(DTechnische Universitat Minchen

Department of Informatics, Unit VI: Robotics and Embedded Systems

FTOS:
Model-Based Development of Fault-Tolerant
Real-Time Systems

Christian Buckl, Chih-Hing Cheng, Alois Knoll

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems

5

@Technische Universitat Minchen

Department of Informatics, Unit VI: Robotics and Embedded Systems

FTOS: Motivation & Goal

m Creation of a programming framework for fault-
tolerant, distributed, real-time system design with a
sound formal basis

Power Generation

= Full tool chain, from specification to code generation
for a variety of platforms

= Focus on programming applications that have
traditionally been designed without or with just
minimal degrees of fault tolerance

m |tis possible to handle all types of software and
hardware faults

The operating system must provide basic support for
guaranteeing real-time constraints, supporting fault
tolerance and distribution, and integrating time-
constrained resource allocations and scheduling
across a spectrum of resource types, including sensor
processing, communications, CPU, memory, and other
forms of 1/0.

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems

Automation

@Technische Universitat Minchen TI.ITI
Department of Informatics, Unit VI: Robotics and Embedded Systems

Examples of faults that can be handled

m Software faults: computational, timing (WCET violation), non
determinism (e.g., race conditions, imprecise time sync,
digitization errors)

m Hardware faults

o Permanent faults: broken communication link, chip failure, etc.

o Transient faults: corrupted messages, memory bit error, power
outage, etc.

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems

@Technische Universitat Minchen TI.ITI
Department of Informatics, Unit VI: Robotics and Embedded Systems

Related Work

s FT-Community: re-invention of the wheel is standard practice

= Model-Based Development: Tools focus mainly
on Application Logic

= Component-Based Development: Developer must
have insight knowledge in component
implementation

Meta-Modeling Language

m Ingredients are available: Meta-Code Generation
Frameworks, Verification Tools, Domain Specific
Languages...

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems 4

@Technische Universitat Minchen TI.ITI
Department of Informatics, Unit VI: Robotics and Embedded Systems

Development Process — Tool Chain

Application Code

| Check Rules Check Rules

Software Model

Source Code

Combined &

Expanded Model [|

Fault Model

Formal Proof

Fault-Tolerance

1
I
Hardware Model |
T\I |
| I
I |

I

’I/

I

I

|

I

Model Model
Transformation Templates
Rul
I_ uies Code Generator
e Combination & e
Cl\(/)lgggeée MOdSL\alzgdftlon Expansion of Mod;lh\alzgdzatlon Code Generation
Submodels

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems

(DTechnische Universitat Minchen

Department of Informatics, Unit VI: Robotics and Embedded Systems

Division into 4 Sub-Models

10.02.2009

Hardware Architecture Model
Hardware, Network Topology

Y

Software Architecture Model
Software Components, Interaction Schedule

Y

Fault Model

Expected Faults, Effects on Hardware / Software Components

Y

Fault-tolerance mechanisms
Pro-active Operations, Error Detection, Error Reaction, Error Recovery

Model-Based Development of Fault-Tolerant Real-Time Systems

@Technische Universitat Minchen TI.ITI
Department of Informatics, Unit VI: Robotics and Embedded Systems

Software Model: Main Requirements

= Replica Determinism vs. Software Diversity
o Correct redundant components must behave similarly / in the same way

0 Requirement: Necessity for points in time, when computation results are
comparable

m State Synchronization:
0 Models must provide means for automatic state voting and integration

0 Requirement: separation of system state and system functionality (in
particular: referential transparency)

m Distributed Execution of fault-tolerance mechanism

0 Necessity of temporal synchronization, consensus problem must be solved in
bounded time (not eventually) due to real-time constraints

0 Requirement: a priori definition of points in time for the execution of fault-
tolerance mechanisms and synchronization

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems

(DTechnische Universitat Minchen

Department of Informatics, Unit VI: Robotics and Embedded Systems

Software Model: Main Concepts

m Actor-oriented Design
in Combination with

Tacl

Tacl

Concept of Global i
Ports

m Usage of Logical
Execution Time ,L

4..<'|

Task

Logical

Physical

m Support of Global Modes s

10.02.2009

Model-Based Development of Fault-Tolerant Real-Time Systems

-

Logical Execution Time

Actuator

Port

<S)LIN—P>

*

Suspend Resume

(DTechnische Universitat Minchen TI.ITI
Department of Informatics, Unit VI: Robotics and Embedded Systems

Fault model

m Fault model describes the set of fault assumptions

m The fault model is used for the concrete instantiation of the
run-time system

m Benefits: the system designer is forced to reflect on and
specify the fault hypothesis formally

m Relevant information:

a Fault containment unit (FCU): which components are affected by
a failure?

o Fault effect: which effect can be observed?

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems

@Technische Universitat Minchen

Department of Informatics, Unit VI: Robotics and Embedded Systems

Fault-Tolerance Mechanisms

= Proactive Operations
o Checkpointing

m Error detection
o Absolute tests

o Relative tests

o Timing violations

m Error Reaction (online):
o Rollback recovery

o Hot-/Cold-Standby
= Error Recovery (offline):

o Action Trigger

o Tests

o Integration Mechanism

change |

Error Reaction “*triggers

FaU|t Conflguratlon succesful test
(defined by the states of [« allows — Test
the FCU) integration

|___exclusion of FCU
triggers

Error Recovery

(asynchronous) —completion triggers

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems 10

D

Technische Universitat Minchen
Department of Informatics, Unit VI: Robotics and Embedded Systems

Importance of Model-to-Model Transformation

m M2M transfers models optimized for modeling task into
models optimized for code generation, examples:

0 Merge of four distinct models into one combined model
o Calculate set of relevant ports for each controller
o Calculate detailed schedule including fault-tolerance

mechanisms and communication

= Tool support is currently very limited) Development of a
tooling framework that helps in designing this model-to-
model transformation

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems

11

(DTechnische Universitat Minchen TI.ITI
Department of Informatics, Unit VI: Robotics and Embedded Systems

Code Generation Example

zFORELCH tasks AS =
R~ .
vold® task function «t.nsge: (Vold® parsam) roid tas}{_functlnn_l:'IDCDntrDllerl|:‘u

i d

/*the thread can ke cancelled immediat {*the thread can he cancelled in

if (pthread setcancelstate (PTHREAD CAN(if (pthread setcancelstate (PTHRE]
«EXPAND debug: :debug message ("3ET debug send(12);

if (prthread setcanceltype (FTHRELD CANCE if ipthread setcanceltype (PTHREAI
«EXPAND debug: debuy message ["3ETC dehug_send(ISJ;

while (1] while (1]

{ :
Elock(task «t.names): f*hlock t:

Elockitask PIDControllerl):

#t.functions («FOREACH t.reads AS i
control (local ports PIDCont:

scheduler signal task completion()

) scheduler signal task comple

return MNULL: i
! return HULL:

«ENDF OREACH: ¥

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems 12

D

Technische Universitat Minchen
Department of Informatics, Unit VI: Robotics and Embedded Systems

Demonstrator Systems

TUTI

Balance of a rod by switched
solenoids (FTOS-controlled

Ethemet

atknoll74

atknoll75

Pentium Il —| Pentium ITI

VxWorks

VxWorks

>

Elevator 1

Elevator 2

TMR system) hot standby configuration)

— Sampling time of 2.5 ms

complete model-based
— Only 24 lines of code in additionto development could be achieved

the formulation of the models had to
be provided

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems

Model lift control (FTOS-controlled

— By combining FTOS with Easylab, a

13

@Technische Universitat Minchen TI.ITI
Department of Informatics, Unit VI: Robotics and Embedded Systems

Further Challenges: Formal Verification

m Ensure that user-selected mechanisms for the system model are sufficient to resist
faults defined in the fault model.

o “Just-enough” fault tolerance mechanisms.

o Required time for verification and validation.

m We need a light-weight method to examine the model formally.

o It should be automatic, such that designers with no verification background
should be able to use it.

o It should be able to deal with large scale applications.

o The report should be in the format understandable by designers rather than
mathematicians.

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems 14

@Technische Universitat Minchen TI.ITI
Department of Informatics, Unit VI: Robotics and Embedded Systems

FTOS-Verify

® An Eclipse add-on for FTOS, enabling automatic verification for testing the
validity of fault-tolerance mechanisms. It is

1. automatic

m Model checking techniques.
m Automatic annotation of formal specifications on the template level.
2. relatively fast
m With our theoretical foundations, the reachable state space for property

checking is reduced exponentially with the number of iterations the
system performs.

3. understandable by designers

= We automatically translate the counter-example into formats
understandable by designers to locate the fault and its propagation.

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems 15

Technische Universitat Minchen
Department of Informatics, Unit VI: Robotics and Embedded Systems

Automatic model & specification generation

Step 1. Right click on the FTOS model

&
MODULE main(NetworkFaultCounterReset, FunctionExecution, SE le‘:t the TIG descnphon ﬁ le
ecu1_FunctionExecute, ecu2_FunctionExecute, ecu3_FunctionExecute, Look ifc |L’f? e v| 0 3 = g
ecul1_PIDController1_WrongResultPoint,ecu1_In1_WrongResultPoint o .
----- DcombinationExtended
INPUT ecul_FunctionExecute, : boolean; [£ taskAbstract.tig
OUTPUT FunctionExecution : boolean; . ¥ icrete tig
/* Instantiation of modules, and establish the connections between modules */ B’“’ ficcent
oCUments
INPUT ecu1_PIDController1_WrongResultPoint : boolean;
INPUT ecu1_In1_WrongResultPoint : boolean; @
INPUT ecu1_FailSilentPoint : boolean;
...... Desktop
Verification | = .
engine o ,’/
...... ty Documents
gg File name: |taskE0ncrete b | [Open]
My Computer | Fiog oiype: g v [Cacel |

Step 4. Verification model is generated

else if{ {lecud_glebal poees.Paultfonfiguration = 5} || (ecud_g
* | THR_cperating_value) = 1:
Generate Yerification Models
L3
Show I Alt+SHIEW N This wizard creates a new file with *.smv extension.
B FE System Library Copy Corled FasltContiguracion = &
B Plug-in Dependencies Copy Qualified Mame B TE s ;
META-INS = Paste Crlev }_me_opecatang_vatee Analysis: Verification Based on Boolean Abstraction
build properties. X Delebe Daletie L -
FadtConfigration tet Task Description: \er|fication Based on Interval Analysis Browse...
il Path | Container: \/mv.generatorprojectl/src | [Browsem l
Fefactor Alt+Shift+T LN} -
1 Corsole| B Properties ¢ Search " 5 -
— | Sh Elle name: Irew_file smy |
ciBport...
* Refrech
Assign Working Sets,
Pun As
Dabg As
Team
Compare With
B
- @ [Einish] I Cancel l
LLI_Relative_Simple_pombin, " oF e Alt+Erie

Step 2. Select techniques to be applied

10.02.2009

Model-Based Development of Fault-Tolerant Real-Time Systems

Step 3. Select the task description file (optional)

16

@Technische Universitat Minchen

Department of Informatics, Unit VI: Robotics and Embedded Systems

Relatively fast execution time

TUTI

Q

= Model checking applies systematic techniques to explore system behaviors exhaustively.

It can not be very fast in general (polynomial to the size of the state spaces)

= Our model is asynchronous at the action (micro-instruction) level, but synchronous at the
logic level.

Difficult to use verification engines to capture this phenomenon.

The theorem we established enables us to explore a smaller state space for property

Reachable state space exponentially smaller, making verification practicable.

0
0 Set of reachable state space is large
0
checking without false positives and negatives.
0
Variable u Variable v Variable u Variable v Variable u Variable v

—

-

Asynchronous system

behavior ‘ ‘
10.02.2009

>

Local LTL properties
without operator X

Deterministic assumption

(consensus result for all
platforms)

Variable u Variable v

Synchronous modeling
for verification

Model-Based Development of Fault-Tolerant Real-Time Systems 17

Technische Universitat Minchen

Department of Informatics, Unit VI: Robotics and Embedded Systems

Interpret counter-examples

m Counter examples are hard to trace in model checking tools.

= An automatic interpretation technique to prune out unnecessary details (based on

heuristics) is established.

T4_CounterExample.tra
= atate 1 =
#440 "T4.smv"

sreadinghbstract_CorrectValue = 0.
#4568 "T4.=mv"

“passstart = 1.

NAST "T4.zmv”

“passEnd = 0.
Sav_Out_Sto_From2_Tol o,
cwv_Out_Sto_FromZ _Tol = 0.
Sv_Out_Sto _Froml_To2 = 0.
v _Out_Sto_Froml_Tol = 0,

s wv_OQut_Sto_From(_To2 = 0,

v _Out_Sto_From0_Tol = 0.

1 "Snolineg"

networkStorage .ww_In_Fro_Sto_FromZ_Tol = 0,

1 "gnolineg”

snetworkStorage sw_In_Pro_Sto_From2_ToO 0.

1 "snolines”
wnetworkStorage w_In_Fro_Sto_Froml _To: = 0.
1 "Snolines"

\nctwa:‘k:{toragc Sowv_In_Pro Sto_Froml_Too = 0,
1 "Snolineg"
snetworkStorage sw_In_Pro_Sto_From0_Toz = 0,

1 "Snolineg”
snetworkStorage s In_Pro_Sto From(_Tol Q.

#110% L Emvt
e two torage . ~Out_Sto_Fromi_Tol ~walue [3] = 7.
#1105 et
networkStorage . Out_Sto_Fromi_Tol .“walue [2] = 7.
H1105 "Td. smv"

>300000 lines

Choose the file, and
right click to interpret
the counter-example

{2 Problems | @ Javadoc [Declaration | & Properties | 47 Search | E Console &

Interprete the counter example
frare Processing...

#%% Start interprecing the counter example T4 CounterExample.tra %%

R AR AR AR E AR AR R AR A AR AR SRR AR AR AR AR AR AR AER
it the 3-th iteration shown in the counter example, important changes ocour:
/% state 3 %/{

‘ecud_System Instance .\ecud_received system_states [1]

-1,
Yecul System Instance .hecul received system states [2] -1,

TR ERERTETENETEAETARTATETEATIASAATATIIRERIRRARIAL
At the 7-th iteration shown in the counter exswple, iwportant changes ocour:
/% state 7 %/{

Vecud_System Instance .\ecud_status_fou Unitd = 1,
Vecuz_System Instance .\ecuZ status fou UnitZ = 1,
Yecul _System Instance .hecul_status_fou Unitl = 1,

B e e

At the §7-th iteration shown in the counter example, important changes occur:

/% state 67 7/{

\fou Unitl_actual = 1,
\ecul System Instance .tecul Inl_WrongResultPoint = 1,
\ecul_System Instance .Yecul_Inl_WrongResult = 1,

ez ST LI ER Ry

A###E L FAULT IS ACTULATING #####
- Pesult =

Vactivate_fou Unitl_actual = 1,

B e e

At the 68-th iteration shown in the counter example, important changes occur:

/% atate B8 7/{

<700 lines with relative importance

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems

18

@Technische Universitat Minchen TI.ITI
Department of Informatics, Unit VI: Robotics and Embedded Systems

Conclusion and Future Work

= Complete tool-chain for FT systems reflecting the state-of-art in embedded real-
time systems & software engineering

= Main Contributions:

o Separation of application functionality, timing, fault-tolerance mechanisms and
platform implementation

o Formulation of appropriate meta-models

0 Implementation of Demonstrators

o Integration of Formal Methods for Verification
= Future Work

o Further work on integration of formal methods

o Work on tooling level (GUI, mechanism for M2M)

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems 19

D

Technische Universitat Minchen TI.ITI
Department of Informatics, Unit VI: Robotics and Embedded Systems

Contact Information:
Christian Buckl (knoll@in.tum.de)
Technische Universitat Munchen

Embedded Systems and Robotics

wwwb.in.tum.de

Thank you for your attention!

10.02.2009 Model-Based Development of Fault-Tolerant Real-Time Systems 20

	FTOS:�Model-Based Development of Fault-Tolerant Real-Time Systems
	FTOS: Motivation & Goal
	Examples of faults that can be handled
	Related Work
	Development Process – Tool Chain
	Division into 4 Sub-Models
	Software Model: Main Requirements
	Software Model: Main Concepts
	Fault model
	Fault-Tolerance Mechanisms
	Importance of Model-to-Model Transformation
	Code Generation Example
	Demonstrator Systems
	Further Challenges: Formal Verification
	FTOS-Verify
	Automatic model & specification generation
	Relatively fast execution time
	Interpret counter-examples
	Conclusion and Future Work

