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Context of my work: Chess: Center for 

Hybrid and Embedded Software Systems 
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This center, founded in 2002, 

blends systems theorists and 
application domain experts with 

software technologists and 
computer scientists. 

Some Research Projects 

Precision-timed (PRET) machines 

Distributed real-time computing 

Systems of systems 

Theoretical foundations of CPS 

Hybrid systems 

Design technologies 

Verification 

Intelligent control 

Modeling and simulation 

Applications 

Building systems 

Automotive 

Synthetic biology 

Medical systems 

Instrumentation 

Factory automation 

Avionics 
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Cyber-Physical Systems (CPS): 
Orchestrating networked computational  

resources with physical systems 

Power 

generation and 

distribution 

Courtesy of  
General Electric 

Military systems: 

E-Corner, Siemens 

Transportation 

(Air traffic 

control at 
SFO) 

Avionics 

Telecommunications 

Factory automation 

Instrumentation 

(Soleil Synchrotron) 

Daimler-Chrysler 

Automotive 

Building Systems 



Lee, Berkeley 4 

Cyber Physical Systems: 

Computational + 
Physical 

CPS is Multidisciplinary  

Computer Science: 

Carefully abstracts the 

physical world  

System Theory: 

Deals directly with  

physical quantities 
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Theme of This Talk 

Opportunities on the systems side... 
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Models on the Systems Side 

Models of continuous-time dynamics 

Sophisticated stability analysis 

But not accurate for software controllers 
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Discretized Model –  

A Step Towards Software 

Numerical integration techniques provided sophisticated ways to get from 

the continuous idealizations to computable algorithms. 

Discrete-time signal processing techniques offer the same sophisticated 

stability analysis as continuous-time methods. 

But it’s still not accurate for software controllers 
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Hybrid Systems – Reconciling  

Continuous & Discrete, Version 1.0 

But it’s still not accurate for 

software controllers 
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Timing in Software is More Complex Than 

What the Theory Deals With 

An example, due to Jie Liu, models two 

controllers sharing a CPU under an RTOS. Under 
preemptive multitasking, only one can be made 

stable (depending on the relative priorities). 
Under non-preemptive multitasking, both can be 

made stable. 

Where is the theory for this? 
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Another Example: Sensor Fusion 

Consider a real-time program on an embedded computer that is connected 

to two sensors A and B, each providing a stream of data at a normalized 

rate of one sample per time unit. The data from the two sensors is 

deposited by an interrupt service routine into a memory location. 

Assume a program that looks like this: 

 while(true) { 

     wait for new data from A; 

     wait a fixed amount of time T; 

     observe registered data from B; 

     average data from A and B; 

 } 

Example is due to Stephen Neuendorffer. 
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The Design Question 

Assume that there are random delays in the software 

(due to multitasking, interrupt handling, cache 

management, etc.) for both the above program and the 

interrupt service routines. 

What is the best choice for the value for T? 

One way to frame the question: How old is the data from 

B that will be averaged with the data from A? 
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A Model that Measures for Various Values of T 
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Modeling Random Delay in Sensor Data 

Using a Discrete-Event Modeling Framework 

The Rician actor, when 

triggered, produces an 

output event with a 

non-negative random 

value and with time 

stamp equal to that of 

the trigger event. 

Given an input event at time t 

with any value, the CurrentTime 

actor outputs the double t  with 

time stamp t. 

Given an event with time stamp t on the 

upper input, the VariableDelay actor 

produces an output with the same value but 

time stamp t + t', where t' is the value of the 

most recently seen event on the lower input. 
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Actor-Oriented Sampler Class 

The TimedDelay actor transfers every input 

event to the output with a fixed increment in the 

time stamp. Here, the value is sampleDelay, a 

parameter of the composite actor. 

Given a trigger event with 

time stamp t the Sampler 

actor produces an output 

event with value equal to 

the value of the most 

recently seen input event.  
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Time gap between samples for various values of T 

Smaller fixed delay T can 

result in larger time gap 

between data samples 

that are averaged! 
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A Real-World Application: 

Automotive Engine Controller 

Periodic events 

Quasi-periodic events 

Sporadic events 

Embedded software uses timers, interrupts, threads, 

shared memory, priorities, and mutual exclusion. How to 

relate the systems theory with the software behavior? 
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The Standard Model in Signal Processing 

Continuous time signal: 

Discrete-time signal:  

Problems with this model: 

• Simultaneity: x(t1) and y (t2) may be in different parts of the system. What 

does it mean for t1 = t2 ? 

• Causality: Suppose x crosses a threshold at t and causes y to be 

discontinuous at t. What is y (t ) ? Are y (t )  and x (t )  simultaneous? How 

is their causal connection represented? 

• Discreteness: Suppose a signal x cannot be meaningfully defined for 

some interval of time? 

• Synchrony: Suppose x(n) and y (n) have a non-trivial phase relationship 

in their samples. How to represent? 



Lee, Berkeley 18 

A Richer Model of Signals 

A signal is a partial function x : T  A , where A  is a set 

of possible event values (a data type and maybe an 

element indicating “absent”), and T  is a totally or partially 

ordered set of tags that represent time stamps and 

ordering of events at the same time stamp. 

The standard model is a special case of this model, but 

there may be better alternatives. 
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First Attempt at a Specific Richer 

Model for Signals 
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This model is still not rich enough because it does not allow a 

signal to have multiple events at the same time. 

This First Attempt can Model Nontrivial Timing 
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Example Motivating the Need for Simultaneous 

Events Within a Signal 

Newton’s Cradle: 

• Steel balls on strings 

• Collisions are discrete events 

• Position, speed, acceleration are all signals 

• So is momentum 

Momentum of the middle ball has three values at 

the time of collision. 

Other examples: 

Batch arrivals at a queue. 

Software sequences abstracted as instantaneous. 

Transient states of a system. 
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A Better Model for Signals: 

Superdense Time 

This allows signals to have a sequence of values at any real time t. 
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Superdense Time 

At each tag, the signal has exactly one value. At each time 
point, the signal has an infinite number of values. The red 
arrows indicate value changes between tags, which 
correspond to discontinuities. 
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Superdense Time Supports Discrete Signals 

(using an "absent" value) 
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Using Superdense Time to Build Models of 

Discrete-Event (DE) Signals 
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Actors 

An actor is a relation on signals. It is useful to impose certain 

constraints: 

• It is a function mapping inputs to outputs. 

• It is prefix monotonic 

• It is (Scott) continuous 

• It is causal 

• … 
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Model-Based Design with 

Superdense Time 

s  S N 

Causal systems operating on 

signals are usually naturally 
(Scott) continuous. 

concurrent actor-

oriented models 

abstraction 

fixed-point 

semantics 

super-dense 

time 
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Discrete-Event (DE) Signals 

A signal s is discrete if there is an order embedding from 

its tag set  (s )  (the tags for which it is defined and not 

abent) to the integers (under their usual order). 
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A Zeno system is  

not discrete. 

The tag set here includes { 0, 1, 2, …}  

and { 1, 1.25, 1.36, 1.42, …} .  
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Is the following system discrete? 
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Discreteness is Not a Compositional Property 

Given two discrete signals s, s'  it is not necessarily true 

that  S = { s, s' }  is a discrete system. 

Putting these two signals 

in the same model 

creates a Zeno condition. 
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Model-Based Design 

Question 1: 

Can we find necessary and/or sufficient conditions to 

avoid Zeno systems? To preserve discreteness under 

composition? 
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Model-Based Design 

Question 2: 

In the following model, if f2 has no delay, should f3 see 
two simultaneous input events with the same tag? Should 
it react to them at once, or separately? 

In Verilog, it is nondeterministic. In VHDL, it sees a 
sequence of two distinct events separated by “delta time” 
and reacts twice, once to each input. In Simulink, 
Labview and the Ptolemy II DE domain, it sees the 
events together and reacts once. 
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Model-Based Design 

Question 3: 

What if the two sources in the following model deliver an 

event with the same tag?  Can the output signal have 

distinct events with the same tag? 

Recall that we require that a signal be a partial function 

s : T  V , where V  is a set of possible event values (a 

data type), and T  is a totally ordered set of tags. 
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Model-Based Design 

Question 4: 

What does this mean? 

The Merge presumably does not introduce delay, so what 

is the meaning of this model? 
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Model-Based Design 

Question 5: 

What is the meaning of modal behavior? 

• Do transitions 

take time?  

• Can states be 

transient (where 

you spend zero 

time in them)?  

• Can submodels 

share state? 
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Ptolemy II: Our Laboratory for Experiments with 

Techniques for Model-Based Design 

Director from a library 

defines component 

interaction semantics 

Large, behaviorally-

polymorphic component 

library. 

Visual editor supporting an abstract syntax 

Type system for 

transported data 

Concurrency management supporting 

dynamic model structure. 
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Discrete Event Models in Ptolemy II 

DE Director implements 

timed semantics using an 

event queue 

Event source 

Time line 

Reactive actors 

Signal 

Components send time-

stamped events to other 
components, and components 

react in chronological order. 



Lee, Berkeley 39 

An Application of All This Theory: 

Using DE Models to Design  

Distributed Real-Time Systems 

DE is usually a simulation technology. 

Distributing DE is done for acceleration. 

Hardware design languages (e.g. VHDL) use DE where 

time stamps are literally interpreted as real time, or 

abstractly as ticks of a physical clock. 

We are using DE for distributed real-time software, 

binding time stamps to real time only where necessary. 

PTIDES: Programming Temporally Integrated 

Distributed Embedded Systems 



Lee, Berkeley 40 

Distributed execution under discrete-event semantics, with 

“model time” and “real time” bound at sensors and actuators. 

PTIDES: Programming Temporally 

Integrated Distributed Embedded Systems 

Input time stamps are 

 real time 

Input time stamps are 

 real time 

Output time stamps 

are  real time 

Output time stamps 

are  real time 
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PTIDES: Programming Temporally 

Integrated Distributed Embedded Systems 

… and being explicit about time delays means that we can 

analyze control system dynamics… 

Feedback through the physical world 

Actuator may process 

the event at the time 

received or wait until 

real-time matches the 

time stamp. The latter 

yields determinate 

latencies. 
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Experimental 

Setup 

HW Platform Software 

Component 

Library 

Ptides Model Code 

Generator 

PtidyOS 

Code 

Plant Model 

Network Model 

HW in the 

Loop 

Simulator 

Causality 

Analysis 

Program 

Analysis 

Schedulability 

Analysis 

Mixed 

Simulator 

Ptolemy II Ptides domain 

Ptolemy II Discrete-event, 

Continuous, and 

Wireless domains 

Luminary  

Micro  

8962 IEEE 1588 Network 

time protocol 
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Example: 

Power Plant 

Control 
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Example: 

Power Plant 

Control 

Model of the continuous 

dynamics of a generator 
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Example: 

Power Plant 

Control 

Model of the embedded 

software controller 
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Example: 

Power Plant 

Control 

Modal controller 

behavior. 
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Example: 

Power Plant 

Control 

Reasoning about time 
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Conclusions 

Established models for signals that prevail in signal 

processing are not expressive enough to model the 

behavior of nontrivial software and networks. 

Superdense time uses tags that have a real-valued time-

stamp and a natural number index, thus supporting 

sequences of causally-related simultaneous events. 

Discrete-event (DE) systems can provide a foundation for 

model-based design of nontrivial signal processing systems 

that integrate software and networks. 

An extension of DE called PTIDES provides a distributed 

model coupling software and physical behaviors. 
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