
Correctly Composing Components:

Ontologies and Modal Behaviors

Edward A. Lee

Robert S. Pepper Distinguished Professor

UC Berkeley

With: Ben Lickly, Man-Kit Leung, Thomas Mandl,

Elizabeth Latronico (Bosch), Charles Shelton (Bosch), Stavros Tripakis

MURI Review

December 2, 2009

Berkeley, CA

Lee, Berkeley 2

A Taxonomy of Modeling Issues

Abstract Syntax

(static structure)

[software architecture,

metamodeling,

higher-order components, …]

Static Semantics

(type systems)

[type inference/checking,

ontologies,

behavioral types, …]

Dynamic Semantics

(models of computation)

[automata, hybrid systems,

model models,

tagged signal model,

Kahn networks,

quantitative

system theory, …]

Ontologies

Modal

Models

Lee, Berkeley 3

Reporting Progress in Two Dimensions of

Model Engineering

“Model engineering” is the “software engineering” of models.
How to build, maintain, and analyze large models.

I will talk about two specific accomplishments:

Model ontologies (static semantics)
Check for compatible static semantics in pieces of models

Using semantic property annotations and inference

Based on sound foundations (type theories)

Scalable to large models

Modal models (dynamic semantics, a form of multimodeling)
Components of a model with distinct modes of operation

Switching between modes is governed by a state machine

State machines composable with many concurrency models

Hybrid systems are a special case

Lee, Berkeley 4

Static Semantics
First: capture domain-specific semantic information

Components in a model

 (e.g. parameters, ports)

 can have properties drawn

 from a lattice.

Components in a model

 (e.g. actors) can impose

 constraints on property

 relationships.

The type system

 infrastructure can infer

 properties and detect

 errors.

Example of a simple domain-specific

semantic lattice (an ontology) for

vehicle motion models.

Another example of a

an ontology for model

optimization.

Dimension Lattice

Const-Nonconst Lattice

Lee, Berkeley 5

Static Semantics

Second: Define constraints

across components

Lee, Berkeley 6

Static Semantics

Third: annotate the model

Lee, Berkeley 7

Static Semantics

Fourth: Run the solver.

Lee, Berkeley 8

Static Semantics
Fifth: Resolve inconsistencies exposed

 by the solver.

Lee, Berkeley 9

Applying this ontology to a model:

 Cooperative control system

Lee, Berkeley 10

Applying this ontology to a model:

 Cooperative control system

Lee, Berkeley 11

Solver infers ontology information

 throughout the model and checks

 for consistent usage.

Lee, Berkeley 12

Background for Model Ontologies:

Hindley-Milner Type Theories

A lattice is a partially ordered

 set (poset) where every

 subset has a least upper
 bound (LUB) and a greatest

 lower bound (GLB).

Modern type systems

 (including the Ptolemy II type

 system, created by Yuhong

 Xiong) are based on efficient

 algorithms for solving
 inequality constraints on

 lattices.

Lee, Berkeley 13

Relational Constraint Problem (RCP)

Lee, Berkeley 14

Definite Monotone Function Problem (DMFP)

Lee, Berkeley 15

Problem Statement

Lee, Berkeley 16

How to Make this Usable in Practice?

A problem is that, in general, the number of constraints is

 proportional to the size of the model.

To mitigate these, organize constraints as:

Default Constraints

Set globally by the property solver

(actors, connections, etc.)

Actor-specific Constraints

Use an adapter pattern for actors

Instance-specific Constraints

Specified through model annotations

Lee, Berkeley 17

Example of Actor Constraints for the

Dimensions Lattice

Lee, Berkeley 18

Another Lattice
This example

 illustrates that an

 ontology can be

 used to determine

 in which parts of a

 model signals vary

 dynamically.

Lee, Berkeley 19

Another Lattice
This example

 illustrates that an

 ontology can be

 used to determine

 in which parts of a

 model signals vary

 dynamically.

Lee, Berkeley 20

Reporting Progress in Two Dimensions of

Model Engineering

“Model engineering” is the “software engineering” of models.
How to build, maintain, and analyze large models.

I will talk about two specific accomplishments:

Model ontologies (static semantics)
Check for compatible static semantics in pieces of models

Using semantic property annotations and inference

Based on sound foundations (type theories)

Scalable to large models

Modal models (dynamic semantics, a form of multimodeling)
Components of a model with distinct modes of operation

Switching between modes is governed by a state machine

State machines composable with many concurrency models

Hybrid systems are a special case

Lee, Berkeley 21

What is the meaning of modal behavior?

Modal models are formal

representations of dynamically

changing behaviors, where the

changes are modeled by a state

machine. They can be used to

construct fault models and

models of adaptive systems that

react to faults.

I will describe a semantics of

modal models embracing

concurrent and timed models.

Edward Lee

Dynamic Semantics

Modal Behaviors

Lee, Berkeley 22

Motivating Example:

Hybrid System
Finite State Machine

Concurrent Model Concurrent Model

Lee, Berkeley 23

Generalizing Beyond

Hybrid Systems

Hybrid systems define modal behavior in

 continuous-time dynamics. We are generalizing

 this to give a modal semantics to discrete time,

 discrete-event, and untimed models.

Cooperative control system

example includes two

timed modal models. E.g.:

Lee, Berkeley 24

Meta Model for FSMs

in Ptolemy II

Initial state indicated in bold

Guards are expressions that can reference inputs and variables

Output values can be functions of inputs and variables

Transition can update variable values (“set” actions)

Final state terminates execution of the actor

Actor

FSM

Initial state

Transition

Ports

Ports

State

Final state

Guard (trigger)

and actions

Lee, Berkeley 25

Extended State Machines
Reference and manipulate variables on guards and transitions.

Extended state

 machines can

 operate on

 variables in

 the model, like

 “count” in this

 example.

 0, 1, 2, 3, 4, 5, 5, 5,

“Set” actions are distinct

from “output” actions.

We will see why.

Variable

Lee, Berkeley 26

Modal Model Meta Model
Hierarchical Composition

An actor’s behavior

 may be defined by

 an arbitrarily deep

 nesting of FSMs

 and refinements.

Actor

Refinement

FSM

State Transition

Refinement

Ports

Ports

Director

determines

semantics of the

submodel

Lee, Berkeley 27

This model has two

 simple synchronous

/reactive (SR) models
 as mode refinements

 and models their timed

 environment

using a

discrete-event
(DE) director

SR Director
SR Director

Ptolemy II Enables

 Hierarchical

 Mixtures of MoCs

Lee, Berkeley 28

Compare with

Statecharts

AND states

Here, two

 FSMs are

 composed
 under a

synchronous

/reactive

 director,
 resulting in

 Statecharts

-like AND

 states.

Using a synchronous/reactive (SR)

director yields Statechart-like semantics

for concurrent state machines.

Lee, Berkeley 29

Operational Semantics:

Firing

An actor’s behavior

 may be defined by

 an arbitrarily deep

 nesting of FSMs

 and refinements.

Fire

Execute

output

actions

Evaluate guards

and choose

transition

Current state

Fire
Produce

outputs

(maybe) Execute sub-model

according to local MoC

Lee, Berkeley 30

Operational Semantics:

Postfiring

State changes are

 committed only in

 postfire, enabling

 fixed point iteration

 by using only firing.

Postfire

Set

variable

values

Make this the new

current state

Current state

Postfire

Commit

state

changes

Lee, Berkeley 31

Directors Benefiting from Fire/Postfire Separation

(which we call the Actor Abstract Semantics)

Synchronous/Reactive (SR)

Execution at each tick is defined by a least fixed point of monotonic

 functions on a finite lattice, where bottom represents

 “unknown” (getting a constructive semantics)

Discrete Event (DE)

Extends SR by defining a “time between ticks” and providing a

 mechanism for actors to control this. Time between ticks can be zero

 (“superdense time”).

Continuous

Extends DE with a “solver” that chooses time between ticks to
 accurately estimate ODE solutions, and fires all actors on every tick.

[Lee & Zheng, EMSOFT 07]

Lee, Berkeley 32

Handling Time in Modal Models

After trying several variants on the semantics of

 modal time, we settled on this:

A mode refinement has a local notion of time.

 When the mode refinement is inactive, local time

 does not advance. Local time has a monotonically

 increasing gap relative to global time.

Cooperative control system

example includes two

timed modal models. E.g.:

Lee, Berkeley 33

Modal Time

Example

Discrete event director places

ticks on a (superdense) time line.

DiscreteClock generates

regularly spaced events that

trigger mode transitions.

These transitions are

“history” transitions, so mode

refinements preserve state

while suspended.

Produce regularly

spaced events in

this mode.

Produce

irregularly

spaced

events in

this mode.

Lee, Berkeley 34

Modal Time

Example Mode transitions triggered at

times 0, 2.5, 5, 7.5, etc.

Events with value 1 produced at

(local times) 0, 1, 2, 3, etc.

First regular event generated at (global

time) 0, then transition is immediately

taken. First irregular event generated

at (global time) 0, one tick later (in

superdense time).

Local time 1 corresponds to

global time 3.5 here.

Lee, Berkeley 35

Variant using Preemptive Transition

Preemptive

transition

First regular event

is not produced

until global time 2.5

(local time 0).

Lee, Berkeley 36

Time Delays in

 Modal Models

Triggers transitions

at (global times)

0, 1, 2, 3, …

First output is

the second input

to the modal

model, which

goes through

the noDelay

refinement

Second output is the

first input to the

modal model, which

goes through the

delay refinement,

which is inactive from

time 0 to 1.

Lee, Berkeley 37

Variants for the Semantics of Modal Time that we

 Tried or Considered, but that Failed

Mode refinement executes while “inactive” but inputs are not

 provided and outputs are not observed.

Time advances while mode is inactive, and mode refinement

 is responsible for “catching up.”

Mode refinement is “notified” when it has requested time

 increments that are not met because it is inactive.

When a mode refinement is re-activated, it resumes from its

 first missed event.

All of these led to some very strange models…

Final solution: Local time does not advance while a mode is

 inactive. Growing gap between local time and global time.

Lee, Berkeley 38

Conclusion

Abstract Syntax

(static structure)

[software architecture,

metamodeling,

higher-order components, …]

Static Semantics

(type systems)

[type inference/checking,

ontologies,

behavioral types, …]

Dynamic Semantics

(models of computation)

[automata, hybrid systems,

model models,

tagged signal model,

Kahn networks,

quantitative

system theory, …]

Ptolemy II Property System:

•User-defined ontologies

•A few model annotations

•Inference engine

•Consistency checker

•Scalable to large models

Ptolemy II Modal models:

•Modal behavior as FSMs

•Arbitrarily deep hierarchy

•Heterogeneous hierarchy

•A semantics of time

http://chess.eecs.berkeley.edu/pubs/611.html

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-151.html

Papers

describing

this work

Lee, Berkeley 39

Acknowledgments:

The Ptolemy Pteam

John

Eidson

Isaac Liu

Christopher Brooks

Jia Zou

Edward

Lee

Ben

Lickly

Thomas

Huining

Feng

Jackie

Mankit

Leung

Jeff

Jensen

Bert Rodiers Hiren Patel

Yasemin

Demir

Shanna-

Shaye

Forbes

Thomas

Mandl

Elefterios

Matsikoudis

Plus (not shown):

•Elizabeth Latronico (Bosch)

•Charles Shelton (Bosch)

•Stavros Tripakis (UCB)

Lee, Berkeley 40

More Variants of Modal Models

Supported in Ptolemy II

Transition may be a reset transition

Destination refinement is initialized

Multiple states can share a refinement

Facilitates sharing internal actor state across

 modes

A state may have multiple refinements

Executed in sequence (providing imperative
 semantics)

Reset

transition

(vs. history

transition)

Lee, Berkeley 41

Still More Variants

Transition may have a

 refinement

Refinement is fired when
 transition is chosen

Postfired when transition

 is committed

Time is that of the

 environment

Lee, Berkeley 42

And Still More Variants
Dataflow model

Fault model

Default transition

Nondeterminate

transitions

Transition may be a

 “default transition”

Taken if no non-default
 transition is taken

Compare with priorities

 in SyncCharts

FSMs may be

 nondeterminate

Can mark
transitions to

permit

nondeterminism

This example is a

 hierarchical FSM

 showing a

 thermostat with a

 nondeterminate

 fault mode.

