
Model-Based Design for

Signal Processing Systems

Edward A. Lee
Robert S. Pepper Distinguished Professor

UC Berkeley

Invited Keynote Talk

IEEE Workshop on Signal Processing Systems (SiPS)

Tampere, Finland

October 7-9, 2009

Lee, Berkeley 2

Context of my work: Chess: Center for

Hybrid and Embedded Software Systems

Board of Directors

Edward A. Lee

Alberto Sangiovanni-Vincentelli

Shankar Sastry

Claire Tomlin

Executive Director

Christopher Brooks

Other key faculty at Berkeley

Dave Auslander

Ruzena Bajcsy

Raz Bodik

Karl Hedrick

Kurt Keutzer

George Necula

Masayoshi Tomizuka

Pravin Varaiya

This center, founded in 2002,

blends systems theorists and
application domain experts with

software technologists and
computer scientists.

Some Research Projects

Precision-timed (PRET) machines

Distributed real-time computing

Systems of systems

Theoretical foundations of CPS

Hybrid systems

Design technologies

Verification

Intelligent control

Modeling and simulation

Applications

Building systems

Automotive

Synthetic biology

Medical systems

Instrumentation

Factory automation

Avionics

Lee, Berkeley 3 Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS):
Orchestrating networked computational

resources with physical systems

Power

generation and

distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation

(Air traffic

control at
SFO)

Avionics

Telecommunications

Factory automation

Instrumentation

(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

Lee, Berkeley 4

Cyber Physical Systems:

Computational +
Physical

CPS is Multidisciplinary

Computer Science:

Carefully abstracts the

physical world

System Theory:

Deals directly with

physical quantities

Lee, Berkeley 5

Theme of This Talk

Opportunities on the systems side...

Lee, Berkeley 6

Models on the Systems Side

Models of continuous-time dynamics

Sophisticated stability analysis

But not accurate for software controllers

Lee, Berkeley 7

Discretized Model –

A Step Towards Software

Numerical integration techniques provided sophisticated ways to get from

the continuous idealizations to computable algorithms.

Discrete-time signal processing techniques offer the same sophisticated

stability analysis as continuous-time methods.

But it’s still not accurate for software controllers

Lee, Berkeley 8

Hybrid Systems – Reconciling

Continuous & Discrete, Version 1.0

But it’s still not accurate for

software controllers

Lee, Berkeley 9

Timing in Software is More Complex Than

What the Theory Deals With

An example, due to Jie Liu, models two

controllers sharing a CPU under an RTOS. Under
preemptive multitasking, only one can be made

stable (depending on the relative priorities).
Under non-preemptive multitasking, both can be

made stable.

Where is the theory for this?

Lee, Berkeley 10

Another Example: Sensor Fusion

Consider a real-time program on an embedded computer that is connected

to two sensors A and B, each providing a stream of data at a normalized

rate of one sample per time unit. The data from the two sensors is

deposited by an interrupt service routine into a memory location.

Assume a program that looks like this:

 while(true) {

 wait for new data from A;

 wait a fixed amount of time T;

 observe registered data from B;

 average data from A and B;

 }

Example is due to Stephen Neuendorffer.

Lee, Berkeley 11

The Design Question

Assume that there are random delays in the software

(due to multitasking, interrupt handling, cache

management, etc.) for both the above program and the

interrupt service routines.

What is the best choice for the value for T?

One way to frame the question: How old is the data from

B that will be averaged with the data from A?

Lee, Berkeley 12

A Model that Measures for Various Values of T

Lee, Berkeley 13

Modeling Random Delay in Sensor Data

Using a Discrete-Event Modeling Framework

The Rician actor, when

triggered, produces an

output event with a

non-negative random

value and with time

stamp equal to that of

the trigger event.

Given an input event at time t

with any value, the CurrentTime

actor outputs the double t with

time stamp t.

Given an event with time stamp t on the

upper input, the VariableDelay actor

produces an output with the same value but

time stamp t + t', where t' is the value of the

most recently seen event on the lower input.

Lee, Berkeley 14

Actor-Oriented Sampler Class

The TimedDelay actor transfers every input

event to the output with a fixed increment in the

time stamp. Here, the value is sampleDelay, a

parameter of the composite actor.

Given a trigger event with

time stamp t the Sampler

actor produces an output

event with value equal to

the value of the most

recently seen input event.

Lee, Berkeley 15

Time gap between samples for various values of T

Smaller fixed delay T can

result in larger time gap

between data samples

that are averaged!

Lee, Berkeley 16

A Real-World Application:

Automotive Engine Controller

Periodic events

Quasi-periodic events

Sporadic events

Embedded software uses timers, interrupts, threads,

shared memory, priorities, and mutual exclusion. How to

relate the systems theory with the software behavior?

Lee, Berkeley 17

The Standard Model in Signal Processing

Continuous time signal:

Discrete-time signal:

Problems with this model:

• Simultaneity: x(t1) and y (t2) may be in different parts of the system. What

does it mean for t1 = t2 ?

• Causality: Suppose x crosses a threshold at t and causes y to be

discontinuous at t. What is y (t) ? Are y (t) and x (t) simultaneous? How

is their causal connection represented?

• Discreteness: Suppose a signal x cannot be meaningfully defined for

some interval of time?

• Synchrony: Suppose x(n) and y (n) have a non-trivial phase relationship

in their samples. How to represent?

Lee, Berkeley 18

A Richer Model of Signals

A signal is a partial function x : T A , where A is a set

of possible event values (a data type and maybe an

element indicating “absent”), and T is a totally or partially

ordered set of tags that represent time stamps and

ordering of events at the same time stamp.

The standard model is a special case of this model, but

there may be better alternatives.

Lee, Berkeley 19

First Attempt at a Specific Richer

Model for Signals

Lee, Berkeley 20

This model is still not rich enough because it does not allow a

signal to have multiple events at the same time.

This First Attempt can Model Nontrivial Timing

Lee, Berkeley 21

Example Motivating the Need for Simultaneous

Events Within a Signal

Newton’s Cradle:

• Steel balls on strings

• Collisions are discrete events

• Position, speed, acceleration are all signals

• So is momentum

Momentum of the middle ball has three values at

the time of collision.

Other examples:

Batch arrivals at a queue.

Software sequences abstracted as instantaneous.

Transient states of a system.

Lee, Berkeley 22

A Better Model for Signals:

Superdense Time

This allows signals to have a sequence of values at any real time t.

Lee, Berkeley 23

 23

Superdense Time

At each tag, the signal has exactly one value. At each time
point, the signal has an infinite number of values. The red
arrows indicate value changes between tags, which
correspond to discontinuities.

Lee, Berkeley 24

Superdense Time Supports Discrete Signals

(using an "absent" value)

Lee, Berkeley 25

Using Superdense Time to Build Models of

Discrete-Event (DE) Signals

Lee, Berkeley 26

Actors

An actor is a relation on signals. It is useful to impose certain

constraints:

• It is a function mapping inputs to outputs.

• It is prefix monotonic

• It is (Scott) continuous

• It is causal

• …

Lee, Berkeley 27

Model-Based Design with

Superdense Time

s S N

Causal systems operating on

signals are usually naturally
(Scott) continuous.

concurrent actor-

oriented models

abstraction

fixed-point

semantics

super-dense

time

Lee, Berkeley 28

Discrete-Event (DE) Signals

A signal s is discrete if there is an order embedding from

its tag set (s) (the tags for which it is defined and not

abent) to the integers (under their usual order).

Lee, Berkeley 29

A Zeno system is

not discrete.

The tag set here includes { 0, 1, 2, …}

and { 1, 1.25, 1.36, 1.42, …} .

Lee, Berkeley 30

Is the following system discrete?

Lee, Berkeley 31

Discreteness is Not a Compositional Property

Given two discrete signals s, s' it is not necessarily true

that S = { s, s' } is a discrete system.

Putting these two signals

in the same model

creates a Zeno condition.

Lee, Berkeley 32

Model-Based Design

Question 1:

Can we find necessary and/or sufficient conditions to

avoid Zeno systems? To preserve discreteness under

composition?

Lee, Berkeley 33

Model-Based Design

Question 2:

In the following model, if f2 has no delay, should f3 see
two simultaneous input events with the same tag? Should
it react to them at once, or separately?

In Verilog, it is nondeterministic. In VHDL, it sees a
sequence of two distinct events separated by “delta time”
and reacts twice, once to each input. In Simulink,
Labview and the Ptolemy II DE domain, it sees the
events together and reacts once.

Lee, Berkeley 34

Model-Based Design

Question 3:

What if the two sources in the following model deliver an

event with the same tag? Can the output signal have

distinct events with the same tag?

Recall that we require that a signal be a partial function

s : T V , where V is a set of possible event values (a

data type), and T is a totally ordered set of tags.

Lee, Berkeley 35

Model-Based Design

Question 4:

What does this mean?

The Merge presumably does not introduce delay, so what

is the meaning of this model?

Lee, Berkeley 36

Model-Based Design

Question 5:

What is the meaning of modal behavior?

• Do transitions

take time?

• Can states be

transient (where

you spend zero

time in them)?

• Can submodels

share state?

Lee, Berkeley 37

Ptolemy II: Our Laboratory for Experiments with

Techniques for Model-Based Design

Director from a library

defines component

interaction semantics

Large, behaviorally-

polymorphic component

library.

Visual editor supporting an abstract syntax

Type system for

transported data

Concurrency management supporting

dynamic model structure.

Lee, Berkeley 38

Discrete Event Models in Ptolemy II

DE Director implements

timed semantics using an

event queue

Event source

Time line

Reactive actors

Signal

Components send time-

stamped events to other
components, and components

react in chronological order.

Lee, Berkeley 39

An Application of All This Theory:

Using DE Models to Design

Distributed Real-Time Systems

DE is usually a simulation technology.

Distributing DE is done for acceleration.

Hardware design languages (e.g. VHDL) use DE where

time stamps are literally interpreted as real time, or

abstractly as ticks of a physical clock.

We are using DE for distributed real-time software,

binding time stamps to real time only where necessary.

PTIDES: Programming Temporally Integrated

Distributed Embedded Systems

Lee, Berkeley 40

Distributed execution under discrete-event semantics, with

“model time” and “real time” bound at sensors and actuators.

PTIDES: Programming Temporally

Integrated Distributed Embedded Systems

Input time stamps are

 real time

Input time stamps are

 real time

Output time stamps

are real time

Output time stamps

are real time

Lee, Berkeley 41

PTIDES: Programming Temporally

Integrated Distributed Embedded Systems

… and being explicit about time delays means that we can

analyze control system dynamics…

Feedback through the physical world

Actuator may process

the event at the time

received or wait until

real-time matches the

time stamp. The latter

yields determinate

latencies.

Lee, Berkeley 42

Experimental

Setup

HW Platform Software

Component

Library

Ptides Model Code

Generator

PtidyOS

Code

Plant Model

Network Model

HW in the

Loop

Simulator

Causality

Analysis

Program

Analysis

Schedulability

Analysis

Mixed

Simulator

Ptolemy II Ptides domain

Ptolemy II Discrete-event,

Continuous, and

Wireless domains

Luminary

Micro

8962 IEEE 1588 Network

time protocol

Lee, Berkeley 43

Example:

Power Plant

Control

Lee, Berkeley 44

Example:

Power Plant

Control

Model of the continuous

dynamics of a generator

Lee, Berkeley 45

Example:

Power Plant

Control

Model of the embedded

software controller

Lee, Berkeley 46

Example:

Power Plant

Control

Modal controller

behavior.

Lee, Berkeley 47

Example:

Power Plant

Control

Reasoning about time

Lee, Berkeley 48

Conclusions

Established models for signals that prevail in signal

processing are not expressive enough to model the

behavior of nontrivial software and networks.

Superdense time uses tags that have a real-valued time-

stamp and a natural number index, thus supporting

sequences of causally-related simultaneous events.

Discrete-event (DE) systems can provide a foundation for

model-based design of nontrivial signal processing systems

that integrate software and networks.

An extension of DE called PTIDES provides a distributed

model coupling software and physical behaviors.

Lee, Berkeley 49

The Ptolemy Pteam

John

Eidson

Isaac Liu

Christopher Brooks

Jia Zou

Edward

Lee

Ben

Lickly

Thomas

Huining

Feng

Jackie

Mankit

Leung

Jeff

Jensen

Bert Rodiers Hiren Patel

Yasemin

Demir

Shanna-

Shaye

Forbes

Thomas

Mandl

Elefterios

Matsikoudis

Lee, Berkeley 50

A Few

References

Papers:

[1] E. A. Lee, "Computing Needs Time,"
Communications of the ACM, 52(5), May 2009.

[2] X. Liu, E.A. Lee, "CPO semantics of timed
interactive actor networks," Theoretical
Computer Science 409 (1): pp.110-25, 2008..

[3] Zhou and Lee. "Causality Interfaces for Actor
Networks," ACM Trans. on Embedded
Computing Systems, April 2008.

[4] Lee, "Application of Partial Orders to Timed
Concurrent Systems," article in Partial order
techniques for the analysis and synthesis of
hybrid and embedded systems, in CDC 07.

[5] Lee and Zheng, "Leveraging Synchronous
Language Principles for Heterogeneous
Modeling and Design of Embedded Systems,"
EMSOFT ’07.

[6] Liu, Matsikoudis, and Lee. "Modeling Timed
Concurrent Systems," CONCUR ’06.

[7] Cataldo, Lee, Liu, Matsikoudis and Zheng, "A
Constructive Fixed-Point Theorem and the
Feedback Semantics of Timed Systems,"
WODES'06

[8] Lee and Zheng, "Operational Semantics of
Hybrid Systems," HSCC '05.

etc. ...

http://ptolemy.eecs.berkeley.edu

Ph.D. Theses:

[1] On the Design of Concurrent,
Distributed Real-Time
Systems, Yang Zhao [2009]

[2] Operational Semantics of
Hybrid Systems, Haiyang
Zheng [2007]

[3] Interface Theories for
Causality Analysis in Actor
Networks, Ye Zhou [2007]

[4] Semantic Foundation of the
Tagged Signal Model, Xiaojun
Liu, [2005]

[5] Responsible Frameworks for
Heterogeneous Modeling and
Design of Embedded Systems,
Jie Liu [2001]

