=== [iI

Advanced Topics in i
model-based
Software Development

Prof. Dr. Bernhard Rumpe
ISIS - Institute for Software Integrated Systems
Vanderbilt University, Nashville

Software Systems Engineering
Technische Universitat Braunschweig

http://lwww.sse-tubs.de/

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 1

Overview

~ Communication RDB Statemachine Step application
approach bad behavior channels class class ficure COd€
communication system communication system

step data description developed develop mentdiagram

evolution happen implementation input machine methods

models new object output '€ faCtoring refactorings

refinement rules setside side effects simulation small

software software development state state machine steps

streams system systems t€STTESTS time transformation

. . . 1
transformations transition . ..)

Prof. Dr. B. Rumpe
Software Systems

meamemag || 17€NAS IN SOftware development

Seite 2

bei/08.06.SF

= Size and complexity of systems continually increase:
* Isolated solutions — company-wide integration - E-Commerce
— Systems-Of-Systems — World-Wide Cyber-Infrastructure
= New technologies:
 EJB, XML, .Net, ...
= Diversification of application domains:

 Embedded systems, business systems, telecommunication, mobility,
ad-hoc changing infrastructures

= Growing methodological experience how to deal with these challenges

* Agile Methods, e.g, address
unstable requirements, time-to-market pressure,
lean and effective development for small projects

* Improved analytical techniques

ﬁ> Portfolio of software development processes / techniques etc.

Prof. Dr. B. Rumpe
Software Systems

meamees || VEIY Short overview of Extreme Programming

Seite 3

bei/08.06.SF

= Best Practices”.
= Abandons many software development elements

= Activities (among others)
Coding
* Incremental
* Coding standards
* Runs of all tests
* Refactoring
Testing
» Tests developed together with the code
* Functional tests
» Customers develop business logic tests

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 4
bei/08.06.SF

|dealized View on Model Driven Architecture

Requirement

Pl—

=D

use cases and scenarios:
sequence diagram describes users viewpoint

application classes define data structures (PIM)
state machines describe
states and behavior

class diagram Nr. 2 (,PSM*):
adaptation, extension, technical design

+ behavior for technical classes

code generation +
integration with manually written code

complete and running system

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 5

bei/08.06.SF

Core elements of an agile modelling method

Incremental modelling

Modelling tests

Automatic analysis: Types, dataflow, control flow, ...

Code generation for system and tests from compact models

Small increments
Intensive simulation with customer participation for feedback

Refactoring for incremental extension and optimisation
Common ownership of models

This approach uses elements of agile methods based on the UML
notation

Prof. Dr. B. Rumpe
Software Systems

Teanees || MOdel-based “programming”

Seite 6 _
» Two kinds of models are used for the system and the executable tests
| statecharts object
class diagrams
deployment d|agrams C+e, e 1 sequence
diagram Java ... L ' diagrams
— |:| C 1 1 1
| OCL «
_ J
\ A J
l T \ ; J
consistency parameterized test code
analyser code generator
generator

e]
errors

,smells“ &

siehe: B. Rumpe: Agile Modellierung mit UML, Springer Verlag 2004

Prof. Dr. B. Rumpe
Software Systems

TU Braunschweig

How the approach supports agile development

Seite 7

bei/08.06.SF

Core characteristics of agility:

Improvement through use of UML.;

Efficiency
of the developers

+ increased through advanced
notation & tools

Reactivity:
flexibility to deal with changes

+ incremental, small cycles
+ model-based refactoring

Customer focus

+ even more rapid feedback

Rely on individuals

+ less tedious work
? skilled people are necessary

Simplicity

+ refactoring increases extensibility

Quality
IS an emerging property

+ automated tests
+ better review-able designs

+ common ownership &
pairwise development of models

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 8

bei/08.06.SF

Agile Model-Based Testing

Prof. Dr. B. Rumpe
Software Systems

Engineering

TU Braunschweig

Seite 9

bei/08.06.SF

Typical infrastructure of an automated test

* Principle: use

test data

03

=gl

[op 7]

)

» relatively complete object diagram (OD) for test data
» partial OD and OCL as oracle
e sequence diagram (SD) or Java as test driver

expected result and/or
OcCL-contract as
test driver test oracle w
SD or Java
1 02
ol
objects under |||]|:> / Y
test 05 03 04

+| OCL

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 10

description

bei/08.06.SF

Sequence diagram: test driver and interaction

» linear structure of an exemplaric system run

= + OCL for property description

SD
copper912: bidPol: timePol:
Auction BiddingPolicy TimingPolicy
«trigger»
handleBid(bid) _, |~ yalidateBid(bid)
return OK U OCL constraints
test driver Tttt describe
newCurrentClosingTime(copper912, bid) properties during

return t

JT| " jﬁJm

t.time ==
bid.time + extensionTime

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 11

bei/08.06.SF

Test pattern

Systems need to be testable

Example: Side effects like file protocol must be captured

Protocol

void setLogfile (String filename)
void writeToLog (String text)

K

/\

ProtocolDummy

String logLastLine = *
int logCount =0

void writeToLog (String text)

method with side effects
logs its text in a file

redefined method

stores arguments in attribute:
no side effects and results
can be checked

Test pattern describe typical processes & structures for test

definition

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 12

bei/08.06.

SF

Test pattern for standard problems

side effects (DB, GUI)
static attributes
object creation

frameworks

time
concurrency

distribution

—> capsule with adapter & dummies
—> capsule with singleton object
—> factory

—> separation of application and framework
through adapter

—> simulation through controllable clock
—> simulation through explicit scheduling

—> simulation in one process space

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 13

Model-Based
Evolution / Refactoring

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 14

bei/08.06.SF

Software Evolution

“Software evolution is the key problem in software development.”
Oscar Nierstrasz

Requirements change
Platforms and system contexts evolve
Bugs needs to be fixed

Time and space optimisations are desired

= Existing software needs to be evolved

= Code as well as models need to be adapted to keep them consistent

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 15

Refactoring as a special form of transformation

Refactoring is a technique to
* improve internal structure / architecture of a system, while
e preserving observable behaviour

Refactoring rules:
« series of systematically applicable, goal directed steps

Powerful through
« simplicity of piecewise application and
« flexibility of combination of systematic steps

Roots:
 Opdyke/Johnson 1992 had 23 refactorings on C++
 Fowler1999 has 72 refactoring rules for Java

Prof. Dr. B. Rumpe
Software Systems

weamees || REfACIONING example 1

Seite 16

bei/08.06.SF

| cp] | cp]
Person Person
| ZF | Refactoring checkPasswd()
Bidder Guest long ident
checkPasswd() checkPasswd() ZF
long ident Bidder Guest

= Pull Up Attribute “ident” into superclass: structural generalization
= Factor Method “checkPasswd()” and adapt it
= Preservation of observable behaviour?

» depends on viewpoint: class, component, system

Prof. Dr. B. Rumpe
Software Systems

weamees || PYINCIPlE Of refactoring

Seite 17

bei/08.06.SF

» Refactoring is orthogonal to adding functionality
= An idealised diagram:

_ _ target: 100% of the functionality,
functionality 4 acceptable design

100% —f— """ TTTTTTTTTTTTTTTTTTmmos Q- "

> " programming
' — refactoring

100%

> quality of design

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 18

bei/08.06.SF

Example: moving an attribute

Attribute ,att“ shall be moved from class A to B

A B /I code E
att S a.att
a.exp is the navigation path from A to B
{frozen} | cp]| context A a inv:
: - OCL
N 4/connectlon'l a.connection == a.exp; j
1 1 context A al, A a2 inv:
S rat al 1= a2 implies
al._.connection !'= a2._.connection
U
A B CD /| Code Code
W At a.exp.att

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 19

bei/08.06.SF

Refactoring example: changing data structures

A series of steps to apply:

1. Identify old data structure:
here: long to be replaced by Money

Auction
long currentBidInCent

2. Add new datastructure + queries
+ compile

Auction

long currentBidInCent
Money bestBid

3. Identify invariants to relate both

context Auction iInv M:
currentBidInCent ==
bestBid.valuelnCent()

4. Add code for new data structure & invariants
wherever old data structure is changed
+ compile & run tests

currentBidInCent = ...
bestBid.setValue. ..
assert M

5. Modify places where old data structure was used
+ compile & run tests
=...currentBidInCent ...

|
A%

= ... bestBid.valuelnCent() ...

6. Simplify + compile & run tests

7. Remove old data structure + compile & run tests

Auction
Money bestBid

Prof. Dr. B. Rumpe
Software Systems

meamees || 1€St @S 0bservation for refactoring

Seite 20
bei/08.06.SF

= Both structure and behaviour are observed by tests

test = driver and “observer” l
setup & observe observe check compare with
call creation| interaction property expected result
snapshots
of the

test run

time axis

Prof. Dr. B. Rumpe
Software Systems

meamemeg || Validation of refactorings using tests

Seite 21

» QObservation remains invariant under refactoring

test: driver and “observer”

N

Refactoring Test result . Ok.*

test: driver and “observer”

Observation

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 22

bei/08.06.SF

Evolution as strategic refactoring

Evolution in the small supports evolution in the large
Evolution in the small:

» Transformation rules
= small, manageable and systematic steps

General goals of transformations:
e reasoning,
» deriving implementation oriented artefacts,
 building abstractions e.g. for reengineering,
« evolutionary improvement

Transformation calculi can serve as technical basis for an evolutionary
approach to software development

Prof. Dr. B. Rumpe
Software Systems

weamees || EX@Mples for Transformational Development

Seite 23

bei/08.06.SF

= Mathematical calculi for reasoning

= State machine transformations for error completion, determinism, ...

= Stepwise refinement of programs
(Bauer, Partsch) for software development

= Hoare calculus for reasoning over programs

» Refactoring (Opdyke, Fowler) for evolution

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 24

bei/08.06.SF

Streams & Behaviors

Communication histories over channels are modeled by streams:
e streams s=<1,2,a,3,b,b,..>
Channel valuations assign streams to channel names: C=C—M
An I/O behavior relates input and output channel valuations: £ : T — IP’(B)

Composition of behaviors can be modeled graphically:

Prof. Dr. B. Rumpe
Software Systems

e e || KINAs Oof Transformations

Seite 25

= Behavioral Refinement:
« A behavior B’ is a refinement of a behavior B

Vx: /() € 600

= Structural Refinement (Decomposition)
— LT
= Evolution of architecture (Refactoring)

125 o) TIe

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 26

bei/08.06.SF

Semantics of Transformations

= Transformation rules:
*Add or remove components
*Add or remove channels
*Refine component behavior
*Fold and unfold subsystems

v

v

Blackbox

behavior

Blackbox

behavior

Refinement
relation

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 27

bei/08.06.SF

Example: Communication System

Key

s
— >

Req

Data (Consisting of key and value) is accepted via ,In“
and transmitted to the ,Remote Data Base“ (RDB)
Upon sending a key, the requested value is sent

Problem:
e Transmission from Stub to RDB shall be encrypted
Solution:
* We evolve the part of the system, we are currently focusing on

Prof. Dr. B. Rumpe
Software Systems

meamees || EX@Mple: Communication System

bei/08.06.SF

Seite 28
In Data —
q

= Step O:
» Decide what the ,observed behavior” will be that shall not be changed.
* Here, we group the observed channels into a component

Prof. Dr. B. Rumpe
Software Systems

meamewes || EX@Mple: Communication System

Seite 29

bei/08.06.SF

Key

In Data “
Req

= Step 1.
* Add encryption and decryption components
* No connection to the rest of the system: Nothing bad can happen

Prof. Dr. B. Rumpe
Software Systems

meamees || EX@Mple: Communication System

Seite 30
bei/08.06.SF

Key

S — RDB
— >
—
Req
— ENC | —pEC —=7
> >

= Step 2:
* Define signature and behavior of new components
(may be we reuse of the shelf components?)

» Still no connection to the rest of the system: Nothing bad can happen

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 31

bei/08.06.SF

Example: Communication System

Key

In Data <
— > -
Req
CData - Data’

Step 3:
e connect Input and output channels
 RDB now has an additional input channel, but doesn‘t use it yet

« Still nothing bad can happen

Prof. Dr. B. Rumpe
Software Systems

meamewes || EX@Mple: Communication System

bei/08.06.SF

Key

A 4

Req

Seite 32
- - / Dat;
— ﬁ
KC Data)

= Step 4.
« establish invariant between channels;
» CData = encrypt* (Data)
» Data‘ = Data (modulo time)
« RDB' now can use Data‘ instead of Data

Prof. Dr. B. Rumpe
Software Systems

meamewes || EX@Mple: Communication System

Seite 33

bei/08.06.SF

Key

A 4

Req
CData

= Step 5:
e Remove unused channel Data

Prof. Dr. B. Rumpe
Softyvare_Systems . .
e || EXample: Communication System
Seite 34 sossr
In Key
Req
CData
= Step 6:

* Fold new parts into subcomponents

Prof. Dr. B. Rumpe
Software Systems

e || State machines

Seite 35

bei/08.06.SF

= A state machine is a tupel A=(S,M,3,1) consisting of:
o set of states S,
« set of input and output messages M,
 state transition relation §: (SxM) — 2(5xM%) and
e set | < SxM’of initial states and outputs

= Nondeterminism = underspecification
= Partiality = total underspecification (chaos)

Prof. Dr. B. Rumpe
Software Systems

eewes || CONclusion

Seite 36

bei/08.06.SF

= Further diversification of SE techniques / tools / methods leads to a
portfolio of SE techniques

= Intelligent use of models allows to improve development
= Methodical knowledge allows more efficient processes

e correctness by construction

e automated tests over documentation and reviews

« evolutionary development (refactoring) over big-upfront-design phase

= “Model engineering”

Prof. Dr. B. Rumpe
Software Systems

e || State machines

Seite 37

bei/08.06.SF

= A state machine is a tupel A=(S,M,3,1) consisting of:
o set of states S,
« set of input and output messages M,
 state transition relation §: (SxM) — 2(5xM%) and
e set | < SxM’of initial states and outputs

= Nondeterminism = underspecification
= Partiality = total underspecification (chaos)

Prof. Dr. B. Rumpe
Software Systems

s || S€Mantics of a state machine

Seite 38

bei/08.06.SF

= One transition contains one input message and a sequence of output
messages

= Semantics is a relationship between input and output streams
M :(S,M,3,l) - 2M*xM)
» Behavioral refinement between automata:
ALIC DA, iff MIA] 2 MIA,]
» Refinement rules can be used to
» constrain (detail) behavior description

 Inherit state machines
e Implementation of an interface

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 39

bei/08.06.SF

Example transformation rule

Remove a transition:
e |f there is an alternative

A
> o« :
EB

If preconditions are present, the remaining transition must overlap the
removed transition. This must be proven.

Prof. Dr. B. Rumpe
Software Systems
Engineering

TU Braunschweig

Seite 40

bei/08.06.SF

Example transformation rule 2

Split a state

foo

Multiplies transitions

useful to remove unwanted transitions

Prof. Dr. B. Rumpe
Software Systems

meamees || EX@Mple: Statemachine for class Figure

Seite 41 _
1. Intro. state Sel(ected)
2. Intro. state NotSel(ected)
deselect/
[\ select/render 3. Define init states
Idraw 4. é:?a?:tﬁéTSrgfthod select in
‘—" NotSel Sel }—Q
/[draw&render

5. deselect in state Sel
6. introduce error state
7. error completion
using underspecification

deselect/unrender

deselect/error

deselect/

select/

Prof. Dr. B. Rumpe
Software Systems

meamees || EX@Mple: Statemachine for class Figure

Seite 42

bei/08.06.SF

1. Intro. state Sel(ected)
2. Intro. state NotSel(ected)

deselect/
select/render 3. Define init states
[\ 4. Constrain method select in
state NotSel
[NotSel Sel }—Q
/[draw&render

5. deselect in state Sel

6. introduce error state

7. error completion
using underspecification

8. specialize deselect:
remove transition

9. remove error state

10. specialize initial states

deselect/unrender

Prof. Dr. B. Rumpe
Software Systems

meamees || EX@Mple: Statemachine for class Figure

Seite 43
bei/08.06.SF

1. Intro. state Sel(ected)
2. Intro. state NotSel(ected)

deselect/
select/render 3. Define init states
[\ 4. Constrain method select in
state NotSel
[NotSel Sel }—Q
/[draw&render

5. deselect in state Sel
6. introduce error state
7. error completion
using underspecification
8. specialize deselect:

Each step is a refinement of the remove transition

observable behavior of that class 9. remove error state
10. specialize initial states

deselect/unrender

