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Outline

e constrained linear stochastic control problem

e the linear quadratic case

e performance bound

e a suboptimal control scheme based on performance bound

e numerical examples

MURI Review Meeting, December 2, 2009



Linear stochastic system

e linear dynamical system with process noise:
xt+1:Axt—|—But—|—wt, t:O,l,...,
— x; € R" is the state

— uy € U is the control input

— U C R™ is the input constraint set, with 0 € U

— wy € R™ is zero mean 11D process noise, Ew,w! = W

e state feedback control policy:
ut:gb(xt), t:O,l,...,

¢ : R" — U is the state feedback function
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Objective

e objective is average stage cost:

T-1
1
J =limsup = E Co(xy) + 4y (u
msup B3 (o(r1) + ()

» : R" — R is state stage cost function

/
— {, : U — R is the input state cost function

e /. Y, U need not be convex
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Stochastic control problem
e stochastic control problem: choose feedback function ¢ to minimize J
e infinite dimensional nonconvex optimization problem

e problem data:

— dynamics and input matrices A, B
— distribution of process noise wy

— state and input cost functions /., £,
— input constraint set U/

e ¢~ denotes an optimal feedback function

e J* denotes optimal objective value
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‘Solution’ via dynamic programming
e find V*: R” — R and « with

V¥ z)+a= melgil (Ly(v) + EV*(Az + Bv 4+ wy))

(expectation is over wy)

e optimal feedback function is then

¢*(z) = argmin (£, (v) + EV*(Az + Bv + wy))
veUu

e optimal value of stochastic control problem is J* = «
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Stochastic control problem

e generally very hard to solve
(even more: how would we represent a general function ¢7)

e can be effectively solved

— when the problem dimensions are very small, e.g., n=m =1
— when &4 = R" and ¢, ¢, are convex quadratic

e many suboptimal methods have been proposed

— can evaluate J for a given ¢ via Monte Carlo simulation
— but how suboptimal is it?

e this talk: an effective method for finding a (good) lower bound on J*
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Control-Lyapunov policy
e control-Lyapunov policy is

¢ct(z) = argmin (£, (v) + EVar(Az + Bv + wy))
vel

— Var : R™ — R (which is to be chosen) is the control-Lyapunov
function
— when Vg = V™, this is optimal policy

e when V¢ is quadratic, the control-Lyapunov policy simplifies to

¢cit(z) = argmin (£, (v) + Ve (Az + Bo))
velU

since Ew; = 0, and term involving E w;w! = W is constant
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The performance bound

our method:

e computes a lower bound J'® < J* using convex optimization
(hence is tractable)

e bound is computed for each specific problem instance

e (at this time) cannot guarantee tightness of bound
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Unconstrained linear quadratic control

e can effectively solve stochastic control problem when

— U = R™ (no constraints)
— lx(2) = 210z, lu(v) = vI'Ru, Q>0 R>0

e optimal cost is Jj; = Tr(PW)
e optimal state feedback function is ¢*(2) = KJ 2z, where
K =—(R+B'"PB)"'B" P A
o P is positive semidefinite solution of ARE
PL=Q+A"PA-A"P.B(R+B"P;B)"'B"P;A
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Linear quadratic control via LMI/SDP

e can characterize Jj and P via the semidefinite program (SDP)

maximize Tr(PW)
subjectto P >0

R+ BTPB BTPA 0
ATPB Q+AT"PA—-P | —

— variable is P
— optimal point is P = F; optimal value is JJ,

e solution does not depend on W, as long as W > 0

e constraints are convex in (P, @, R), so Jfa

of (Q, R)

(Q, R) is a concave function
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Basic bound

e suppose (Q = 0, R > 0, s satisfy
7 Qz+ v Ruv4 5 < ly(2) +4,(v) forallzeR™, veld
i.e., quadratic stage costs are everywhere smaller than ¢, + £,
e then J (Q, R) + s is a lower bound on J*
e follows from monotonicity of stochastic control cost w.r.t. stage costs

e lefthand side is optimal value of unconstrained quadratic problem
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Optimizing the bound
e can optimize the lower bound over (), R, s by solving

maximize  Ji (Q, R) + s
subjectto Q@ =0, R >0,
21Qz+vIRv+s</ly(2)+4,(v) forallzeR", vel

e a convex optimization problem

— objective is concave
— constraints are convex
— last constraint is convex in (), R, s for each z and v

e last constraint is semi-infinite, parameterized by the (infinite) set
zeR", uel
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Numerical examples

e illustrate bounds for 3 examples

— small problem with trilevel inputs
— large problem with box constraints
— discretized mechanical control system

e compare lower bound with various heuristic policies

— projected linear state feedback
— model predictive control
— control-Lyapunov policy
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Small problem with trilevel inputs

en=8 m=2

e A, B matrices randomly generated; A scaled so |\;(A)]
e quadratic stage costs with Rg =1, Qo =1

o w; ~ N(0,0.25])

e finite input set: U = {—0.2,0,0.2}2
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Large problem with box constraints

e n=230m=10

e A, B matrices randomly generated; A scaled so |\;(A)]
e quadratic stage costs with Rg =1, Qo =1

o w; ~ N(0,0.25])

e box input constraints: U = {v € R"" | ||v]|oc < 0.1}
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Discretized mechanical control system

- U3 <+——

— U] - > Uy -———

e 6 masses connected by springs; 3 input tensions between masses
e quadratic stage costs with Rg =1, Qo = 1
e w; uniform on [—0.5,0.5]

e box input constraints: U = {v € R™ | ||v]|cc < 0.1}
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Heuristic policies

e projected linear state feedback with Ky = Ky
e control-Lyapunov policy with V¢ (2) = 21 P,z

e model predictive control (MPC) with T' = 30, Viupc(2) = 27 P2

(for trilevel example we solve convex relaxation with u(t) € [—0.2,0.2],
then round value to {—0.2,0,0.2})
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Results

small trilevel large random masses
PLSF 12.9 31.3 269.8
CLF 10.8 25.6
MPC 10.9 25.7
JP 9.1 23.8

e control-Lyapunov with P, and MPC achieve similar performance

e control-Lyapunov policy can be computed very fast (in tens of
microseconds); MPC policy can be computed in milliseconds

e bound Jy, is reasonably close to J for these examples
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Conclusions

e we've shown how to find lower bounds on optimal performance for
constrained linear stochastic control problems

e requires solution of convex optimization problem, hence is tractable

e provides only provable lower bound on optimal performance that we are
aware of

e as a by-product, provides excellent choice for quadratic
control-Lyapunov function

e in many cases, gives everything you want:

— a provable lower bound on performance
— a relatively simple heuristic policy that comes close
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