
A Generalized Framework For Modeling And
Scheduling Heterogeneous Dataflow Applications

Nimish Sane, William Plishker, Mary Kiemb, and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, University of Maryland, College Park

Introduction
• The growing complexity of modern signal processing applications along with

their dynamic nature requires a generalized framework for efficiently modeling
and scheduling such applications. We have developed the core functional
dataflow (CFDF) model of computation that facilitates natural description of
actors and provides a general framework for specifying static and dynamic
dataflow applications. A variety of commonly used, existing dataflow models can
be naturally represented in CFDF model thus allowing rapid prototyping for
heterogeneous applications.

• We have extended our MocGraph package, a Java-based package supporting
graph-theoretic analysis for models of computation (mocs) that has evolved from
the graph package in Ptolemy II, to support trees and generalized schedule
trees (GSTs), in particular. A GST is a data structure for representing schedules
of dataflow graphs employing a wide variety of dataflow models of computation.

• The CFDF model, along with the features of GST representations in MocGraph
package, has enabled us to support simulations in the DIF package that can be
used for verification and analysis of static and dynamic dataflow models.

• We have demonstrated the effectiveness of our recently developed scheduling
techniques for heterogeneous dataflow applications modeled as CFDF graphs
that exploit statically known mode transition patterns in dynamic dataflow actors.

Core Functional Dataflow
• Core functional dataflow is a deterministic form of enable-invoke dataflow (EIDF)

 [1]. EIDF is a generalized dataflow model which allows natural description of
 actors for static and dynamic dataflow models.

• Every actor is specified using a set of modes that capture the dataflow and
 functional behavior of the actor along with two methods enable and invoke.

• The enable method checks if sufficient number of tokens are available on all of
 the actor inputs so that it can be fired in a given mode.

• The invoke method models the functionality of the actor. It is called only if the
 actor is enabled in that mode. It consumes specified number of tokens available
 on the actor inputs, produces required tokens on the outputs, and returns the
 next mode in which the actor must be fired.

• The dataflow behavior of an actor for a given mode is static in that number of
 tokens consumed (produced) by an actor from (on) its inputs (outputs) is fixed
 for any given mode of the actor.

References
1. W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya. Functional

 DIF for rapid prototyping. In Proceedings of the International Symposium on
 Rapid System Prototyping, pages 17-23, Monterey, California, June 2008.

2. W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya. Heterogeneous
 System Design using Functional DIF. In Proceedings of the International
 Symposium on Systems, Architectures, Modeling and Simulation, pages
 157-166, Samos, Greece, July 2008.

3. W. Plishker, N. Sane, and S. S. Bhattacharyya. Generalized Scheduling
 Approach for Dynamic Dataflow Applications. (To appear) In Proceedings of
 the Design, Automation and Test in Europe Conference, Nice, France, April
 2009.

4. W. Plishker, N. Sane, and S. S. Bhattacharyya. Mode Grouping for More
 Effective Generalized Scheduling of Dynamic Dataflow Applications. (To
 appear) In Proceedings of the Design Automation Conference, San Francisco,
 California, July 2009.

Generalized Schedule Trees (GSTs)
• Ordered trees with leaf nodes representing actors and internal nodes representing

 loop counts for the schedule tree rooted at that node.

• Execution involves traversing the GST in depth-first manner and repeating a firing
 sequence for the number of times denoted by the loop count.

• Unguarded execution involves firing an actor every time the GST traversal algorithm
 reaches that actor and hence, the scheduler must ensure that the actor is fireable.

• Guarded execution of an actor implies calling invoke method of the actor only if its
 enable method returns true for the given mode.

• GST representation is independent of the underlying dataflow model and hence can
 be used to represent schedules for a variety of known dataflow models. In particular,
 the CFDF model has allowed us to support functional simulations inside the DIF
 package (Functional DIF), based on the dataflow interchange format (DIF) language.

Mode

No. of tokens consumed

 (produced) from (on) the
 ports

in ctrl true false

Control_mode 0 1 0 0

True_mode 1 0 1 0

False_mode 1 0 0 1

Mode Switch.invoke(mode)
 if (mode = Control_mode)
 then if (token consumed from ctrl = true)
 then return True_mode
 else
 return False_mode

 if (mode = True_mode)
 then consume 1 token from in and transfer it to true
 return Control_Mode

 if (mode = False_mode)
 then consume 1 token from in and transfer it to false
 return Control_Mode

bool Switch.enable(mode)
 if (mode = Control_mode)
 then return (T(ctrl) 1)
 if (mode = True_mode or

 mode = False_mode)
 then return (T(in) 1)

Fig. 1 The Switch actor: (a) a simple application; (b) transitions between the modes; (c) tokens

consumed (produced) from (on) its inputs (outputs) in each mode; (d) the enable and invoke functions
(T(x) denotes the number of tokens in the buffer connected to the port x).

Control_mode

True_mode False_mode

Switch

Control

True Output

Input

False Output

2

2

1

3

1

[1, 0]

[0, 1]

1

ctrl true

false

in

(b)

(a)

(c)

(d)

Fig. (2) (a) Dual sample rate converter for converting sampling rates of two audio channels using a series of multirate FIR filters. Both the audio channels

 are interleaved and appear on the single input IN. The actor DISTRIBUTOR selects either of the sample rate converter depending upon the channel during
 the run-time. Each of the sample rate converters can be viewed as a multirate SDF application, while the DISTRIBUTOR introduces the dynamic behavior;

 (b) GST representation of the generalized CFDF schedule for the graph: internal nodes are annotated with schedule loop counts, while leaf nodes denote
 actors; double circle around the leaf node indicates a guarded execution.

(a) (b)

Application
Scheduling

 strategy

Simulation

 time (ms)

Maximum

 observed

 buffer sizes
 (no. of tokens)

Dual Sample

 Rate

 converter

Canonical

Flat

APGAN

9148

1425

1462

9394

2408

2234

Multi-PEA

 application

Canonical

Flat

APGAN

2163

586

548

11198

57

57

Table (1): Simulation times and buffer sizes for various scheduling

strategies (without mode grouping) [3].

Application

Observed buffer-sizes (no. of tokens)

Without mode

 grouping

With mode

 grouping

Improve

-ment (%)

B-spline

 interpolator*
479 304 37

Dual Sample

 Rate

 converter*

2278 2278 0

Multi-PEA

 application*
3802 2976 22

Table (2): Buffer requirements with and without mode grouping [4].

*To be discussed at the Design Automation Conference 2009 [4].

Generalized Scheduling Strategy
• We exploit the fact that for a given mode, each CFDF actor behaves like an SDF

 actor. We exploit the underlying static behavior of the CFDF actor to decompose the
 graph into multiple SDF graphs.

• These graphs are then scheduled using the known SDF scheduling strategies. These
 SDF schedules are then merged into a single schedule (as shown in Fig. 2(b)). The
 simulator switches between these schedules depending upon the current mode of the
 CFDF-actor.

• Though the number of SDF graphs can in general grow exponentially with the number
 of modes for each of the CFDF actors, in most of the practical applications, it is
 possible to eliminate most of the mode-combinations that can never occur and hence
 limit the number of SDF graphs to a much smaller number.

• It is also possible to explore the mode transition behavior. In most of the graphs it is
 possible to group certain modes, for which transitions have compile-time
 predictability e.g. transition from True_mode or False_mode to Control_mode for the
 Switch actor.

• This fact is then incorporated into the scheduling strategy before decomposing the
 graph into SDF graphs. This is more efficient in terms of buffer requirements and
 number of SDF components in the schedule, as shown in Table (2).

Conclusion and Future Work
• We have been able to model heterogeneous dataflow applications using CFDF

 model of computation. The portability of most of the existing dataflow models
 to CFDF allows leveraging existing scheduling and analysis techniques for
 these models to CFDF.

• CFDF based Functional DIF package has the feature of functional simulations
 allowing rapid prototyping of heterogeneous dataflow applications.

• We have developed a generalized scheduler and refined it further by
 introducing the concept of mode grouping. The effectiveness of both these
 schedulers has been demonstrated for various applications.

• We have provided support for GST in MocGraph package. The GST, we
 envision, will provide a standardized data structure for representing schedules
 independent of the underlying dataflow model.

• Though there have always been efforts to integrate test suits with the package,
 we would like to make testing a part of the development process and not as an
 afterthought. We plan to do this using a light-weight testing framework based
 on the DSPCAD instructional command-line environment (DICE) being
 developed at the DSPCAD research group.

• We continue to enhance the scheduling and analysis techniques for the CFDF
 semantics and add more application benchmarks into the DIF package.

Fig. 3 Generalized scheduling strategy with and without mode grouping.

CFDF

Specification

Set of SDF Graphs

for all the possible
mode combinations

Schedule

SDF
graphs

Merge into

a single
GST

Mode

Grouping

Without mode grouping

With mode grouping

