Parallel, Concurrent, and
Distributed Software in
Cyber-Physical Systems

4!!‘!,h Edward A. Lee
Bt Robert S. Pepper Distinguished Professor
Ee UC Berkeley
font 14 Invited Talk
.', ; 1" Int. Workshop on User-Centric Cyber-Physical Systems and Services (UC-CPS)
i) 4
¥ e s i 4} Institute of Information Science, Academia Sinica
st b Taipei, Taiwan, December 8-9, 2009
SR E
”"! =
Hi 2(1: -]
BEEE
o Motivation

Much effort in computer science has gone into

attempting to make computers behave like
humans.

My focus is on making computers behave like
physical processes so that humans that interact
with them intuitively, in the same manner with
which they interact with their physical
environment.

Lee, Berkeley 2

(] Abstract

Parallel, concurrent, and distributed software plays a key role in
user-centric cyber-physical systems. It handles a multiplicity of
streams of sensor data, extracts and fuses models of the
physical environment, and coordinates distributed reactions.
Humans require that such software behave in ways that would
be expected of physical processes. Achieving that illusion,
however, is challenging using today's prevailing technologies for
software design. These technologies are rooted in abstractions
that have only poor analogies in the physical world. This talk will
critically examine these abstractions and suggest replacements.
The goal is software design techniques that naturally lead to
software behaviors that emulate physical processes.

Lee, Berkeley 3

Cyber-Physical Systems (CPS): S Transportation
. . = (Air traffic
Orchestrating networked computational : control at
resources with physical systems Avionics '
Building Systems —
Telecommunications

Cre

Automotive

generation and
— % distribution

Courtesy of Kuka Robotics Corp. Lee, Berkeley 4

Courtesy of
General Electric

o CPS Example — Printing Press

* High-speed, high precision
e Speed: 1inch/ms
* Precision: 0.01 inch
-> Time accuracy: 10us
| * Open standards (Ethernet)
‘ e Synchronous, Time-Triggered
e |EEE 1588 time-sync protocol

Application aspects
e local (control)
e distributed (coordination)

e global (modes)

Lee, Berkeley 5

Even without distributed computing,

® timing can get complex.
Consider an automotive engine controller.

~eriodic events

Quasi-periodic events

Embedded software using timers, interrupts, threads,
shared memory, priorities, and mutual exclusion can
realize such systems. But how hard is it to get right?
Lee, Berkeley 6

\ 4

\ 4

\ 4

Standard approaches to concurrency and
o real time rely on threads, priorities,
mutexes, etc...

Sutter and Larus observe:

‘humans are quickly overwhelmed by
concurrency and find it much more difficult to
reason about concurrent than sequential code.
Even careful people miss possible interleavings
among even simple collections of partially
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency
revolution. ACM Queue, 3(7), 2005.

Lee, Berkeley 7

Is Concurrency Hard?

It is not
concurrency that
is hard...

Lee, Berkeley 8

...Itis Threads that are Hard!

Threads are sequential processes that
share memory. From the perspective of
any thread, the entire state of the universe
can change between any two atomic
actions (itself an ill-defined concept).

Imagine if the physical world did that...

Lee, Berkeley 9

Concurrent programs using shared memory are
incomprehensible because concurrency in the
physical world does not work that way.

We have no experience!

Lee, Berkeley 10

For distributed applications, the problem gets
[harder. Networks with “quality of service” are
insufficient. Need “correctness of service.”

i Traditionally,
. “faster is better.

”

This is like saying
that for a roller
coaster,
“stronger is
better.”

We have to
change the
mindset to

“not fast enough
is an error!”

Lee, Berkeley 11

® Abstraction Layers in Networks

\% Tunction

to
A
{

Media Fﬁﬂ-&"
layers

s=is, signal and

Bit N e,

binary transmission

The point of these abstraction
layers is to isolate a system
designer from the details of
the implementation below,
and to provide an abstraction
for other system designers to
build on.

In today’s general-purpose
networks, timing is a property
that emerges from the details
of the implementation, and is
not included in the
abstractions. For time-critical
applications, the abstraction
layers fail.

Lee, Berkeley 12

For distributed cyber-physical systems,

Timing needs to be a part of the network
semantics, not a side effect of the implementation.

Technologies needed:

oTime synchronization

oBounds on latency

oTime-aware fault isolation and recovery
oTime-aware robustness

Lee, Berkeley 13

Background - Domain-Specific
Networks with Timed Semantics

WorldFIP (Factory Instrumentation Protocol)
Created in France, 1980s, used in train systems
CAN: Controller Area Network
Created by Bosch, 1980s/90s, ISO standard
Various ethernet variants
PROFInet, EtherCAT, Powerlink, ...
TTP/C: Time-Triggered Protocol
Created around 1990, Univ. of Vienna, supported by TTTech
MOST: Media Oriented Systems Transport
Created by a consortium of automotive & electronics companies
Under active development today
FlexRay: Time triggered bus for automotive applications
Created by a consortium of automotive & electronics companies
Under active development today

Lee, Berkeley 14

Services Provided by Networks with
Timed Semantics

Frequency locking

Time synchronization
Bounded latency

Fault isolation (sometimes)
Priorities (sometimes)
Admission control (sometimes)

Lee, Berkeley 15

Not so Domain-Specific

o .
Network Mechanisms

o Frequency locking Press Release
E g . Syn C h ronous eth ern et Zarlink Semiconductor Corp.
ITU—T G .8261, May 2006 REIEésE date: January EL,VZDD.r
Zarlink and Marvell® First to Demonstrate
Enables integrating circuit- Retwork Quality Performance.
switched services on packet- | e T ot il s diee ey
. Marvell Ethernet PHY technologies
SWItChed netWOI'kS OTTAWA, Jan. 31 /- Zarlink Semiconductor
. (NYSE/TSX:ZL) and Marvell® (NASDAQ:MRVL) today
Can del ver performance announced the successful demonstration of a

synchronous Ethernet solution using already available
products from both companies that will allow carriers to

Independent Of network |Oad|ng .| support real-time services over packet-based networks,

o Time synchronization
E.g., IEEE 1588 standard set in 2002.

Synchronized time-of-day across a network.
Lee, Berkeley 16

Time Synchronization on Ethernet with

[
TCP/IP: IEEE 1588 PTP
Press Release October 1, 2007
&Na;ionat Clocks on a LAN
Semiconductor agree on the current
8 Sight & Sound of Information . . .
time of day to within
8ns, far more precise
than older techniques

like NTP.

Media Contact

MNaomi Mitchell

National Semiconductor
(408) 721-2142
naomi.mitchell@nsc.com
Reader Information

Design Support Group
(800) 272-9959

A guestion we are
addressing at
Berkeley: How does

kst con R Ty this change how we
II'IdI.IStI’V'S First Ethernet 212 GPI0s for event trigger or capture, . .
Transceiver with IEEE 1588 PTP develop distributed

Hardware Support from National Semiconductor Delivers real-time software?
Outstanding Clock Accuracy

Using DP83640, Designers May Choose Any Microcontroller, FPGA or ASIC to
\Achieve 8- Nanosecond Precision with Maximum System Flexibility Lee Berkeley 17
)

A Programming Model for Distributed
Cyber-Physical Systems

The question we address:

Given a common notion of time shared to some
known precision across a network, and given
bounded network latencies, can we design better
distributed embedded software?

Our answer (today):

Use discrete-event (DE) models for specification
of systems, bind model time to real time only
exactly where this is needed.

Lee, Berkeley 18

My Agenda

| will show a particular approach to the design of
concurrent and distributed time-sensitive systems that is
an actor-oriented component technology, with a timed
concurrency model that has good physical intuition, and
that can be used to define distributed real-time systems.

The approach is called PTIDES (pronounced “tides”), for
Programming Temporally Integrated Distributed
Embedded Systems.

See: Zhao, Lee and Liu "A Programming Model for Time-
Synchronized Distributed Real-Time Systems," RTAS 2007.

Lee, Berkeley 19

Object Oriented vs. Actor Oriented
Software Component Technologies

The established: Object-oriented:

class name
q What flows through
ata A ;
an object is
r methods 1 sequential control
call return Things happen to objects

The alternative: Actor oriented:

Actors make things happen
actor name

data (state) What flows through

—) parameters - an object is

evolving data

ports

Input data Output data
Lee, Berkeley 20

Some Actor-Oriented Influences

BIP [Basu, Bozga, Sifakis 2006]

Colif [Jerraya et al. 2001]

Esterel [Berry et al. 1992]

ForSyDe [Sander, Jantsch 2004]

FunState [Thiele, Ernst, Teich, et al. 2001]

Giotto [Henzinger et al. 2001]

HetSC [Herrera, Villar 2006]

LabVIEW [Kodosky et al. 1986]

Lustre [Halbwachs, Caspi et al. 1991]

Metropolis [Goessler, Sangionvanni-Vincentelli et al. 2002]
Model Integrated Computing [Sztipanovits, Karsai, et al. 1997]
Ptolemy Classic [Buck, Ha, Messerschmitt, Lee et al. 1994]
Ptolemy Il [Eker, Janneck, Lee, et al. 2003]

RTComposer [Alur, Weiss 2008]

SCADE [Berry et al. 2003]

SDL [Various, 1990s]

Signal [Benveniste, Le Guernic 1990]

Simulink [Ciolfi et al., 1990s]

Statecharts [Harel 1987] Lee, Berkeley 21

O O 0O OO OOOOOOO OO OO O 0O o

Our Approach is based on
Discrete Events (DE)

o Concurrent actors
o Exchange time-stamped messages (“events”)

A correct execution is one where every actor
reacts to input events in time-stamp order.

Time stamps are in “model time,” which typically
bears no relationship to “real time” (wall-clock time).
We use superdense time for the time stamps.

Lee, Berkeley 22

Fle View Edt Graph Debug Help

HocaRaAZ>PNG

DE Director specifies that
this will be a DE model

Example DE Model (in Ptolemy II)

) Utiities

| Directors

== SDF Director

== DDF Director

== HDF Director

== pn Director

Ll DF Director

== 5p Director

== pendezvous Director
== FSM Director

== CT Director

== CTEmbedded Director
== pirector

{2) ExperimentalDiractors
| Actors

| DEDirector %

DE Director

|

Lee, Berkeley 23

Example DE Model

Fle View Edt Graph Debug Help

HoaaRasDpne=»)

Model of regularly spaced
events (e.g., a clock signal).

S e

|) Utiikies

) Directors

) Actors

(=) Sources

(|3 GenericSources
(=) TimedSaurces

o

£3 CurrentTime
PaissonClack
TimedSinewave
A TriggeredClock
[SequenceSources
{5 Sinks

i) Array

i) Conversions

“!| DEDirector

=
DE Director

Clock

|[C——

Lee, Berkeley 24

Example DE Model

Fle View Edt Graph Debug Help

Model of irregularly spaced
events (e.g., a failure event).

HoeaRaAZPHO=») /e

| Utiities s DE Director
|) Directors

=) Actors

=423 Sources

(| GenericSources
(=) TimedSources

- Clack
- CurrentTime Clock

[Timedsinewave
-[A TriggeredClack
() SequenceSources

i) Array
i) Conversions 2
L BlowCanteal]

ElE=,
SE Dscr

Ciock
FaissanCiock

{) Sinks PoissonClock

|

Lee, Berkeley 25

Example DE Model

¥4 file:/C:/eal/talks/08/models/DEexample.xml

File View Edt Graph Debug Help

Model of a subsystem that
changes modes at random
(event-triggered) times

Hoaa®asZ>Ne

»R e

|7 Utilities DE Director
|) Directors
|) Actors
|) MoreLibraries
|) UserLibrary
guard: clock _isPresent && lerror_isPresent
output: satus = 1 guard: clack _isPresent
Clock oulput: gatus= 0
L alModel .
- (normal) (eror y
PoissanClock guard: emor_isPresent
= output: satus = 0
L L
OF Girasior
Clock
st
- -

[—

Lee, Berkeley 26

Example DE Model

Model of an observer

3 file:/C:/eal/talks/08/models/DEexample.xml subsystem
File View Edit Grsph Debug Help

HoQaRaA DD @ = \

|5 Actors ~
= G = DE Director
=153 Sinks
) GenericSinks
(=123 TimedsSinks
|
BN Timedscape

I SequenceSinks
{0 Array
{5 Conversions

i) FlowContral W
{) HigherOrderActars

© PoissonClock
{2 Logic T

Lo

i) Math a
. TimedPlotter

100

TimedPlotter
o

=] =]

e

k| frovren et 0B 1
e A | _
& 4l
0.2[
oo an 8 = 8 |

execution finished,] 2 4 B & m 12 14 16 18 20

Lee, Berkeley 27

Example DE Model

Events on the two input
¥4 file:/C:/eal/talks/08/models/DEexample.xml streams must be seen in
File View Edit Graph Debug Help time stamp order
HoaaRa sk

) Actors ~
£ Sourees - DE Director
2+ Sinks
I3 GenericSinks
(=) TimedSinks

|
imedScope
1) SequenceSinks
{3) Array
{C3) Conversions
{3) FlowControl
1) HigherOrderActors
Q0
{3) Lagic
Qv v Note that DE MoCs have

. considerable subtleties when

. it comes to simultaneous

£ al events and events that

P prevent time from progressing
(Zeno conditions).

TimedPlotter

Lee and Zheng (2007). Leveraging Synchronous Language Principles for I
Heterogeneous Modeling and Design of Embedded Systems. EMSOFT.

Lee, Berkeley 28

Aside:
[Superdense Time Enables Better Conjunction
of Computation and Physical Processes

(Y Index
s :
)
: [} v } 4
! ' L s L
’ ! | O 4
1 | ! L :/ | v
I e o -aiale el e L L b
. | I ECE T
oo S Y N S VA
Values V ALY T T T 7y
! i : |// }//
| v o_ v v
| o 11 [
I
)

o

=

o

o

N
N

|
3
@

Initial segment I C R, x N:Nhere the signal is defined

Absent: s(7) = ¢ for almost all 7 €].

Lee, Berkeley 29

) This is a Component Technology

Model of a subsystem given
¥4 file:/C:/eal/talks/08/models/DEexample.xml as an imperative program.
File View Edt Graph Debug Help

HoeaRaAD>N@=») Jde

) Actors A
£ Sourees = DE Director
2+ Sinks

I3 GenericSinks

(=) TimedSinks Fle Hep

=
B TimedScope
1) SequenceSinks
{3) Array
{C3) Conversions
{3) FlowControl W
1) HigherOrderActors

ienExceprion If chers is mo dirsctor.

1} - eENade L Tame ()

EIO_ 've reached the nexe svent.
{3) Lagic
{32 Math 2

g sureencOuTpue Index:

s pue Tndes) |

ed a boundary to &l

execution finished., _boundarycrossed = true:

This is a Component Technology

¥ file:/C:/eal/talks/08/models/DEexample. xml

Model of a subsystem given
as a state machine.

File View Edt Graph Debug Help

Ho@@Ha AP 0= s

e

A~

55 Actors

{C) Sources

=153 Sinks

[GenericSinks

=) TimedSinks

|
B Timedscops

) SequenceSinks

0 Array

{2 Conversions

1) FlowControl

\) HigherOrderictors

= p)

i) Ledic

i) Math

DE Director

e

output: fatus= 1

guard: clock_isPrasant && lerror_isPrasent

gquard: clock isPrasant
output: satus = 0

guard: eror_isPresent
output: status = 0

execution Finished,

)

Lee, Berkeley 31

This is a Component Technology

¥4 file:/C:/eal/talks/08/models/DEexample.xml

File View Edt Graph Debug Help

Model of a subsystem given
as a modal model.

HoaaRaADpNo»m

[FLEE

e

"~

) Actors
1) Sources
2+ Sinks
I3 GenericSinks
(=) TimedSinks

|
imedScope
1) SequenceSinks
{3) Array
{C3) Conversions
{3) FlowControl
1) HigherOrderActors
=10
{3) Lagic
125 Math

DE Director

More types of components:/
Modal models

guard: clock_isP

resent && lerror_isPresent
guard: clock_isPresent

output: status = 0

guard: ertpr_isPresent
output: stagws = 0

-
7

m ctor

Expression
in+ 0.1 * random()

clock

status

e Functional expressions.

e Submodels in DE
e Submodels in other MoCs ===

arror

L)
ee, Berkeley 32

Time Systems

o DE is usually a simulation technology.

o Distributing DE is done for acceleration.

Using DE Semantics in Distributed Real-

o Hardware design languages (e.g. VHDL) use DE where
time stamps are literally interpreted as real time, or
abstractly as ticks of a physical clock.

We are using DE for distributed real-time software,

binding time stamps to real time only where necessary.

Distributed Embedded Systems

PTIDES: Programming Temporally Integrated

Lee, Berkeley 33

PTIDES: Programming Temporally

Integrated Distributed Embedded Systems

Distributed execution under discrete-event semantics, with
“model time” and “real time” bound at sensors and actuators.

Output time stamps

Plarform 1

are < real time

Input time stamps are

Input time stamps are

> real time

C tionl
,m__l omputation ﬂ——l_

Platform 3

Computation3

|
— |
ptatform 2 |

Ilnadrl limrl

“[delayds ¥

Local
Event
Source

model time
delay d1
model time
delay d2

Merg)

Output time stamps
are < real .time

T

Computationd

= real time

Actuatorl

=
physical
interface
—_—

Lee, Berkeley 34

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems

PTIDES uses static causality analysis to determine when
events can be safely processed (preserving DE semantics).

Assume bounded

sensor delay s m 1

-

Assume bounded
network delay d

| Computation

model time
delay d1

model timg
lay d2

_— ! /
Se) ﬂ Platform 3
(

lmﬂtl time I

Toelayds ¥

physica
interfac

Assume bounded
clock error e

Local
Event
Source

Computationd

An earliest event with
time stamp t here with
time stamp t can be
safely merged when
real time exceeds
t+s+d+e—-d2

Actuatorl

hysical
interface
—_—

, Berkeley 35

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems

Schedulability analysis incorporates computation times to
determine whether we can guarantee that deadlines are met.

Deadline for delivery of

-

event with time stamp t

here ist—c3—-d2

Computati
| | |knsnr% | Platform 3

Assume bounded

model time
delay d1

model time
delay d2

Computation3

computation time c1

Assume bounded
computation time c2

T

Deadline for delivery
here is t

Actuatorl

physical
interface
—_—

Assume bounded

computation time c3

, Berkeley 36

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems

... and being explicit about time delays means that we can
analyze control system dynamics...

time protocol

1
Actuator may process
Flatiorm 1 the event at the time
!—A—I-Im')_ e receiyed or wait until
Sensorl —l_ Platform 3 delay d1 real-time matches the
'l.’ —Imm,,m,mg udel time time stamp. The latter
| " " yields determinate
Platform 2 | latencies.
b t P—
Sensqr2 W} Come s — w
[ostayds | Actuatorl
- b4
hysical Local
Sarrs] Sam E,‘,‘:'Z:.
Computationd
| Feedback through the physical world
Lee, Berkeley 37
: Analysis Schedulability |
Experimental | T anayss | |
S et u p | Causality N Program
| Analysis | Analysis J
Plides Mode/ |.....,{ Code
Generator
4
-) PtidyOS
Ptolemy Il Ptides domain Softw
c orware HW Platform
omponent -
- Library T '
| e | s
Simulator Plant Model Simulator
Ptolemy Il Discrete-event,
Continuous, and Network Model | =200
Wireless domains _
— |EEE 1588 Network

Lee, Berkeley 38

[) Summary

o Cyber-physical systems create new research
opportunities.

o The concurrency problem requires breaking
away from threads.

o The networking problem requires timing to be
a correctness property rather than a quality of
service consideration.

o The PTIDES model of computation offers an

attractive possible programming model for
distributed cyber-physical systems.

Lee, Berkeley 39

® The Ptolemy Pteam

Jackie Elefterios
Manklt Matsikoudis

j Thomas
Isaac Liu "' y Huining

Feng

|

\ Christopher Brooks

% 4

