
Simulation and Implementation of the PTIDES Programming Model
*

Patricia Derler

University of Salzburg

patricia.derler@cs.uni-salzburg.at

Abstract

 We have previously proposed PTIDES (Prog-

ramming Temporally Integrated Distributed Embedded

Systems), a discrete-event framework that binds real-

time with model time at sensors, actuators, and

network interfaces. In this experimental effort we focus

on performance issues and tradeoffs in PTIDES

implementation. We address event processing

performance with respect to other distributed discrete-

event approaches that can be applied in a similar

setting. The procedure is experimentally evaluated on

a distributed setup with standard software and

networking components.

1. Introduction

A large amount of research exists in the area of

discrete-event simulation. The related modeling

frameworks have successfully been applied in practice

(e.g. digital circuits, networking protocols, systems of

systems). The components of such models send time-

stamped events to other components, and react to

incoming events in chronological order. Simplicity and

determinism are among the advantages of timed

discrete-event formalisms.

*This work was supported in part by the Center for

Hybrid and Embedded Software Systems (CHESS) at

UC Berkeley, which receives support from the National

Science Foundation (NSF awards #0720882 (CSR-

EHS: PRET), #0647591 (CSR-SGER), and #0720841

(CSR-CPS)), the U. S. Army Research Office (ARO

#W911NF-07-2-0019), the U. S. Air Force Office of

Scientific Research (MURI#FA9550-06-0312), the Air

Force Research Lab (AFRL), the State of California

Micro Program, and the following companies: Agilent,

Bosch, HSBC, Lockheed-Martin, National Instruments,

and Toyota.

Edward A. Lee, Slobodan Matic

University of California, Berkeley

{eal, matic}@eecs.berkeley.edu

 Less work has been done in adapting these

formalisms as execution platforms for real-time

embedded software. Whereas for simulation all that

matters is that events are processed in time-stamp

order, for the execution of a real-time embedded

system the time instants of event processing are of the

upmost importance. In particular, interaction with the

environment typically involves timing constraints. We

have previously proposed PTIDES [1], a discrete-event

framework that binds real-time with model time (i.e.,

time-stamps) at sensors, actuators, and network

interfaces. We studied how PTIDES can be used for

locally distributed real-time embedded systems and

showed its robustness and fault-tolerance properties

[2].

1.1. PTIDES Programming Model

 Figure 1 shows a model of an embedded system

distributed over a set of platforms. In contrast to

simulation, when such a model is implemented and

executed, some of its components represent wrappers

for sensors, actuators and network interfaces. The

events at the ports of these components cannot be

produced / consumed at arbitrary times.

 For an output event of a sensor (e.g. Sensor1 in

Figure 1), the time stamp represents the local time at

which the sensor reading is taken. Thus, the local real

time at which this event is produced, i.e., inserted into

the event queue, is larger than or equal to the value of

the time stamp of the event.

 Conversely, for an input event of an actuator (e.g.

Actuator1 in Figure 1), the time stamp represents the

latest real time at which the actuator action is allowed

to take place. The local real time at which this event is

produced has to be smaller than or equal to the value of

the time stamp of the event. In fact, this time stamp can

be interpreted as a deadline for the delivery of the

event to the actuator.

 The second category of PTIDES components that

bear the same timing constraints as actuators are

slobicus
Text Box
In proceedings of 12-th IEEE International Symposium on Distributed Simulation and Real Time Applications(IEEE DS-RT 2008), Vancouver, British Columbia, Canada, October 2008

network output interfaces. We assume that platforms

use a local network to communicate time-stamped

events. In addition, we assume that the network delay is

bounded and known in advance. The timing constraint

and the bounded delay guarantee an upper bound,

relative to the time stamp, of the real time at which a

time-stamped event is received at its destination.

Figure 1. Distributed Embedded System

 So, the PTIDES programming model uses discrete-

event processing for distributed real-time software by

binding time stamps to real time only where it is

necessary, i.e., at sensors, actuators and network

interfaces. At other components, input events are

processed in time-stamp order, but an event can be

processed before or after real time reaches its time-

stamp.

 The extensive research in distributed discrete-event

simulation has focused on conservative and optimistic

methods to exploit parallel computing resources [3].

However, optimistic methods (e.g. Jefferson) are of

limited use for embedded system execution. This is so

because they require roll back mechanisms which

cannot be applied on actuators once they perform

actions on the physical world.

 On the other hand, conservative methods can block

event processing unnecessarily long. In such methods,

it is safe to process a time-stamped event only if at no

time later in the execution will an event with an earlier

time stamp occur. In the original Chandy and Misra

method, each platform in a distributed simulator sends

messages (null messages) even when there are no

events to forward in order to provide lower bounds on

the time stamps of future events. The PTIDES method

is along the lines of several methods that attempt to

reduce or entirely eliminate the null messages.

 PTIDES uses static causality analysis based on the

model-time parameters of the components. This

analysis determines model-time path latencies that are

used during execution to check whether an event can be

safely processed [1]. It also enables independent events

to be processed out of time stamp order. For events

with mutual dependencies, the technique requires local

clocks to be time-synchronized with a bounded and

known error. Time synchronization, together with the

real-time constraints described above, enables simple

passage of time to be used to check if an event is safe

to process, thus obviating the need for null messages.

For instance, in order for an output event of the

Computation4 component to be processed by the

Actuator1 component no null message from Platform1 or

Platform2 is necessary – it could safely be processed

after the local clock reaches a predetermined real-time

value. Thus, the PTIDES programming model prevents

remote processes from blocking local ones without

requiring backtracking.

 An important assumption here is that the clocks on

the distributed platforms are time-synchronized to

some known precision. That is, at any global instant,

any two clocks in the system agree on the notion of real

time up to some bounded error. As discussed later, in

our implementation we exploit some recent techniques

for time-synchronization in local networks.

2. Simulation

 In [4] we presented a family of strategies that during

execution determine events that are safe to process. To

study a few of these strategies together with schedulers

for processing of safe events we developed a

simulation environment for the PTIDES programming

model as an experimental domain in Ptolemy II [5].

The Ptolemy framework is a Java-based simulation

environment for modeling and simulation of

heterogeneous concurrent systems. Ptolemy supports an

actor-oriented design methodology. A special actor in a

Ptolemy model, the director, manages the interaction of

other actors thus representing the model of

computation.

 Figure 2 shows an example of a PTIDES model in

Ptolemy. A PTIDES model consists of platforms

represented by composite actors on the top-level of the

model. Inside each platform, the set of actors may

include components such as sensors, actuators and

other computational actors. The worst case execution

time of an actor, network delay and synchronization

error bounds can be specified as model parameters.

The current PTIDES simulation domain is

multithreaded but not distributed itself. During the

initialization, the PtidesDirector creates a new thread for

each platform. During the actual simulation, the

execution of actors inside a platform is controlled by

the PtidesEmbeddedDirector.

Figure 2. A PTIDES model in Ptolemy

 To keep track of the execution of actors, the

PTIDES domain maintains a notion of physical time.

The physical time simulates real time and is

manipulated by the framework. So, at each simulation

step, a specified strategy may use physical time to

determine whether an event is safe to process. If at the

current physical time there are no events that are safe to

process, the platform requests the PtidesDirector to

resume execution of that platform at a future instance

of physical time and the platform thread waits. When

all threads are waiting, the PtidesDirector increases

physical time and continues checking and executing

events.

3. Implementation

 Since our objective is distributed and embedded

system execution, our efforts are targeted towards

efficient implementations of PTIDES programming

model. In particular, we want to compare PTIDES with

more classical conservative distributed discrete-event

implementations with respect to event processing rates

and feasibility of real-time constraints.

 In conservative methods, the null message

mechanism is typically implemented either through

periodic messages to outgoing neighbors or through

polling of incoming neighbors whenever there is an

event to process. For certain models both of the two

approaches may require a lot of network traffic in order

to prevent violation of real-time constraints. In this

work we try to demonstrate how this can be avoided

using our PTIDES programming model. We

experiment with both timed-triggered and event-

triggered communication, and measure respective

network delays. PTIDES execution engine has to take

into account these delays.

 We are working on two experimental setups that are

equipped with two different implementations of the

time-synchronization protocol IEEE 1588 [6]. This

recently developed protocol achieves synchronization

precision in nanosecond range. It is suitable for local

networks comprising of several subnets and it only

minimally uses bandwidth, computing and memory

resources.

 Our first setup is a set of standard laptops with no

specialized synchronization or networking hardware

running open source software implementation of the

IEEE 1588 protocol. A real-time version of the Linux

kernel that runs on each laptop is needed to achieve

software preemption and interrupt latencies in the order

of tens of microseconds. In this project we used real-

time kernel patch Xenomai [7] which runs the

conventional Linux kernel as the idle task, i.e., only

when all real-time tasks are inactive.

 The second setup, shown in Figure 3, consists of

Agilent demo nodes [8]. In this solution each node

consists of an FPGA device and an embedded

processor. Each FPGA device performs the IEEE 1588

protocol such that the packets of the synchronization

messages are captured and time-stamped low in the

protocol stack to reduce the jitter, thus increasing the

precision of the synchronization. For both setups our

experiments show effects of network loads on the

synchronization error, and thus, on real-time properties

of the model execution.

Figure 3. Experimental setup

4. References

[1] Y. Zhao, J. Liu, and E. A. Lee, “A Programming Model

for Time-Synchronized Distributed Real-Time Systems”. In

Proc. RTAS, 2007, pp. 259–268.

[2] T. H. Feng, E. A. Lee. “Real-Time Distributed Discrete-

Event Execution with Fault Tolerance”. In Proc. RTAS,

2008.

[3] R. M. Fujimoto. “Parallel discrete event simulation”. In

Commun. ACM, 33(10):30-53, 1990.

[4] P. Derler, T. H. Feng, E. A. Lee, S. Matic, H. Patel, Y.

Zhao, J. Zou, “PTIDES: A Programming Model for

Distributed Real-Time Embedded Systems”. In Tech.Report

UCB/EECS-2008-72, EECS Department, University of

California, Berkeley, 2008.

[5] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao,

and H. Zheng. “Heterogeneous concurrent modeling and

design in Java”. In Tech. Report UCB/ERL M04/27, EECS

Department, University of California, Berkeley, 2004.

[6] J. C. Eidson, Measurement, Control and Communication

Using IEEE 1588, Springer, 2006.

[7] P. Gerum, “Xenomai – Implementing a RTOS emulation

framework on GNU/Linux”. 2005

[8] Agilent Technologies, IEEE 1588 Demonstration Kit,

2005.

