1

1

1

1

1

1

1

24/26

Dual PEA Schedules
Single appearance schedule

Multiple appearance schedule

25/26

Dual PEA results
Simulation times and max buffer sizes using different schedules

26/26

Demo

27/26

Current status: Software Architecture
• DIF packages made up of a set of Jars

– MoCGraph – graph package for models of
computation

– MAPSS – Core DIF package
– DIF2C – Software synthesis plug-in

• Unit Testing Infrastructure
• Reliance on Ptolemy

– Typing package
– Kernel exceptions
– Make scripts

28/26

Summary
• Extend DIF with functional simulation by

– Actor design considerations
– Semantic foundation for execution
– Supporting simulation and scheduling in the DIF

package
• Simulation speeds better than Verilog
• Future Work

– More heterogeneous applications
– Parameterization of CFDF

Thank you!
Special thanks to the members of the DSPCAD group at the
University of Maryland. This research was sponsored in part by the
U.S. National Science Foundation (Grant number 0720596), and
the US Army Research Office (Contract number TCN07108,
administered through Battelle-Scientific Services Program).

