Source-Level Timing Annotation and Simulation for a
Heterogeneous Multiprocessor

Trevor Meyerowitz,
Alberto Sangiovanni-Vincentelli
University of California at Berkeley
Berkeley, California, USA

{tcm, albertor@eecs.berkeley.edu

ABSTRACT

A generic and retargetable tool flow is presented that en-
ables the export of timing data from software running on
a cycle-accurate Virtual Prototype (VP) to a concurrent
functional simulator. First, an annotation framework takes
information gathered from running an application on the
VP and automatically annotates the line-level delays back
to the original source code. Then, a SystemC-based timed
functional simulator runs the annotated source code much
faster than the VP while preserving timing accuracy. This
simulator is API-compatible with the multiprocessor’s op-
erating system. Therefore, it can compile and run unmodi-
fied applications on the host PC. This flow has been imple-
mented for MuSIC(Multiple SIMD Cores) [6], a heteroge-
neous multiprocessor developed at Infineon to support Soft-
ware Defined Radio (SDR). When compared with an op-
timized cycle-accurate VP of MuSIC on a variety of tests,
including a multiprocessor JPEG encoder, the accuracy is
within 20%, with speedups from 10x to 1000x.

1. INTRODUCTION
1.1 Related Work

Traditional instruction set simulators and system-level vir-
tual prototypes are accurate, but can be slow and difficult
to modify. Compiled code simulators such as those from
VaST([3] significantly increase performance, but are time
consuming to create and modify, and may be still too slow
for large multiprocessor applications. The POLIS project [4]
“synthesizes” source code from a formal specification, called
Codesign Finite State Machines (CFSMs). It features per-
formance estimation [9] based on CFSMs and S-Graphs, an
intermediate representation used in the synthesis process.
For simple processors this approach had a maximum error
magnitude of 25%, but it can only be applied to synthesized
code from CFSMs, whereas our technique is based on the
application code and achieves better accuracy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Design Automation and Test Europe (DATE) March 2008, Munich, Germany
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Mirko Sauermann, Dominik Langen
Infineon Technologies
Munich, Germany

{Mirko.Sauermann,
Dominik.Langeni@infineon.com

Multi-Tasked SIMD Core

. | stmp core PE Array

i | controller PE | PE | PE | PE
i 112334

1&D Local Memories

: 1
i 1 SIMD Core Cluster ! !
|

PRIN \[stmp | [stmo | [stmp | [stmp Control | !
1 RF i|core1| |core2 | |cores| | corea|! Bus Processor
: . >
| Interfaces | [Fiocal Local Local Local || | Bridee 18D H
! 1| Mem. Mem. Mem. Mem. |1 Cache '
]

Multi-Layer Bus :

I

FIR Shared Memory Turbo External
Filter Viterbi Memory IF | | Peripherals
Decoder | | (Flasn/orAM)

Bank | Bank | Bank | Bank
314 314

Figure 1: MuSIC System Architecture

In [5] the authors introduce two approaches for perfor-
mance estimation: object code based and virtual compila-
tion based. Our technique is at a much higher level than
both of these, yet it achieves good accuracy and, aside from
detecting the synchronization instructions, is independent
of the assembly used.

MESH [8] is a high level environment for exploring dif-
ferent multiprocessor system on chip architectures. Per-
formance is based on user specified instruction counts for
threads executing on processors. We automatically anno-
tate cycle delays obtained directly from target source code
running on the virtual prototype. Further, we could easily
extend the tool to output instruction counts.

1.2 Architecture and Models

Figure 1 shows the MuSIC system architecture. It fea-
tures: four multi-tasked SIMD (Single Instruction Multi-
ple Data) core clusters specialized for signal processing, an
ARM processor for control layer processing, and hardware
accelerators. All processing blocks can access shared memo-
ries via a multi-layer bus. Each task in a SIMD core cluster
is controlled by a general purpose RISC processor running
a custom multiprocessor RTOS (Real-Time Operating Sys-
tem) called ILTOS, where each RISC processor can run a
single thread. Applications can access processing, memory,
and communication resources through the ILTOS APL

1.2.1 Architectural Simulation Models

For cycle accurate simulation, the MuSIC team developed
an optimized VP in SystemC[l]. The SIMD control pro-
cessor is simulated by a cycle-accurate model created with
Coware’s Processor Designer. The VP is parameterizable in

Start

Target .
I(:s::) Compilation Target Binary MusSIC
‘1 / (EXE, A%II, DIS) Hardware or

Virtual Prototype
Multi-Threaded

(SystemC, C++)
Application Code

(C +ILTOS API) Performance
Traces
\\
N Source Level
Host \ Timing Annotation
Compilation *, Framework
Untimed)
((Untimed) v (Python)

Algorithmic) \
N

Host Timing Annotated

Compilation Multi-Threaded

Timed

Einish E | Q: Annlinat
n & F Simulator PE Code
Results) (SystemC/C++) (Annotated (SystemC +
Algorithmic) ILTOS API)

Figure 2: Annotation Tool Flow. Shaded parts in-
dicate the contributions from this work.

a variety of ways including: the number of SIMD processors,
enabling/disabling different components, different levels of
accuracy and speed for some components, and the genera-
tion of statistics and performance traces.

1.2.2 API-Compatible Simulator

For coarse multithreaded algorithm evaluation and early
architecture exploration an API-compatible functional sim-
ulator was developed. It implements the ILTOS API, and
allows applications to be compiled directly to the Windows
host and run significantly faster than the VP. However, it
has no notion of performance. The simulator was ported to
SystemC 2.2 to support timing annotation and tracing. An-
notation is done by using a special DELAY function, which
directly maps to the SystemC timed wait function.

1.3 Tool Flow

Figure 2 shows the annotation tool flow. It begins with
an application coded for the ILTOS API. This can either be
compiled and run in an untimed manner on the functional
simulator (as shown by the dotted line), or it can be com-
piled to the target platform and then run on either the VP
or the actual hardware. For annotation purposes the appli-
cation is run on the VP. Then our framework reads in the
the application code, the assembly files, the disassembled
object file, and the execution trace produced by the virtual
prototype. Based on this information a delay for each line
of the original source code is calculated and then added to a
timing annotated version of the application. This code can
then be compiled and run on the functional simulator to get
timing information without simulating the architecture.

1.4 Basic Definitions

An ezecution trace corresponds to a run of a program and
consists of the instructions beginning execution on each pro-
cessor at each cycle. An instruction is a single line of assem-
bly at a given program address. The delay of an instruction
is calculated by subtracting its start-time from that of its
successor. A block is a contiguous sequence of instructions
in the program that have the same label. Labels attach the
given instruction or block to a given line number (or null
value). The labels are extracted debugging information. A
basic-block is a block that, once entered? is never interrupted
with external instructions and always executes its final in-
struction (note: it can be entered at a midpoint). The delay

LA basic-block can be entered at a midpoint.

of a basic-block for a given execution is equal to the sum
of the delays of all of its instructions for that execution. A
line is the set of blocks with the same label. Line delays are
explained in Section 2.2.1.

2. SINGLE PROCESSOR ANNOTATION

2.1 Constructing Annotation Structures

First the assembly and disassembly files are unified into a
single description based on the locations of line numbers and
functions present in the debug information in the assembly
language, and the associated instruction addresses and sizes
from the disassembled executable. Each source file is split
into functions. Each function is split into lines, which are
then split into blocks. Then, jumps are extracted from the
processor’s execution trace. A jump occurs whenever an
instruction in the execution trace is not directly followed
by its successor. The blocks are sliced at these boundaries
to form more blocks. This separates the blocks from the
functions that they call, which can improve accuracy.

2.2 Calculating Block-Level Annotations

Next, the execution trace is stepped through to calculate
the delays for each execution of the basic-blocks. When a
block is entered its execution count is increased by 1. When
it is exited the block’s delay is annotated to its line.

2.2.1 Calculating Line-Level Annotations

When a block’s execution is added to its line, their execu-
tion counts are compared and if the block’s is higher then the
line’s execution count is incremented. This approximation
works for most cases. There are two types of annotations for
lines. Internal annotations are the cycles and instructions
of the blocks associated with that line of code. FExternal
annotations are the cycles and instructions associated be-
tween source blocks, with annotations between lines going
with the later line. The internal and external annotations
are summed together for each execution of the line.

2.3 Generating Annotated Code Source Code

The delay annotations for each line are calculated based
on the average cycle count?® over its executions. Figure 3
shows examples of the different annotation cases. In this
figure, Dy represents the delay for statement <N>, and the
DELAY function is the annotation. For the general case a
line of code has its delay written directly before it in the an-
notated source file. Figure 3(a) shows the basic annotation
of the statements <statementl> and <statement2>.

Figure 3(b) shows an annotated while-loop. In it <test>
represents the test condition and <body> is the loop body.
While-loops are detected by examining each line of the source
code for lines that start with whitespace immediately fol-
lowed by the while keyword. In this case, the test delay is
annotated before and after the while loop statement. In-
terestingly, do-while loops do not need special handling, be-
cause in the test condition and body execute the same num-
ber of times. Figure 3(c) shows an annotated do-while loop.

Figure 3(d) shows an annotated for-loop. Like the while-
loop, the for-loop has a test condition called <test>, but it
adds initialization and update statements respectively named
<init> and <update>. For-loops are detected in the same

?Maximum and minimum cycle counts can also be used.

DELAY (Dararement); | | LAY (Deeat);
S while (<test>) {
<statementl> DELAY (Dpes):
DELAY(Dstatement2)§ DELAY(DbOd1);
<statement2> <body> Y

}
(b) While Loop

(a) Basic Statements

do { DELAY (Dinit + Dtest);
DELAY (Dyody); for (<init> ; <test>; <update>) {
<body> ! DELAY(DtGSt + Dupdate);
. DELAY (Dpody);
DELAY (Dyest); bodys
} while (<test>); }

(c) Do-While Loop () For Toop

Figure 3: Annotation Examples

manner as while-loops, but with the for keyword. The ini-
tialization statement will always be the first block executed
in a for-loop. Therefore, this block’s delays are subtracted
from the delays of the for-loop’s line delay. The first block’s
delay is annotated above the line, and the remaining delay
is annotated directly below it.

3. MULTIPROCESSOR ANNOTATION

Multiprocessor timing annotation is very similar to the
uniprocessor annotation. It applies the same techniques, but
it combines the line-level annotations from every processor
to calculate the overall annotations. Also, two special cases
and their handling are detailed below.

3.1 Startup Delays

Without special handling the startup delay before any
user code is executed is assigned as a regular delay to the
first executed line of user code. If this line executes on more
than one processor, then the delay will be added each time
instead of just the first time. To deal with this a static vari-
able called “started_up” is included in the functional simu-
lator. For all other threads the startup delays are ignored.
The startup delay is guarded for on the first source line ex-
ecuted in the below manner:

if (started_up == 0) {
started_up = 1; Delay_Thread(<D_startup>);
}

3.2 Inter-Processor Communication

Since the line-level annotations are calculated indepen-
dently for each processor, inter-processor communication is
counted for both processors, leading to double counting.
One way to deal with this is to analyze all of the processor
traces concurrently, but this approach would require exces-
sive storage, and that the annotation framework understand
the multiprocessor functions and their interactions. Instead,
communication is handled by ignoring ILTOS API function
delays and then replacing them with pre-characterized de-
lays during simulation. For the results, direct-measurement
refers to directly measuring all delays, and characterization-
based uses the above described technique.

4. RESULTS AND ANALYSIS

The annotation algorithms were implemented in Python
2.5 for the SIMD control processors in MuSIC. The code
for reading in the different files is specialized, while the core

Table 1: MiBench Tests

Small Results Large Results

Benchmark Error (%) | Speedup | Error (%) | Speedup
adpcm.encode -1.67% 16.3 -0.70% 16.3
adpcm.decode -2.25% 15.6 -1.31% 40.1
dijkstra -12.63% 25.7] -17.46% 27.5
patricia -0.47% 81.6 -1.18% 65.5
rijndael.encode -1.26% 129.9 -2.96% 229.6
rijndael.decode -6.52% 159.1 -1.69% 234.5
sha 0.00%| 1,030.8 0.00% 984.4
stringsearch 3.85% 14.6] -13.95% 28.7
avg. magnitude 2.80% 184.2 4.91% 203.3
max. magnitude 12.63% 1,030.8 17.46% 984.4

Table 2: Multiprocessor Tests

Direct Characterization
Thread | Measurement Based
Benchmark Count Error % Error % | Speedup
Imessage test 3 0.00% 0.21% 80.1
streaming_test 4 48.77% 0.18% 207.5]
thread_test 19 767.24% -2.24% 526.9|
JPEG_multi 5 93.45%] -7.39% 17.0
avg. magnitude 227.37%) 2.50% 207.9|
max. magnitude 767.24% 7.39% 526.9|

algorithms are implemented generically. All of the exper-
iments were run on a 2.0 GHz Core Duo laptop running
Windows XP with 1 GB of memory. The applications tar-
geting the control processors were compiled without opti-
mization. The annotated source code was compiled with
Microsoft Visual C++ 2005 and linked to the timed func-
tional simulator. The annotated source code running on the
timed functional simulator was compared to the the virtual
prototype in terms of speed and accuracy for the same data
and for different data. For non-disclosure purposes the num-
bers are given in a relative manner.

4.1 Results with Identical Data

4.1.1 Single Processor with ldentical Data

The annotator was evaluated on ten single-processor tests
from the ILTOS library, using both the direct-measurement
and the characterization-based annotation techniques. The
maximum error magnitude of the two were 0.5% and 1.6%
respectively. The speedup for these tests ranged from 11x
to 139x, and averaged 47x.

The annotation was also tested on eight benchmarks from
the MiBench benchmark suite [7] that were easily ported
to the control processors. Table 1 shows the results using
characterization-based annotation. The first set of results
are for the benchmarks running on the small data set, and
the second set of results are for the large data set. The
accuracy is within 18%, and for most cases is within 3%.
There is a wide range of speedup between 14x and 1030x.

4.1.2 Multiprocessor with Identical Data

The annotator was run on four multiprocessor tests.
Thread_test’s main thread creates a new thread running the
same code and then waits for it to finish. This creation and
waiting happens until each of the 19 control processors in
the system is allocated one thread. Then the threads ter-
minate one by one. Message_test and streaming_test feature
inter-thread communication. JPEG_multi is a five-threaded
JPEG encoder ported from PThreads.

Table 2 shows the results for the multiprocessor examples,

o 3.0 —e&— Normalized VP

205 H Execution Time

>

T 20 % .

N —@— Normalized

T 15 Char. Based

.Eé 1.0 lélri—f— —h Execution Time

Z 1 4 7 10 | —&— Normalized
Number of Worker Threads Annotation

Time

Figure 4: Normalized execution and annotation
times for streaming test with varying numbers of
worker threads

with the third and fourth columns indicating the accuracy
for direct-measurement and characterization-based annota-
tion respectively, and the last column shows the speedups.
For these tests, the direct measured approach has average
and maximum error magnitudes approximately 100x times
larger than those from the characterization-based approach.

4.2 Results with Different Data

The results so far mentioned are so accurate because they
are annotated with performance measured from the applica-
tion running on the same data. To evaluate the performance
better, it is necessary to compare the accuracy of the anno-
tated code running on different data and different control
flows than those used for training.

4.2.1 Single Processor with Different Data

We ran the Dhrystone benchmark with loop counts of 1,
10, 100, 500, and 1000 to obtain annotated source files. Each
annotated result was run on all of the loop counts to evaluate
the data-dependence accuracy of the annotation. The single
iteration results have an average error magnitude of 25% and
a maximum error magnitude of 47%. These errors are so
large because they are based on the initial execution where
the code is loaded into the instruction cache. The last three
loop counts are much better, with average error magnitudes
under 2.1%, and maximum error magnitudes under 3.5%.

For all of the mentioned MiBench tests except for
stringsearch (which initializes data in the source code), the
large trained annotated code was tested on the small data
sets, and vice versa. For the large trained code the average
and maximum magnitudes were 4.6% and 17.5%, and the
magnitudes were 2.9% and 12.6% for the small trained code.

4.2.2 Multiprocessor with Different Data

Then streaming_test was run on files with 15, 20, 40, 100,
and 500 elements. The generated annotated source files for
each number of elements were then run on all of the numbers
of elements. The full results had 0.7% maximum error mag-
nitude. JPEG_multi was evaluated on images of different
sizes and its error magnitude stayed below 8.2%.

The number of worker threads in streaming_test were then
varied from 1 to 10 for a file with 500 elements. These had
a maximum error magnitude of 0.26% when running on the
same data. Figure 4 shows the normalized run times for
it and shows that the annotated code scales significantly
better than the VP. All of the generated source files were
then tested on all of the worker thread configurations, and
had a maximum error magnitude 3.03%. The speedup for
the one worker was 46x.

4.3 Annotation Runtime

The annotation framework’s runtime is linear in the sum
of the sizes of the input files, with the execution trace’s
length dominating. Due to space constraints the execution
trace is preprocessed and compressed with gzip. Then, each
processor’s execution trace file is read in and the annotations
are calculated for it. Based on measurements the runtime
ranged from 0.5x to 5x that of the VP’s runtime, with over
half of this is taken by the preprocessing. The use of gzip
and Python significantly slow things down. The annotation
framework’s runtime could be greatly reduced if it were in-
tegrated to run concurrently with the VP.

4.4 Limitations

Currently the framework does not fully parse the origi-
nal C application code. It makes some assumptions on the
syntax, which are currently resolved by using a source-code
beautifier [2], and by changing offending statements. Fur-
thermore, its accuracy can be impacted by putting multi-
ple commands on the same line. Also, annotations illegally
placed are presently fixed manually.

All of the experiments are run without compiler optimiza-
tions. Using compiler optimizations makes obtaining accu-
rate annotations more difficult. This also impacts debug-
gers. Approaches such as [10] address it.

S. FINAL WORDS

Automated timing backwards-annotation at the source
code level was presented for a heterogeneous multiproces-
sor. While the implementation was for a specific architec-
ture, the framework is highly generic and quite portable.
This technique achieved accuracy within 20% for single and
multi-processor applications running on the same data. As
expected, the annotations were not as accurate for different
data. The annotated code was 10x to 1000x faster, with
multiprocessor programs and programs calling complicated
external libraries exhibiting the greatest benefit.

While the timing annotation works well for certain classes
of programs, such as the ones that fit into cache and have
very regular communication patterns (e.g. streaming appli-
cations), it does not take into account resource contention
or communication overhead. A promising path to solve
this problem is extending annotation to handle memory and
communication traffic.

6. REFERENCES

[1] Open SystemC Initiative Web Site: http://www.systemc.org.

[2] Uncrustify web site: http://uncrustify.sourceforge.net/.

[3] VaST Website: http://www.vastsystems.com.

[4] F. Balarin, et. al. Hardware-software co-design of embedded
systems: the Polis approach. Kluwer Academic Publishers,
Boston; Dordrecht, 1997.

[5] J. Bammi, et. al. Software performance estimation strategies in
a system-level design tool. Proc. of CODES, pages 82—6, 2000.

[6] H.-M. Bluethgen, et. al. A programmable baseband platform for
software-defined radio. In Proceedings of SDR FORUM, 2004.

[7] M. Guthaus, et. al. Mibench: A free, commercially
representative embedded benchmark suite. Proc. of the 4th
Workshop on Workload Characterization, pages 3—14, 2001.

[8] J. M. Paul, et. al. High-level modeling and simulation of
single-chip programmable heterogeneous multiprocessors. ACM
Trans. Des. Autom. Electron. Syst., 10(3):431-461, 2005.

[9] K. Suzuki and A. Sangiovanni-Vincentelli. Efficient software
performance estimation methods for hardware/software
codesign. Proceedings of the DAC, pages 605—610, 1996.

[10] L.-C. Wu. Interactive Source-Level Debugging of Optimized
Code. PhD thesis, University of Illinois at Urbana-Champaign,
August 1999.

