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Abstract 

     We have previously proposed PTIDES (Prog-

ramming Temporally Integrated Distributed Embedded 

Systems), a discrete-event framework that binds real-

time with model time at sensors, actuators, and 

network interfaces. In this experimental effort we focus 

on performance issues and tradeoffs in PTIDES 

implementation. We address event processing 

performance with respect to other distributed discrete-

event approaches that can be applied in a similar 

setting. The procedure is experimentally evaluated on 

a distributed setup with standard software and 

networking components.  

 

 

1. Introduction 
 

A large amount of research exists in the area of 

discrete-event simulation. The related modeling 

frameworks have successfully been applied in practice 

(e.g. digital circuits, networking protocols, systems of 

systems). The components of such models send time-

stamped events to other components, and react to 

incoming events in chronological order. Simplicity and 

determinism are among the advantages of timed 

discrete-event formalisms. 
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     Less work has been done in adapting these 

formalisms as execution platforms for real-time 

embedded software. Whereas for simulation all that 

matters is that events are processed in time-stamp 

order, for the execution of a real-time embedded 

system the time instants of event processing are of the 

upmost importance. In particular, interaction with the 

environment typically involves timing constraints. We 

have previously proposed PTIDES [1], a discrete-event 

framework that binds real-time with model time (i.e., 

time-stamps) at sensors, actuators, and network 

interfaces. We studied how PTIDES can be used for 

locally distributed real-time embedded systems and 

showed its robustness and fault-tolerance properties 

[2]. 

 

1.1. PTIDES Programming Model 
 

     Figure 1 shows a model of an embedded system 

distributed over a set of platforms. In contrast to 

simulation, when such a model is implemented and 

executed, some of its components represent wrappers 

for sensors, actuators and network interfaces. The 

events at the ports of these components cannot be 

produced / consumed at arbitrary times. 

 

     For an output event of a sensor (e.g. Sensor1 in 

Figure 1), the time stamp represents the local time at 

which the sensor reading is taken. Thus, the local real 

time at which this event is produced, i.e., inserted into 

the event queue, is larger than or equal to the value of 

the time stamp of the event.  

                                                                                             

     Conversely, for an input event of an actuator (e.g. 

Actuator1 in Figure 1), the time stamp represents the 

latest real time at which the actuator action is allowed 

to take place. The local real time at which this event is 

produced has to be smaller than or equal to the value of 

the time stamp of the event. In fact, this time stamp can 

be interpreted as a deadline for the delivery of the 

event to the actuator. 

 

     The second category of PTIDES components that 

bear the same timing constraints as actuators are 
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network output interfaces. We assume that platforms 

use a local network to communicate time-stamped 

events. In addition, we assume that the network delay is 

bounded and known in advance. The timing constraint 

and the bounded delay guarantee an upper bound, 

relative to the time stamp, of the real time at which a 

time-stamped event is received at its destination.  

 

 
Figure 1. Distributed Embedded System 

 

     So, the PTIDES programming model uses discrete-

event processing for distributed real-time software by 

binding time stamps to real time only where it is 

necessary, i.e., at sensors, actuators and network 

interfaces. At other components, input events are 

processed in time-stamp order, but an event can be 

processed before or after real time reaches its time-

stamp. 

 

     The extensive research in distributed discrete-event 

simulation has focused on conservative and optimistic 

methods to exploit parallel computing resources [3]. 

However, optimistic methods (e.g. Jefferson) are of 

limited use for embedded system execution. This is so 

because they require roll back mechanisms which 

cannot be applied on actuators once they perform 

actions on the physical world. 

 

     On the other hand, conservative methods can block 

event processing unnecessarily long. In such methods, 

it is safe to process a time-stamped event only if at no 

time later in the execution will an event with an earlier 

time stamp occur. In the original Chandy and Misra 

method, each platform in a distributed simulator sends 

messages (null messages) even when there are no 

events to forward in order to provide lower bounds on 

the time stamps of future events. The PTIDES method 

is along the lines of several methods that attempt to 

reduce or entirely eliminate the null messages.  

 

     PTIDES uses static causality analysis based on the 

model-time parameters of the components. This 

analysis determines model-time path latencies that are 

used during execution to check whether an event can be 

safely processed [1]. It also enables independent events 

to be processed out of time stamp order. For events 

with mutual dependencies, the technique requires local 

clocks to be time-synchronized with a bounded and 

known error. Time synchronization, together with the 

real-time constraints described above, enables simple 

passage of time to be used to check if an event is safe 

to process, thus obviating the need for null messages. 

For instance, in order for an output event of the 

Computation4 component to be processed by the 

Actuator1 component no null message from Platform1 or 

Platform2 is necessary – it could safely be processed 

after the local clock reaches a predetermined real-time 

value. Thus, the PTIDES programming model prevents 

remote processes from blocking local ones without 

requiring backtracking. 

 

     An important assumption here is that the clocks on 

the distributed platforms are time-synchronized to 

some known precision. That is, at any global instant, 

any two clocks in the system agree on the notion of real 

time up to some bounded error. As discussed later, in 

our implementation we exploit some recent techniques 

for time-synchronization in local networks.  

 

2. Simulation 
 

     In [4] we presented a family of strategies that during 

execution determine events that are safe to process. To 

study a few of these strategies together with schedulers 

for processing of safe events we developed a 

simulation environment for the PTIDES programming 

model as an experimental domain in Ptolemy II [5]. 

The Ptolemy framework is a Java-based simulation 

environment for modeling and simulation of 

heterogeneous concurrent systems. Ptolemy supports an 

actor-oriented design methodology. A special actor in a 

Ptolemy model, the director, manages the interaction of 

other actors thus representing the model of 

computation. 

 

     Figure 2 shows an example of a PTIDES model in 

Ptolemy. A PTIDES model consists of platforms 

represented by composite actors on the top-level of the 

model. Inside each platform, the set of actors may 

include components such as sensors, actuators and 

other computational actors. The worst case execution 

time of an actor, network delay and synchronization 

error bounds can be specified as model parameters. 

The current PTIDES simulation domain is 

multithreaded but not distributed itself. During the 

initialization, the PtidesDirector creates a new thread for 

each platform. During the actual simulation, the 



execution of actors inside a platform is controlled by 

the PtidesEmbeddedDirector. 

 

 
Figure 2. A PTIDES model in Ptolemy 

 

     To keep track of the execution of actors, the 

PTIDES domain maintains a notion of physical time. 

The physical time simulates real time and is 

manipulated by the framework. So, at each simulation 

step, a specified strategy may use physical time to 

determine whether an event is safe to process. If at the 

current physical time there are no events that are safe to 

process, the platform requests the PtidesDirector to 

resume execution of that platform at a future instance 

of physical time and the platform thread waits. When 

all threads are waiting, the PtidesDirector increases 

physical time and continues checking and executing 

events. 

 

3. Implementation  
 

     Since our objective is distributed and embedded 

system execution, our efforts are targeted towards 

efficient implementations of PTIDES programming 

model. In particular, we want to compare PTIDES with 

more classical conservative distributed discrete-event 

implementations with respect to event processing rates 

and feasibility of real-time constraints.  

 

     In conservative methods, the null message 

mechanism is typically implemented either through 

periodic messages to outgoing neighbors or through 

polling of incoming neighbors whenever there is an 

event to process. For certain models both of the two 

approaches may require a lot of network traffic in order 

to prevent violation of real-time constraints. In this 

work we try to demonstrate how this can be avoided 

using our PTIDES programming model. We 

experiment with both timed-triggered and event-

triggered communication, and measure respective 

network delays. PTIDES execution engine has to take 

into account these delays. 

 

    We are working on two experimental setups that are 

equipped with two different implementations of the 

time-synchronization protocol IEEE 1588 [6]. This 

recently developed protocol achieves synchronization 

precision in nanosecond range. It is suitable for local 

networks comprising of several subnets and it only 

minimally uses bandwidth, computing and memory 

resources. 

 

     Our first setup is a set of standard laptops with no 

specialized synchronization or networking hardware 

running open source software implementation of the 

IEEE 1588 protocol. A real-time version of the Linux 

kernel that runs on each laptop is needed to achieve 

software preemption and interrupt latencies in the order 

of tens of microseconds. In this project we used real-

time kernel patch Xenomai [7] which runs the 

conventional Linux kernel as the idle task, i.e., only 

when all real-time tasks are inactive. 
 

      The second setup, shown in Figure 3, consists of 

Agilent demo nodes [8]. In this solution each node 

consists of an FPGA device and an embedded 

processor. Each FPGA device performs the IEEE 1588 

protocol such that the packets of the synchronization 

messages are captured and time-stamped low in the 

protocol stack to reduce the jitter, thus increasing the 

precision of the synchronization. For both setups our 

experiments show effects of network loads on the 

synchronization error, and thus, on real-time properties 

of the model execution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Experimental setup 
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