
Architectures with Repeatable Timing

for Cyber-Physical Systems

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley

and

• Stephen A. Edwards (Columbia University)

• Sungjun Kim (Columbia University)

• Isaac Liu (UC Berkeley)

• Hiren D. Patel (Waterloo)

• Martin Schoeberl (Vienna University of Technology)

Invited Keynote Talk

Workshop on Cyber-Physical Systems (part of ES Week)

Grenoble, France, October 16, 2009

With thanks to NSF for sponsorship of this work.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 2 Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS):
Orchestrating networked computational

resources with physical systems

Power

generation and

distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation

(Air traffic

control at
SFO)

Avionics

Telecommunications

Factory automation

Instrumentation

(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

Lee et al., Berkeley, Columbia, Waterloo, Vienna 3

Where CPS Differs from

the traditional embedded systems problem:

The traditional embedded systems problem:

 Embedded software is software on small computers. The

technical problem is one of optimization (coping with

limited resources).

The CPS problem:

 Computation and networking integrated with physical

processes. The technical problem is managing dynamics,

time, and concurrency in networked computational +

physical systems.

This is not about small systems!

Lee et al., Berkeley, Columbia, Waterloo, Vienna 4

A Key Challenge on the Cyber Side:

Real-Time Software

Correct execution of a program in C, C#, Java,

Haskell, etc. has nothing to do with how long it

takes to do anything. All our computation and

networking abstractions are built on this premise.

Timing of programs is not repeatable,

except at very coarse granularity.

Programmers have to step outside the

programming abstractions to specify

timing behavior.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 5

Techniques Exploiting

the Fact that

Time is Irrelevant

Programming languages

Virtual memory

Caches

Dynamic dispatch

Speculative execution

Power management (voltage scaling)

Memory management (garbage collection)

Just-in-time (JIT) compilation

Multitasking (threads and processes)

Component technologies (OO design)

Networking (TCP)

…

Lee et al., Berkeley, Columbia, Waterloo, Vienna 6

A Story

A “fly by wire” aircraft, expected to be made for

50 years, requires a 50-year stockpile of the

hardware components that execute the software.

All must be made from the same mask set on the

same production line. Even a slight change or

“improvement” might affect timing and require the

software to be re-certified.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 7

Abstraction Layers

 The purpose for an

abstraction is to

hide details of the

implementation

below and provide a

platform for design

from above.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 8

Abstraction Layers

 Every abstraction

layer has failed for

time-sensitive

applications.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 9

Is the problem intrinsic

in the technology?

 Electronics technology

delivers highly repeatable and

precise timing…

… and the overlaying software

abstractions discard it.

20.000 MHz (± 100 ppm)

Lee et al., Berkeley, Columbia, Waterloo, Vienna 10

Case in point: What is an ISA?

A collection of instructions.

Each one changes the state of the processor in a well-defined way.

The ISA strong guarantee:

Given a known initial state.

Execute a sequence of instructions.

Next execute an instruction that observes the processor state.

The observed state is equivalent to one produced by a

sequential execution of exactly every instruction that preceded

it in the sequence.

Architects are very clever at preserving this guarantee without

precisely doing sequential execution.

And the guarantee says nothing about timing.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 11

Definitions

Correct execution: preserves semantics (strong guarantee).

Repeatable property of a program: every correct execution

has the property, given the same inputs (this requires a

model of "inputs").

Conventional Turing-Church (CTC) computation:

inputs included in the initial state of the processor

sequence of instructions

outputs are included in the final state

Outputs of a CTC computation are repeatable in today's

processors

Note that before the IBM 360, even many CTC programs ran

correctly on only one computer.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 12

How Many Apps are Conventional

Turing-Church (CTC) Computations?

No multithreading.

No I/O during execution.

How many applications?

... not many ...

Yet that's what we've designed computers to do!

Lee et al., Berkeley, Columbia, Waterloo, Vienna 13

Our stab at a solution:

Precision-Time (PRET) Machines

Make temporal behavior as important as logical function.

Timing precision with performance: Challenges:

ISAs with timing (repeatable instr. timing? deadline instructions?)

Deep pipelines (interleaving?)

Memory hierarchy (scratchpads? DRAM banks?)

Predictable memory management (Metronome?)

Languages with timing (discrete events? Giotto?)

Predictable concurrency (synchronous languages?)

Composable timed components (actor-oriented?)

Precision networks (TTA? Time synchronization?)

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 14

Timing in the ISA

Add to the strong guarantee:

Repeatable timing of each instruction.

This need not be fixed across
realizations of the ISA, but it must be
specified for each realization, so that
tools can analyze timing.

Add timing instructions:

Force a block to take a minimum
amount of time.

Branch and/or exception on
exceeding this minimum.

Block 1

Block 2

Lee et al., Berkeley, Columbia, Waterloo, Vienna 15

Our stab at a solution:

Precision-Time (PRET) Machines

Make temporal behavior as important as logical function.

Timing precision with performance: Challenges:

ISAs with timing (repeatable instr. timing? deadline instructions?)

Deep pipelines (interleaving?)

Memory hierarchy (scratchpads? DRAM banks?)

Predictable memory management (Metronome?)

Languages with timing (discrete events? Giotto?)

Predictable concurrency (synchronous languages?)

Composable timed components (actor-oriented?)

Precision networks (TTA? Time synchronization?)

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 16

Pipelining

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 17

Pipeline Hazards

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 18

Forwarding reduces stalls, but complicates

hardware, and makes timing non-repeatable

and hard to analyze.

Example execution time analysis of:

• Motorola ColdFire

• Two coupled pipelines (7-stage)

• Shared instruction & data cache
• Artificial example from Airbus

• Twelve independent tasks

• Simple control structures

• Cache/Pipeline interaction

leads to large integer linear
programming problem

And the result is valid only for that exact

Hardware and software!

Fundamentally, the ISA of the processor
has failed to provide an adequate abstraction.

C. Ferdinand et al., “Reliable and
precise WCET determination for a
real-life processor.” EMSOFT 2001.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 19

An Alternative: Pipeline Interleaving

Stall pipeline Dependencies result in complex

timing behaviors

Repeatable

timing
behavior of

instructions

Thread-interleaved pipeline:

Traditional pipeline:

Lee et al., Berkeley, Columbia, Waterloo, Vienna 20

Pipeline Interleaving

An old idea:

1960s:

CDC 6600

Denelcore HEP

...

2000s

Sandbridge Sandblaster

(John Glossner, et al.)

XMOS

(David May, et al.)

There are various detractors. See Ungerer, T., B. Robic and J. Silc (2003). "A survey of

processors with explicit multithreading." Computing Surveys 35(1): 29-63.

Lee and Messerschmitt, Pipeline

Interleaved Programmable DSPs,

ASSP-35(9), 1987.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 21

Our stab at a solution:

Precision-Time (PRET) Machines

Make temporal behavior as important as logical function.

Timing precision with performance: Challenges:

ISAs with timing (repeatable instr. timing? deadline instructions?)

Deep pipelines (interleaving?)

Memory hierarchy (scratchpads? DRAM banks?)

Predictable memory management (Metronome?)

Languages with timing (discrete events? Giotto?)

Predictable concurrency (synchronous languages?)

Composable timed components (actor-oriented?)

Precision networks (TTA? Time synchronization?)

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 22

Forget the datapath…

“It’s the Memory, Stupid!”

 R. Sites. Microprocessor Report, Aug. 1996.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 23

Memory Hierarchy

Register file is a temporary memory under program control.

Why is it so small?

Cache is a temporary memory under hardware control.

Why is replacement strategy is application independent?

PRET principle: any temporary memory is under program control.

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Instruction word size.

Separation of concerns.

Lee et al., Berkeley, Columbia, Waterloo, Vienna 24

Hardware

thread Hardware

thread Hardware

thread

One Possible PRET Architecture

Hardware

thread

registers

scratch

pad
memory I/O devices

Interleaved

pipeline with one

set of registers

per thread

SRAM

scratchpad

shared among

threads

DRAM main

memory

Lee et al., Berkeley, Columbia, Waterloo, Vienna 25

What about Main Memory?

Modern DRAMs:

Micron corp.

DDR2: Four pipelined banks

DDR3: Eight pipelined banks

DDRn: 2n pipelined banks?

Lee et al., Berkeley, Columbia, Waterloo, Vienna 26

Hardware

thread Hardware

thread Hardware

thread

One Possible PRET Architecture

Hardware

thread

registers

scratch

pad

memory

I/O devices

Interleaved

pipeline with one

set of registers

per thread

SRAM

scratchpad

shared among

threads

DRAM main

memory,

separate banks

per thread

memory
memory

memory

Note inverted memory

compared to multicore!

Fast, close memory is

shared, slow remote

memory is private!

Lee et al., Berkeley, Columbia, Waterloo, Vienna 27

A Few of the (Many) Remaining

Challenges and Opportunities

DRAM designs today foil timing repeatability even

with private banks (e.g. write-after-read latencies)

Interleaved pipelines may not be the best choice

for power optimization

How to expose timing properties in programming

models (completely absent in today’s languages)

Need I/O mechanisms that do not disrupt

repeatable timing

Multicore networks-on-chip may benefit

dramatically from repeatable timing

…

Lee et al., Berkeley, Columbia, Waterloo, Vienna 28

Conclusion

Repeatable timing could be very useful

Requires timed semantics in the ISA, and a

different approach to:

pipelining,

memory hierarchy,

multicore

I/O

networking

programming models

Full employment for computer architects!

See http://chess.eecs.berkeley.edu/pret

