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A Taxonomy of Modeling Issues 

Abstract Syntax 

(static structure) 

[software architecture, 

metamodeling, 

higher-order components, …] 

Static Semantics 

(type systems) 

[type inference/checking, 

ontologies,  

behavioral types, …] 

Dynamic Semantics 

(models of computation) 

[automata, hybrid systems, 

model models, 

tagged signal model,  

Kahn networks, 

quantitative  

system theory, …] 

Ontologies 

Modal 

Models 
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Reporting Progress in Two Dimensions of  

Model Engineering 

“Model engineering” is the “software engineering” of models. 
How to build, maintain, and analyze large models. 

I will talk about two specific accomplishments: 

Model ontologies (static semantics) 
Check for compatible static semantics in pieces of models 

Using semantic property annotations and inference 

Based on sound foundations (type theories) 

Scalable to large models 

Modal models (dynamic semantics, a form of multimodeling) 
Components of a model with distinct modes of operation 

Switching between modes is governed by a state machine 

State machines composable with many concurrency models 

Hybrid systems are a special case 
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Static Semantics 
First: capture domain-specific semantic information 

Components in a model

 (e.g. parameters, ports)

 can have properties drawn

 from a lattice. 

Components in a model

 (e.g. actors) can impose

 constraints on property

 relationships. 

The type system

 infrastructure can infer

 properties and detect

 errors. 

Example of a simple domain-specific 

semantic lattice (an ontology) for 

vehicle motion models. 

Another example of a 

an ontology for model 

optimization. 

Dimension Lattice 

Const-Nonconst Lattice 
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Static Semantics 

Second: Define constraints  

across components  
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Static Semantics 

Third: annotate the model 
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Static Semantics 

Fourth: Run the solver. 
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Static Semantics 
Fifth: Resolve inconsistencies exposed

 by the solver. 
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Applying this ontology to a model:

 Cooperative control system 



Lee, Berkeley 10 

Applying this ontology to a model:

 Cooperative control system 
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Solver infers ontology information

 throughout the model and checks

 for consistent usage. 
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Background for Model Ontologies:  

Hindley-Milner Type Theories 

A lattice is a partially ordered

 set (poset) where every

 subset has a least upper
 bound (LUB) and a greatest

 lower bound (GLB). 

Modern type systems

 (including the Ptolemy II type

 system, created by Yuhong

 Xiong) are based on efficient

 algorithms for solving
 inequality constraints on

 lattices. 
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Relational Constraint Problem (RCP) 
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Definite Monotone Function Problem (DMFP) 
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Problem Statement 
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How to Make this Usable in Practice? 

A problem is that, in general, the number of constraints is

 proportional to the size of the model. 

To mitigate these, organize constraints as: 

Default Constraints  

Set globally by the property solver  

(actors, connections, etc.)  

Actor-specific Constraints  

Use an adapter pattern for actors  

Instance-specific Constraints  

Specified through model annotations 
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Example of Actor Constraints for the  

Dimensions Lattice 
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Another Lattice 
This example

 illustrates that an

 ontology can be

 used to determine

 in which parts of a

 model signals vary

 dynamically. 
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Another Lattice 
This example

 illustrates that an

 ontology can be

 used to determine

 in which parts of a

 model signals vary

 dynamically. 
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Reporting Progress in Two Dimensions of  

Model Engineering 

“Model engineering” is the “software engineering” of models. 
How to build, maintain, and analyze large models. 

I will talk about two specific accomplishments: 

Model ontologies (static semantics) 
Check for compatible static semantics in pieces of models 

Using semantic property annotations and inference 

Based on sound foundations (type theories) 

Scalable to large models 

Modal models (dynamic semantics, a form of multimodeling) 
Components of a model with distinct modes of operation 

Switching between modes is governed by a state machine 

State machines composable with many concurrency models 

Hybrid systems are a special case 
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What is the meaning of modal behavior? 

Modal models are formal 

representations of dynamically 

changing behaviors, where the 

changes are modeled by a state 

machine. They can be used to 

construct fault models and 

models of adaptive systems that 

react to faults. 

I will describe a semantics of 

modal models embracing 

concurrent and timed models. 

Edward Lee 

Dynamic Semantics 

Modal Behaviors 
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Motivating Example: 

Hybrid System 
Finite State Machine 

Concurrent Model Concurrent Model 
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Generalizing Beyond  

Hybrid Systems 

Hybrid systems define modal behavior in

 continuous-time dynamics. We are generalizing

 this to give a modal semantics to discrete time,

 discrete-event, and untimed models. 

Cooperative control system 

example includes two 

timed modal models. E.g.: 
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Meta Model for FSMs   

in Ptolemy II 

Initial state indicated in bold 

Guards are expressions that can reference inputs and variables 

Output values can be functions of inputs and variables 

Transition can update variable values (“set” actions) 

Final state terminates execution of the actor 

Actor 

FSM 

Initial state 

Transition 

Ports 

Ports 

State 

Final state 

Guard (trigger) 

and actions 
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Extended State Machines 
Reference and manipulate variables on guards and transitions. 

Extended state

 machines can

 operate on

 variables in

 the model, like

 “count” in this

 example. 

 0, 1, 2, 3, 4, 5, 5, 5,    

“Set” actions are distinct 

from “output” actions.  

We will see why. 

Variable 
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Modal Model Meta Model 
Hierarchical Composition 

An actor’s behavior 

 may be defined by

 an arbitrarily deep

 nesting of FSMs

 and refinements. 

Actor 

Refinement 

FSM 

State Transition 

Refinement 

Ports 

Ports 

Director 

determines 

semantics of the 

submodel 
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This model has two

 simple synchronous

/reactive (SR) models
 as mode refinements

 and models their timed

 environment  

using a  

discrete-event   
(DE) director 

SR Director 
SR Director 

Ptolemy II Enables

 Hierarchical

 Mixtures of MoCs 
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Compare with 

Statecharts 

AND states 

Here, two

 FSMs are

 composed
 under a

synchronous

/reactive

 director,
 resulting in

 Statecharts

-like AND

 states. 

Using a synchronous/reactive (SR) 

director yields Statechart-like semantics 

for concurrent state machines. 
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Operational Semantics: 

Firing 

An actor’s behavior 

 may be defined by

 an arbitrarily deep

 nesting of FSMs

 and refinements. 

Fire 

Execute 

output 

actions 

Evaluate guards 

and choose 

transition 

Current state 

Fire 
Produce 

outputs 

(maybe) Execute sub-model 

according to local MoC 
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Operational Semantics: 

Postfiring 

State changes are

 committed only in

 postfire, enabling

 fixed point iteration

 by using only firing. 

Postfire 

Set 

variable 

values 

Make this the new 

current state 

Current state 

Postfire 

Commit 

state 

changes 
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Directors Benefiting from Fire/Postfire Separation 

(which we call the Actor Abstract Semantics) 

Synchronous/Reactive (SR) 

Execution at each tick is defined by a least fixed point of monotonic

 functions on a finite lattice, where bottom represents

 “unknown” (getting a constructive semantics) 

Discrete Event (DE) 

Extends SR by defining a “time between ticks” and providing a

 mechanism for actors to control this. Time between ticks can be zero

 (“superdense time”). 

Continuous 

Extends DE with a “solver” that chooses time between ticks to
 accurately estimate ODE solutions, and fires all actors on every tick. 

[Lee & Zheng, EMSOFT 07] 
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Handling Time in Modal Models 

After trying several variants on the semantics of

 modal time, we settled on this: 

A mode refinement has a local notion of time.

 When the mode refinement is inactive, local time

 does not advance. Local time has a monotonically

 increasing gap relative to global time. 

Cooperative control system 

example includes two 

timed modal models. E.g.: 
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Modal Time 

Example 

Discrete event director places 

ticks on a (superdense) time line. 

DiscreteClock generates 

regularly spaced events that 

trigger mode transitions. 

These transitions are 

“history” transitions, so mode 

refinements preserve state 

while suspended. 

Produce regularly 

spaced events in 

this mode. 

Produce 

irregularly 

spaced 

events in 

this mode. 
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Modal Time 

Example Mode transitions triggered at 

times 0, 2.5, 5, 7.5, etc. 

Events with value 1 produced at 

(local times) 0, 1, 2, 3, etc. 

First regular event generated at (global 

time) 0, then transition is immediately 

taken. First irregular event generated 

at (global time) 0, one tick later (in 

superdense time). 

Local time 1 corresponds to 

global time 3.5 here. 
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Variant using Preemptive Transition 

Preemptive 

transition 

First regular event 

is not produced 

until global time 2.5 

(local time 0). 
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Time Delays in

 Modal Models 

Triggers transitions 

at (global times)  

0, 1, 2, 3, … 

First output is 

the second input 

to the modal 

model, which 

goes through 

the noDelay 

refinement 

Second output is the 

first input to the 

modal model, which 

goes through the 

delay refinement, 

which is inactive from 

time 0 to 1. 
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Variants for the Semantics of Modal Time that we

 Tried or Considered, but that Failed 

Mode refinement executes while “inactive” but inputs are not

 provided and outputs are not observed. 

Time advances while mode is inactive, and mode refinement

 is responsible for “catching up.” 

Mode refinement is “notified” when it has requested time

 increments that are not met because it is inactive. 

When a mode refinement is re-activated, it resumes from its

 first missed event. 

All of these led to some very strange models… 

Final solution: Local time does not advance while a mode is

 inactive. Growing gap between local time and global time. 
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Conclusion 

Abstract Syntax 

(static structure) 

[software architecture, 

metamodeling, 

higher-order components, …] 

Static Semantics 

(type systems) 

[type inference/checking, 

ontologies,  

behavioral types, …] 

Dynamic Semantics 

(models of computation) 

[automata, hybrid systems, 

model models, 

tagged signal model,  

Kahn networks, 

quantitative  

system theory, …] 

Ptolemy II Property System: 

•User-defined ontologies 

•A few model annotations 

•Inference engine 

•Consistency checker 

•Scalable to large models 

Ptolemy II Modal models: 

•Modal behavior as FSMs 

•Arbitrarily deep hierarchy 

•Heterogeneous hierarchy 

•A semantics of time 

http://chess.eecs.berkeley.edu/pubs/611.html 

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-151.html   

Papers 

describing 

this work 
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More Variants of Modal Models  

Supported in Ptolemy II 

Transition may be a reset transition 

Destination refinement is initialized 

Multiple states can share a refinement 

Facilitates sharing internal actor state across

 modes 

A state may have multiple refinements 

Executed in sequence (providing imperative
 semantics) 

Reset 

transition 

(vs. history 

transition) 
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Still More Variants 

Transition may have a

 refinement 

Refinement is fired when
 transition is chosen 

Postfired when transition

 is committed 

Time is that of the

 environment 
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And Still More Variants  
Dataflow model 

Fault model 

Default transition 

Nondeterminate 

transitions 

Transition may be a

 “default transition” 

Taken if no non-default
 transition is taken 

Compare with priorities

 in SyncCharts 

FSMs may be

 nondeterminate 

Can mark  
transitions to  

permit  

nondeterminism 

This example is a

 hierarchical FSM

 showing a

 thermostat with a

 nondeterminate

 fault mode. 


