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Outline
• Introduction
• Overview of the Dataflow Interchange Format
• Functional DIF
• Preliminary Results
• Demo



3/26

Introduction
• Motivation: dataflow tools can 

reduce the time to a functional 
prototype

• Problem: going from 
heterogeneous dataflow to 
implementation is time consuming 
and error prone

• Our Solution: Extend popular 
dataflow language with inline 
functional simulation semantics
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DIF Package
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Dataflow Interchange Format
• Describe DF graphs in text

• Simple DIF file:
dif graph1_1 {

topology {
nodes = n1, n2, n3, n4;
edges = e1 (n1, n2),

e2 (n2, n1),
e3 (n1, n3),
e4 (n1, n3),
e5 (n4, n3),
e6 (n4, n4);

}
}
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More features of DIF
• Ports 

interface {
inputs = p1, p2:n2;
outputs = p3:n3, p4:n4;

}

• Hierarchy 
refinement {

graph2 = n3;
p1 : e3;
p2 : e4;
p3 : e5;
p4 : p3;

}
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More features of DIF
• Production and consumption

production {
e1 = 4096;
e10 = 1024;
...

}
consumption {

e1 = 4096;
e10 = 64;
...

}
• Computation keyword
• User defined attributes
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The DIF Language Syntax
dataflowModel graphID {
basedon { graphID; }
topology {

nodes = nodeID, ...;
edges = edgeID (srcNodeID, 
snkNodeID), ...; }

interface {
inputs = portID [:nodeID], ...;
outputs = portID [:nodeID], ...; }

parameter {
paramID [:dataType];
paramID [:dataType] = value;
paramID [:dataType] : range; }

refinement {
subgraphID = supernodeID;
subPortID : edgeID;
subParamID = paramID; }

builtInAttr {
[elementID] = value;
[elementID] = id;
[elementID] = id1, id2, ...; }

attribute usrDefAttr{
[elementID] = value;
[elementID] = id;
[elementID] = id1, id2, ...; }

actor nodeID {
computation = stringValue;
attrID [:attrType] [:dataType] = value;
attrID [:attrType] [:dataType] = id;
attrID [:attrType] [:dataType] = id1, ...; }

}
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Need: Functional Sim in DIF Package:
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Functional DIF 
• Natural actor description
• Semantic foundation for simulating 

deterministic dataflow applications
• Scheduler/simulator for heterogeneous 

designs

• All with a focus to get to a correct 
implementation faster
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Related Work
• Actor Description Languages

– Xilinx’s CAL, Mathwork’s S-Functions
• Heterogeneous Semantic Formalisms

– Stream Based Functions (SBF)
– Metropolis
– Ptolemy
– Transactors

• Dataflow Design Environments
– Autocoding Toolset from MCCI
– CoCentric System Studio from Synopsis
– Compaan from Leiden University
– Gedae from Gedae Inc.
– Grape from K. U. Leuven
– LabVIEW from National Instruments
– PeaCE from Seoul National University
– Ptolemy II from U. C. Berkeley
– StreamIt from MIT. 



12/26

Writing actors in Functional DIF
• Divide actors into a set of modes

– Each mode has a fixed consumption and production behavior
• Write the enabling conditions for each mode
• Write the computation associated with each mode

– Including next mode to enable and then invoke
• For example, consider a standard Switch:

Production & consumption
behavior of switch modes
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Semantic Foundation
• Enable-Invoke Dataflow (EIDF)

– Enabling Function, ε, for an actor, a:

• Ta, the number of input tokens on each edge
• Ma, the set of modes associated with actor a
• B is the Boolean set of {true, false} 

– Invoking function, κ (Non-Deterministic)

• Ia,Oa, input and output tokens consumed by this mode
• Pow(Ma), set of valid next modes

• Core Functional Dataflow (CFDF)
• Modify invoke to be deterministic by making one unique next mode:
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Semantic Hierarchy
• DIF Graph -capture basic dataflow 

features (nodes, edges, tokens, 
etc)

• EIDF – Functional, 
nondeterministic dataflow

• CFDF – Deterministic dataflow

• Many popular forms of dataflow 
are directly supported by CFDF
– SDF needs only one mode
– CSDF phases correspond to 

modes

• Functional DIF integrates CFDF 
into the DIF package
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Generalized Schedule Trees
• Represents a schedule 

as a tree with internal 
nodes representing 
iteration counts

• Leaves represent an 
actor invocation

• Execution may be 
guarded using the 
enabling function of 
CFDF

Example GST of a CFDF application

Subtree
iterations

Guarded actor
invocations
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Functional DIF Application Design Features

• Supports 
Heterogeneous 
Composition

• Unit testing to 
determine models of 
actors

• Heterogeneous 
Simulator
– Simulating is as simple as 

walking the schedule tree

Example design using CSDF and BDF



17/26

Results: Polynomial Evaluation Accelerator (PEA)

• Polynomial Evaluation is a commonly used primitive 
in communication area.

• The degree of P and the coefficients change in run 
time.

• There are four types of instructions.
– Reset (RST), Store Polynomial (STP), Evaluate 

Polynomial (EVP), Evaluate Block (EVB)
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Dataflow Modeling of PEA Testbench

Polynomial
Evaluation
Accelerator

Control
Input
Buffer

Result
Output
Buffer

Data
Input
Buffer

Status
Output
Buffer
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The modes of PEA
Mode behavior Consumption Production

Control Data Result Status
Normal Wait for an instruction 1 0 0 0

RST Reset all of the 
coefficients

0 0 0 0

STP Store coefficients 0 1 0 1
EVP Evaluate the value of P 0 1 1 1
EVB Evaluate block 0 1 1 1



20/26

Enable method pseudocode of PEA
Bool A.enable(x1, x2, …, xn, mode){

if ( mode = Normal ) then
if( there is 1 token in Control buffer)  then return true;
else return false;

else if ( mode = RST ) then return true;
else if ( mode = STP ) then

if ( there is 1 token in Data buffer) then return true;
else return false;

else if ( mode = EVP ) then 
if( there is 1 token in Data buffer ) then return true;
else return false;

else if ( mode = EVB ) then
if ( there is 1 token in Data buffer) then return true;
else return false;

end if;
}
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Invoke method pseudocode of PEA
nextMode A.invoke(x1, x2, …, xn, mode){

if ( mode = Normal ) then
Decode instruction token
return next mode based on instruction

else if ( mode = RST ) then
Reset all of the coefficients;

else if ( mode = STP ) then
Store coefficient for Pi(x);
if( not done storing coefficients ) then return STP mode;

else if ( mode = EVP ) then 
Evaluate Pi(x);

else if ( mode = EVB ) then
Evaluate  Pi(x);
if( not done with block) then return EVB mode;

end if;
return Normal mode;

}
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PEA Results

Simulation times of Verilog and Functional DIF for
two different sets of instructions
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Heterogeneous Example: Dual CSDF PEAs
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Dual PEA Schedules
Single appearance schedule

Multiple appearance schedule
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Dual PEA results
Simulation times and max buffer sizes using different schedules
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Demo
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Current status: Software Architecture
• DIF packages made up of a set of Jars

– MoCGraph – graph package for models of 
computation

– MAPSS – Core DIF package
– DIF2C – Software synthesis plug-in

• Unit Testing Infrastructure
• Reliance on Ptolemy

– Typing package
– Kernel exceptions
– Make scripts
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Summary
• Extend DIF with functional simulation by

– Actor design considerations
– Semantic foundation for execution
– Supporting simulation and scheduling in the DIF 

package
• Simulation speeds better than Verilog
• Future Work

– More heterogeneous applications
– Parameterization of CFDF
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