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Outline

• constrained linear stochastic control problem

• the linear quadratic case

• performance bound

• a suboptimal control scheme based on performance bound

• numerical examples
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Linear stochastic system

• linear dynamical system with process noise:

xt+1 = Axt + But + wt, t = 0, 1, . . . ,

– xt ∈ Rn is the state
– ut ∈ U is the control input
– U ⊂ Rm is the input constraint set, with 0 ∈ U
– wt ∈ Rn is zero mean IID process noise, Ewtw

T

t
= W

• state feedback control policy:

ut = φ(xt), t = 0, 1, . . . ,

φ : Rn → U is the state feedback function
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Objective

• objective is average stage cost:

J = lim sup
T→∞

1

T
E

T−1
∑

t=0

(ℓx(xt) + ℓu(ut))

– ℓx : Rn → R is state stage cost function
– ℓu : U → R is the input state cost function

• ℓx, ℓu, U need not be convex
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Stochastic control problem

• stochastic control problem: choose feedback function φ to minimize J

• infinite dimensional nonconvex optimization problem

• problem data:

– dynamics and input matrices A, B

– distribution of process noise wt

– state and input cost functions ℓx, ℓu

– input constraint set U

• φ⋆ denotes an optimal feedback function

• J⋆ denotes optimal objective value
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‘Solution’ via dynamic programming

• find V ⋆ : Rn → R and α with

V ⋆(z) + α = min
v∈U

(ℓu(v) + EV ⋆(Az + Bv + wt))

(expectation is over wt)

• optimal feedback function is then

φ⋆(z) = argmin
v∈U

(ℓu(v) + EV ⋆(Az + Bv + wt))

• optimal value of stochastic control problem is J⋆ = α
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Stochastic control problem

• generally very hard to solve
(even more: how would we represent a general function φ?)

• can be effectively solved

– when the problem dimensions are very small, e.g., n = m = 1
– when U = Rm and ℓx, ℓu are convex quadratic

• many suboptimal methods have been proposed

– can evaluate J for a given φ via Monte Carlo simulation
– but how suboptimal is it?

• this talk: an effective method for finding a (good) lower bound on J⋆
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Control-Lyapunov policy

• control-Lyapunov policy is

φclf(z) = argmin
v∈U

(ℓu(v) + EVclf(Az + Bv + wt))

– Vclf : Rn → R (which is to be chosen) is the control-Lyapunov
function

– when Vclf = V ⋆, this is optimal policy

• when Vclf is quadratic, the control-Lyapunov policy simplifies to

φclf(z) = argmin
v∈U

(ℓu(v) + Vclf(Az + Bv))

since Ewt = 0, and term involving Ewtw
T

t
= W is constant
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The performance bound

our method:

• computes a lower bound J lb ≤ J⋆ using convex optimization
(hence is tractable)

• bound is computed for each specific problem instance

• (at this time) cannot guarantee tightness of bound
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Unconstrained linear quadratic control

• can effectively solve stochastic control problem when

– U = Rm (no constraints)
– ℓx(z) = zTQz, ℓu(v) = vTRv, Q º 0, R º 0

• optimal cost is J⋆

lq = Tr(P ⋆

lqW )

• optimal state feedback function is φ⋆(z) = K⋆

lqz, where

K⋆

lq = −(R + BTP ⋆

lqB)−1BTP ⋆

lqA

• P ⋆

lq is positive semidefinite solution of ARE

P ⋆

lq = Q + ATP ⋆

lqA − ATP ⋆

lqB(R + BTP ⋆

lqB)−1BTP ⋆

lqA
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Linear quadratic control via LMI/SDP

• can characterize J⋆

lq and P ⋆

lq via the semidefinite program (SDP)

maximize Tr(PW )

subject to P º 0
[

R + BTPB BTPA

ATPB Q + ATPA − P

]

º 0

– variable is P

– optimal point is P = P ⋆

lq; optimal value is J⋆

lq

• solution does not depend on W , as long as W ≻ 0

• constraints are convex in (P, Q,R), so J⋆

lq(Q,R) is a concave function
of (Q,R)
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Basic bound

• suppose Q º 0, R º 0, s satisfy

zTQz + vTRv + s ≤ ℓx(z) + ℓu(v) for all z ∈ Rn, v ∈ U

i.e., quadratic stage costs are everywhere smaller than ℓx + ℓv

• then J⋆

lq(Q, R) + s is a lower bound on J⋆

• follows from monotonicity of stochastic control cost w.r.t. stage costs

• lefthand side is optimal value of unconstrained quadratic problem
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Optimizing the bound

• can optimize the lower bound over Q, R, s by solving

maximize J⋆

lq(Q,R) + s

subject to Q º 0, R º 0,

zTQz + vTRv + s ≤ ℓx(z) + ℓu(v) for all z ∈ Rn, v ∈ U

• a convex optimization problem

– objective is concave
– constraints are convex
– last constraint is convex in Q, R, s for each z and v

• last constraint is semi-infinite, parameterized by the (infinite) set
z ∈ Rn, u ∈ U
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Numerical examples

• illustrate bounds for 3 examples

– small problem with trilevel inputs
– large problem with box constraints
– discretized mechanical control system

• compare lower bound with various heuristic policies

– projected linear state feedback
– model predictive control
– control-Lyapunov policy

MURI Review Meeting, December 2, 2009 13



Small problem with trilevel inputs

• n = 8, m = 2

• A, B matrices randomly generated; A scaled so |λi(A)| = 1

• quadratic stage costs with R0 = I, Q0 = I

• wt ∼ N (0, 0.25I)

• finite input set: U = {−0.2, 0, 0.2}2
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Large problem with box constraints

• n = 30, m = 10

• A, B matrices randomly generated; A scaled so |λi(A)| = 1

• quadratic stage costs with R0 = I, Q0 = I

• wt ∼ N (0, 0.25I)

• box input constraints: U = {v ∈ Rm | ‖v‖∞ ≤ 0.1}
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Discretized mechanical control system

u1 u2

u3

• 6 masses connected by springs; 3 input tensions between masses

• quadratic stage costs with R0 = I, Q0 = I

• wt uniform on [−0.5, 0.5]

• box input constraints: U = {v ∈ Rm | ‖v‖∞ ≤ 0.1}
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Heuristic policies

• projected linear state feedback with Kpl = K⋆

lq

• control-Lyapunov policy with Vclf(z) = zTPlbz

• model predictive control (MPC) with T = 30, Vmpc(z) = zTPlbz

(for trilevel example we solve convex relaxation with u(t) ∈ [−0.2, 0.2],
then round value to {−0.2, 0, 0.2})
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Results

small trilevel large random masses

PLSF 12.9 31.3 269.8

CLF 10.8 25.6 61.1

MPC 10.9 25.7 58.9

J lb 9.1 23.8 43.2

• control-Lyapunov with Plb and MPC achieve similar performance

• control-Lyapunov policy can be computed very fast (in tens of
microseconds); MPC policy can be computed in milliseconds

• bound Jlb is reasonably close to J for these examples
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Conclusions

• we’ve shown how to find lower bounds on optimal performance for
constrained linear stochastic control problems

• requires solution of convex optimization problem, hence is tractable

• provides only provable lower bound on optimal performance that we are
aware of

• as a by-product, provides excellent choice for quadratic
control-Lyapunov function

• in many cases, gives everything you want:

– a provable lower bound on performance
– a relatively simple heuristic policy that comes close
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