
Parallel, Concurrent, and 
Distributed Software in 
Cyber-Physical Systems

Edward A. Lee
Robert S. Pepper Distinguished Professor
UC Berkeley

Invited Talk

Int. Workshop on User-Centric Cyber-Physical Systems and Services (UC-CPS)

Institute of Information Science, Academia Sinica

Taipei, Taiwan, December 8-9, 2009

Lee, Berkeley 2

Motivation

Much effort in computer science has gone into 
attempting to make computers behave like 
humans.

My focus is on making computers behave like 
physical processes so that humans that interact 
with them intuitively, in the same manner with 
which they interact with their physical 
environment.



Lee, Berkeley 3

Abstract

Parallel, concurrent, and distributed software plays a key role in 
user-centric cyber-physical systems. It handles a multiplicity of 
streams of sensor data, extracts and fuses models of the 
physical environment, and coordinates distributed reactions. 
Humans require that such software behave in ways that would 
be expected of physical processes. Achieving that illusion, 
however, is challenging using today's prevailing technologies for 
software design. These technologies are rooted in abstractions 
that have only poor analogies in the physical world. This talk will 
critically examine these abstractions and suggest replacements. 
The goal is software design techniques that naturally lead to 
software behaviors that emulate physical processes.

Lee, Berkeley 4Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS):
Orchestrating networked computational 
resources with physical systems

Courtesy of Doug SchmidtCourtesy of Doug Schmidt

Power 
generation and 
distribution

Courtesy of 
General Electric

Military systems:

E-Corner, Siemens

Transportation
(Air traffic 
control at 
SFO)

Avionics

Telecommunications

Factory automation

Instrumentation
(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems



Lee, Berkeley 5

CPS Example – Printing Press 

• High‐speed, high precision
• Speed: 1 inch/ms

• Precision: 0.01 inch

‐> Time accuracy: 10us

• Open standards (Ethernet)
• Synchronous, Time‐Triggered

• IEEE 1588  time‐sync protocol

• Application aspects
• local (control)

• distributed (coordination)

• global (modes)
Bosch‐Rexroth

Lee, Berkeley 6

Even without distributed computing, 
timing can get complex.
Consider an automotive engine controller.

Embedded software using timers, interrupts, threads, 
shared memory, priorities, and mutual exclusion can 
realize such systems. But how hard is it to get right?



Lee, Berkeley 7

Standard approaches to concurrency and 
real time rely on threads, priorities, 
mutexes, etc...

Sutter and Larus observe:

“humans are quickly overwhelmed by 
concurrency and find it much more difficult to 
reason about concurrent than sequential code. 
Even careful people miss possible interleavings 
among even simple collections of partially 
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency 
revolution. ACM Queue, 3(7), 2005.

Lee, Berkeley 8

Is Concurrency Hard?

It is not 
concurrency that 
is hard…



Lee, Berkeley 9

…It is Threads that are Hard!

Threads are sequential processes that 
share memory. From the perspective of 
any thread, the entire state of the universe 
can change between any two atomic 
actions (itself an ill-defined concept).

Imagine if the physical world did that…

Lee, Berkeley 10

Concurrent programs using shared memory are 
incomprehensible because concurrency in the 
physical world does not work that way.

We have no experience!



Lee, Berkeley 11

For distributed applications, the problem gets 
harder. Networks with “quality of service” are 
insufficient. Need “correctness of service.”

Traditionally, 
“faster is better.”

This is like saying 
that for a roller 
coaster, 
“stronger is 
better.”

We have to 
change the 
mindset to 
“not fast enough 
is an error!”

Lee, Berkeley 12

Abstraction Layers in Networks

The point of these abstraction 
layers is to isolate a system 
designer from the details of 
the implementation below, 
and to provide an abstraction 
for other system designers to 
build on.

In today’s general-purpose 
networks, timing is a property 
that emerges from the details 
of the implementation, and is 
not included in the 
abstractions. For time-critical 
applications, the abstraction 
layers fail.



Lee, Berkeley 13

For distributed cyber-physical systems,

Timing needs to be a part of the network 
semantics, not a side effect of the implementation.

Technologies needed:

Time synchronization

Bounds on latency

Time-aware fault isolation and recovery

Time-aware robustness

Lee, Berkeley 14

Background - Domain-Specific
Networks with Timed Semantics

 WorldFIP (Factory Instrumentation Protocol)
 Created in France, 1980s, used in train systems

 CAN: Controller Area Network
 Created by Bosch, 1980s/90s, ISO standard

 Various ethernet variants
 PROFInet, EtherCAT, Powerlink, …

 TTP/C: Time-Triggered Protocol
 Created around 1990, Univ. of Vienna, supported by TTTech

 MOST: Media Oriented Systems Transport
 Created by a consortium of automotive & electronics companies 
 Under active development today

 FlexRay: Time triggered bus for automotive applications
 Created by a consortium of automotive & electronics companies 
 Under active development today



Lee, Berkeley 15

Services Provided by Networks with 
Timed Semantics

 Frequency locking

 Time synchronization

 Bounded latency

 Fault isolation (sometimes)

 Priorities (sometimes)

 Admission control (sometimes)

Lee, Berkeley 16

Not so Domain-Specific 
Network Mechanisms

 Frequency locking
 E.g., synchronous ethernet:

ITU-T G.8261, May 2006

 Enables integrating circuit-
switched services on packet-
switched networks

 Can deliver performance
independent of network loading.

 Time synchronization
 E.g., IEEE 1588 standard set in 2002.

 Synchronized time-of-day across a network.



Lee, Berkeley 17

Time Synchronization on Ethernet with 
TCP/IP: IEEE 1588 PTP

Clocks on a LAN 
agree on the current 
time of day to within 
8ns, far more precise 
than older techniques 
like NTP.

A question we are 
addressing at 
Berkeley: How does 
this change how we 
develop distributed 
real-time software?

Press Release October 1, 2007

Lee, Berkeley 18

A Programming Model for Distributed 
Cyber-Physical Systems

The question we address:
Given a common notion of time shared to some 
known precision across a network, and given 
bounded network latencies, can we design better 
distributed embedded software?

Our answer (today):
Use discrete-event (DE) models for specification 
of systems, bind model time to real time only 
exactly where this is needed.



Lee, Berkeley 19

My Agenda

I will show a particular approach to the design of 
concurrent and distributed time-sensitive systems that is 
an actor-oriented component technology, with a timed 
concurrency model that has good physical intuition, and 
that can be used to define distributed real-time systems.

The approach is called PTIDES (pronounced “tides”), for 
Programming Temporally Integrated Distributed 
Embedded Systems.

See: Zhao, Lee and Liu "A Programming Model for Time-
Synchronized Distributed Real-Time Systems," RTAS 2007.

Lee, Berkeley 20

Object Oriented vs. Actor Oriented
Software Component Technologies

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through 
an object is 

evolving data

class name

data

methods

call return

What flows through 
an object is 

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen



Lee, Berkeley 21

Some Actor-Oriented Influences
 BIP [Basu, Bozga, Sifakis 2006]

 Colif [Jerraya et al. 2001]

 Esterel [Berry et al. 1992]

 ForSyDe [Sander, Jantsch 2004]

 FunState [Thiele, Ernst, Teich, et al. 2001]

 Giotto [Henzinger et al. 2001]

 HetSC [Herrera, Villar 2006]

 LabVIEW [Kodosky et al. 1986]

 Lustre [Halbwachs, Caspi et al. 1991]

 Metropolis [Goessler, Sangionvanni-Vincentelli et al. 2002]

 Model Integrated Computing [Sztipanovits, Karsai, et al. 1997]

 Ptolemy Classic [Buck, Ha, Messerschmitt, Lee et al. 1994]

 Ptolemy II [Eker, Janneck, Lee, et al. 2003]

 RTComposer [Alur, Weiss 2008]

 SCADE [Berry et al. 2003]

 SDL [Various, 1990s]

 Signal [Benveniste, Le Guernic 1990]

 Simulink [Ciolfi et al., 1990s]

 Statecharts [Harel 1987]

Lee, Berkeley 22

Our Approach is based on
Discrete Events (DE)

 Concurrent actors

 Exchange time-stamped messages (“events”)

A correct execution is one where every actor 
reacts to input events in time-stamp order.

Time stamps are in “model time,” which typically 
bears no relationship to “real time” (wall-clock time). 
We use superdense time for the time stamps.



Lee, Berkeley 23

Example DE Model (in Ptolemy II)
DE Director specifies that 
this will be a DE model

Lee, Berkeley 24

Example DE Model
Model of regularly spaced 
events (e.g., a clock signal).



Lee, Berkeley 25

Example DE Model
Model of irregularly spaced 
events (e.g., a failure event).

Lee, Berkeley 26

Example DE Model
Model of a subsystem that 
changes modes at random 
(event-triggered) times



Lee, Berkeley 27

Example DE Model
Model of an observer 
subsystem

Lee, Berkeley 28

Example DE Model
Events on the two input 
streams must be seen in 
time stamp order.

Note that DE MoCs have 
considerable subtleties when 
it comes to simultaneous 
events and events that 
prevent time from progressing 
(Zeno conditions).

Lee and Zheng (2007). Leveraging Synchronous Language Principles for 
Heterogeneous Modeling and Design of Embedded Systems. EMSOFT.



Lee, Berkeley 29

Aside:
Superdense Time Enables Better Conjunction 
of Computation and Physical Processes

Lee, Berkeley 30

This is a Component Technology
Model of a subsystem given 
as an imperative program.



Lee, Berkeley 31

This is a Component Technology
Model of a subsystem given 
as a state machine.

Lee, Berkeley 32

This is a Component Technology
Model of a subsystem given 
as a modal model.

More types of components:
• Modal models
• Functional expressions.
• Submodels in DE
• Submodels in other MoCs



Lee, Berkeley 33

Using DE Semantics in Distributed Real-
Time Systems

 DE is usually a simulation technology.

 Distributing DE is done for acceleration.

 Hardware design languages (e.g. VHDL) use DE where 
time stamps are literally interpreted as real time, or 
abstractly as ticks of a physical clock.

 We are using DE for distributed real-time software, 
binding time stamps to real time only where necessary.

 PTIDES: Programming Temporally Integrated 
Distributed Embedded Systems

Lee, Berkeley 34

Distributed execution under discrete-event semantics, with 
“model time” and “real time” bound at sensors and actuators.

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

Input time stamps are 
≥ real time

Input time stamps are 
≥ real time

Output time stamps 
are ≤ real time

Output time stamps 
are ≤ real time



Lee, Berkeley 35

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

PTIDES uses static causality analysis to determine when 
events can be safely processed (preserving DE semantics).

Assume bounded 
network delay d

Assume bounded 
clock error

Assume bounded 
clock error e

An earliest event with 
time stamp t here with 
time stamp t can be 
safely merged when 
real time exceeds 
t + s + d + e – d2

Assume bounded 
clock error e

Assume bounded 
sensor delay s

Lee, Berkeley 36

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

Schedulability analysis incorporates computation times to 
determine whether we can guarantee that deadlines are met.

Deadline for delivery of 
event with time stamp t 

here is t – c3 – d2

Deadline for delivery 
here is t

Assume bounded 
computation time c1

Assume bounded 
computation time c3

Assume bounded 
computation time c2



Lee, Berkeley 37

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

… and being explicit about time delays means that we can 
analyze control system dynamics…

Feedback through the physical world

Actuator may process 
the event at the time 
received or wait until 
real-time matches the 
time stamp. The latter 

yields determinate 
latencies.

Lee, Berkeley 38

Experimental
Setup

HW PlatformHW PlatformSoftware 
Component 

Library

Software 
Component 

Library

Ptides ModelPtides Model Code 
Generator

PtidyOSPtidyOS

CodeCode

Plant ModelPlant Model

Network ModelNetwork Model

HW in the 
Loop 

Simulator

HW in the 
Loop 

Simulator

Causality 
Analysis

Causality 
Analysis

Program 
Analysis

Program 
Analysis

Schedulability 
Analysis

Schedulability 
Analysis

Analysis

Mixed 
Simulator

Mixed 
Simulator

Ptolemy II Ptides domain

Ptolemy II Discrete-event,
Continuous, and
Wireless domains

Luminary 
Micro 
8962IEEE 1588 Network 

time protocol



Lee, Berkeley 39

Summary

 Cyber-physical systems create new research 
opportunities.

 The concurrency problem requires breaking 
away from threads.

 The networking problem requires timing to be 
a correctness property rather than a quality of 
service consideration.

 The PTIDES model of computation offers an 
attractive possible programming model for 
distributed cyber-physical systems.

Lee, Berkeley 40

The Ptolemy Pteam

John
Eidson

Isaac Liu

Christopher Brooks

Jia Zou

Edward 
Lee

Ben 
Lickly

Thomas
Huining
Feng

Jackie
Mankit
Leung

Jeff 
Jensen

Bert Rodiers Hiren Patel

Yasemin
Demir

Shanna-
Shaye
Forbes

Thomas 
Mandl

Elefterios
Matsikoudis

PatriciaPatricia
DerlerDerler

HugoHugo
AndradeAndrade

StefanStefan
ResmeritaResmerita

SlobodanSlobodan
MaticMatic


