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Abstract. We consider stability of an infinite dimensional switching
system, posed as a system of linear hyperbolic partial differential equa-
tions (PDEs) with reflecting boundaries, where the system parameters
and the boundary conditions switch in time. Asymptotic stability of the
solution for arbitrary switching is proved under commutativity of the ad-
vective velocity matrices and a joint spectral radius condition involving
the boundary data.

Problem Formulation. Motivated by applications [2], we consider hybrid
dynamics governed by linear hyperbolic PDE systems and a discrete set of modes:

∂tu(t, s) + Aj∂su(t, s) = 0

C
j
Lu(t, a) = 0, C

j
Ru(t, b) = 0

, j ∈ Q ≃ {1, . . . , N}, (1)

where the matrices Aj ∈ R
n×n specify the advective velocities and the matri-

ces C
j
L ∈ R

(n−mj)×n and C
j
R ∈ R

mj×n specify the boundary data for the un-
known vector function u(t, s) = (u1(t, s), . . . , un(t, s))⊤ on the space-time strip
Ω([t1, t2]) := {(t, s) | t ∈ [t1, t2], s ∈ [a, b]}. We assume that

(H)1 the subsystems for fixed j are strictly hyperbolic, i. e. Aj has mj negative

and (n−mj) positive eigenvalues λ
j
i with n corresponding linearly indepen-

dent left (right) eigenvectors l
j
i (rj

i );
(H)2 the switching signals in time T = {t ≥ 0} are piecewise constant functions

σ(·): T → Q with switching times τk (k ∈ N) such that there are only finitely
many switches j y j′ in each finite time interval of T .

We consider the switched system in the space of piecewise continuously differ-
entiable functions, denoted as PC1 = PC1([a, b], Rn), setting u(t) := u(t, ·), and
say that for an initial condition ū(·) ∈ PC1, the function u(·): T → PC1 is a
solution of the switched system (1) if

u|t=0 = ū ∧

{

u|τk+ := u|τk− for all switching times τk of σ(·),
u|(τk+,τk+1−) solves (1) with j = σ(t) = const.

(2)

Under the above assumptions, it is easy to see that the system is well-posed, if
and only if it is well-posed in each mode, i. e., following [1]:
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= n for all j ∈ Q. (3)



For a fixed j ∈ Q, it is convenient to consider system (1) in an equivalent

diagonal form. Using the transformation SjA
jS−1

j , where Sj :=
[

l
j
1

∣

∣ · · ·
∣

∣ljn
]⊤

,
the system (1) can be written in characteristic coordinates ξ := Sju

∂tξ(t, s) + diag(Λj
I , Λ

j
II)∂sξ(t, s) = 0

ξII(t, a) = G
j
LξI(t, a), ξI(t, b) = G

j
RξI(t, b)

(4)

where, ξI = (ξ1, . . . , ξm)⊤, ξII = (ξm+1, . . . , ξn)⊤, Λ
j
I = diag(λj

1, . . . , λ
j
mj

),

Λ
j
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mj+1, . . . , λ
j
n) and
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(5)

Thus, the solution (2) of the switched system (1) can equivalently be written as
u(·) = S−1

σ(·)ξ(·), where ξ(·) satisfies

ξ|t=0 = Sσ(0)ū ∧

{

ξ|τk+ = Sσ(τk+)S
−1
σ(τk−)ξ|τk− for all τk,

ξ|(τk+,τk+1−) solves (4) with j = σ(t) = const.
(6)

Note that if all the subsystems are simultaneously diagonalisable, i. e. Sj′ = Sj

for all j, j′ ∈ Q, then (6) shows that the solution of system (1) is constant along
its characteristic paths that change their slope at switching times.

Main Result. We consider stability of the above switching system, moti-
vated by a simple PDE counterpart to the well known ODE observation [3] that
asymptotic stability of all subsystems is not sufficient, even for all subsystems
in diagonal form (4).

Example 1. Q = {1, 2}, Aj = diag(−1,+1), [a, b] = [0, 1], G
j
L = 1.5(j − 1),

G
j
R = 1.5(2 − j). For ū(·) ≡ 1, the solution of the subsystems is 0 for all t > 2,

but alternating σ(·) at t = 0.5, 1.5, 2.5, . . . leads to limt→∞ ‖u(t)‖∞ = ∞. ⊓⊔

Indeed, the non-diagonal system (1) can be shown to blow up under switching
of the advective velocity matrices, although its boundaries are un-switched and
are “dissipative” in the sense of [4]; i. e., the following spectral radius condition
holds:

‖G(GL, GR)‖min := inf
γ=diag{γi},γi>0(i=1,...,n)
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∥
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∥

∥

∞

< 1. (7)

Moreover, it is easy to see that a switched system in diagonal form even satisfying
(7) in each mode can blow up just by alternately changing mj .
Our goal here is thus to impose sufficient conditions for the switched system to be
asymptotically stable under arbitrary switching. For u(·) ∈ PC1, we use the norm
‖u(·)‖ := maxi=1,...,n; s∈[a,b] |u

i(s)| and, w. l. o. g., we consider u(·) ≡ 0 as the
only equilibrium state of the switched system. We say that the switched system
is asymptotically stable under arbitrary switching, if for all ε > 0 sufficiently



small, there exists a δ(ε) > 0 such that if ‖ū(·)‖ ≤ δ, then ‖u(·)‖ ≤ ε for all
t ≥ 0 and limt→∞ ‖u(·)‖ = 0, independently of the switching signal σ(·). Our
main result is the following.

Theorem 1. Consider a system (1) under hypotheses (H)1,2 being well-posed in
the sense of (3) and suppose that the following conditions hold for all j, j′ ∈ Q

(a) mj = mj′ (b) AjAj′

= Aj′

Aj (c) ‖G(Gj
L, G

j′

R)‖min < 1 (8)

where G
j
L, G

j
R are given as in (5) and ‖G(·, ·)‖min is defined as in (7). Then the

system is asymptotically stable under arbitrary switching.

Proof. Under condition (8)b, the system (1) can be simultaneously diagonalized
for all modes to (4) with Sj′ = Sj for all j, j′ ∈ Q and we can consider its
solution ξ(·) along its characteristic paths, see (6). Then we follow arguments of
Li [4] Lemma 2.1, concluding that condition (8)c implies

θ := max
j,j′∈Q

{‖|Gj
L||G

j′

R |‖∞, ‖|Gj′

R ||Gj
L|‖∞}

=
max

r=1,...,m

l=m+1,...,n

j,j′∈Q

{

m
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n
∑
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|gR,j′

rk ||gL,j
kp |,

n
∑

k=m+1

m
∑

p=1

|gL,j
lp ||gR,j′

pk |

}

< 1,
(9)

where G
j
L = (gL,j

pq ) and G
j′

R = (gR,j′

pq ). It suffices to show that for any fixed ε > 0,
there exists δ(ε) > 0 such that

|ξ(t, s)| := max
i=1,...,n

|ξi(t, s)| ≤ ε (10)

for all 0 ≤ t < ∞, a ≤ s ≤ b. Let Tmin :=
(

maxi=1,...,n;j=1,...,N |λj
i |

)−1
. By

boundedness of ū and thus ξ̄ := Sσ(0)ū, by continuity of the solution along the
characteristic path and by linearity of the boundary conditions for fixed j ∈ Q,
there exists a δ(ε) ≤ ε such that

|ξ(t, s)| ≤ αε for all (t, s) ∈ Ω([0, T ◦)) (11)

for some T ◦ > 0 sufficiently small (i. e. smaller than τ1 > 0) and for some α ≤ 1
to be specified later. Thus, to show (10), it suffices to prove that for any fixed
T > 0, if (10) holds on Ω([0, T ]), then it still holds on domain Ω([0, T + Tmin]).
So assume (10) holds on Ω([0, T ]) and fix some (t∗, s∗) ∈ Ω([T, T + Tmin]).
Due to (8)a, let zr denote the r-th characteristic path passing through (t∗, s∗)
(r = 1, . . . ,m). Backwards in time, zr either intersects t = 0 before hitting
any boundary (case 1) or it intersects the line s = b (case 2). See Figure 1 for
an illustration with an example switching configuration. For case 1: Using (2),
ξr(t∗, s∗) = ξr(0, s̃1) for some a ≤ s̃1 ≤ b. So, |ξr(t∗, s∗)| ≤ δ ≤ ε by assumption.
For case 2: Again by (2), ξr(t∗, s∗) = ξr(tr, b), where 0 ≤ tr ≤ t∗ is the time
when the r-th characteristic path hits s = b. Thus,

|ξr(t∗, s∗)| = |

n
∑

l=m+1

g
R,j
rl ξl(tr, b)| ≤

n
∑

l=m+1

|gR,j
rl ||ξl(tr, b)| (12)
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Fig. 1. (a) Case 1, (b) Case 2 (i), (c) Case 2 (ii)

with j = σ(tr). Now, let zl denote the l-th characteristic path passing though
(tr, b) (l = m + 1, . . . , n). Then, either zl intersects the line t = 0 before hitting
the line s = a (case 2(i)) or it hits s = a (case 2(ii)). For case 2(i), we have
|ξl(tr, b)| = |ξl(0, s̃2)| ≤ δ ≤ αε for some a ≤ s̃2 ≤ b by assumption. Substituting

this in (12), we get |ξr(t∗, s∗)| ≤ K
j
1αε with K

j
1 :=

∑n

l=m+1 |g
R,j
rl |. For case 2(ii),

we have |ξl(tr, b)| = |ξl(trl, a)| = |
∑m

p=1 g
L,j′

lp ξp(trl, a)| ≤ |
∑m

p=1 g
L,j′

lp ||ξp(trl, a)|
with 0 ≤ trl ≤ Tmin is the time when the characteristic path zl hits s = a

and j′ = σ(trl). Substituting this in (12), we get by assumption and using (9)

|ξr(t∗, s∗)| ≤
∑n

l=m+1

∑m

p=1 |g
R,j
rl ||gL,j′

lp ||ξp(trl, a)| ≤ θε ≤ ε.

Similar estimates can be obtained for ξl(t, s) (l = m + 1, . . . , n) with constants

K
j
2 :=

∑m

p=1 |g
L,j
lp |. Define K := maxj∈Q{K

j
1 ,K

j
2}. Choosing δ in (11) with

α = max{1, 1
K
} we conclude (10) for all t ≥ 0 by induction. Essentially the same

arguments applied to ξ̂(t) := exp(βt)ξ(t), show that ‖ξ(t)‖ ≤ ε exp(−βt) for
β > 0 sufficiently small, (see [4], page 185). The system is thus asymptotically
stable. ⊓⊔
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