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Cyber-Physical Systems (CPS): 
Orchestrating networked computational  

resources with physical systems 

Power 

generation and 

distribution 

Courtesy of  
General Electric 

Military systems: 

E-Corner, Siemens 

Transportation 

(Air traffic 

control at 
SFO) 

Avionics 

Telecommunications 

Factory automation 

Instrumentation 

(Soleil Synchrotron) 

Daimler-Chrysler 

Automotive 

Building Systems 
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Where CPS Differs from 

the traditional embedded systems problem: 

The traditional embedded systems problem: 

 Embedded software is software on small computers. The 

technical problem is one of optimization (coping with 

limited resources). 

The CPS problem: 

 Computation and networking integrated with physical 

processes. The technical problem is managing dynamics, 

time, and concurrency in networked computational + 

physical systems. 

This is not about small systems! 
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A Key Challenge on the Cyber Side: 

Real-Time Software 

Correct execution of a program in C, C#, Java, 

Haskell, etc. has nothing to do with how long it 

takes to do anything. All our computation and 

networking abstractions are built on this premise. 

Timing of programs is not repeatable, 

except at very coarse granularity.  

Programmers have to step outside the 

programming abstractions to specify 

timing behavior. 
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Techniques Exploiting 

the Fact that  

Time is Irrelevant 

Programming languages 

Virtual memory 

Caches 

Dynamic dispatch 

Speculative execution 

Power management (voltage scaling) 

Memory management (garbage collection) 

Just-in-time (JIT) compilation 

Multitasking (threads and processes) 

Component technologies (OO design) 

Networking (TCP) 

… 
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A Story 

A “fly by wire” aircraft, expected to be made for 

50 years, requires a 50-year stockpile of the 

hardware components that execute the software. 

All must be made from the same mask set on the 

same production line. Even a slight change or 

“improvement” might affect timing and require the 

software to be re-certified. 
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Abstraction Layers 

 The purpose for an 

abstraction is to 

hide details of the 

implementation 

below and provide a 

platform for design 

from above. 
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Abstraction Layers 

 Every abstraction 

layer has failed for 

time-sensitive 

applications. 
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Is the problem intrinsic 

in the technology? 

 Electronics technology 

delivers highly repeatable and 

precise timing… 

… and the overlaying software 

abstractions discard it. 

20.000 MHz (± 100 ppm) 
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Case in point: What is an ISA? 

A collection of instructions. 

Each one changes the state of the processor in a well-defined way. 

The ISA strong guarantee: 

Given a known initial state. 

Execute a sequence of instructions. 

Next execute an instruction that observes the processor state. 

The observed state is equivalent to one produced by a 

sequential execution of exactly every instruction that preceded 

it in the sequence. 

Architects are very clever at preserving this guarantee without 

precisely doing sequential execution. 

And the guarantee says nothing about timing. 
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Definitions 

Correct execution: preserves semantics (strong guarantee). 

Repeatable property of a program: every correct execution 

has the property, given the same inputs (this requires a 

model of "inputs"). 

Conventional Turing-Church (CTC) computation: 

inputs included in the initial state of the processor 

sequence of instructions 

outputs are included in the final state 

Outputs of a CTC computation are repeatable in today's 

processors 

Note that before the IBM 360, even many CTC programs ran 

correctly on only one computer. 
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How Many Apps are Conventional 

Turing-Church (CTC) Computations? 

No multithreading. 

No I/O during execution. 

How many applications? 

... not many ... 

Yet that's what we've designed computers to do! 
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Our stab at a solution: 

Precision-Time (PRET) Machines 

Make temporal behavior as important as logical function.  

Timing precision with performance: Challenges: 

ISAs with timing (repeatable instr. timing? deadline instructions?) 

Deep pipelines (interleaving?) 

Memory hierarchy (scratchpads? DRAM banks?) 

Predictable memory management (Metronome?) 

Languages with timing (discrete events? Giotto?) 

Predictable concurrency (synchronous languages?) 

Composable timed components (actor-oriented?) 

Precision networks (TTA? Time synchronization?) 

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”  

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007. 
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Timing in the ISA 

Add to the strong guarantee: 

Repeatable timing of each instruction.  

This need not be fixed across 
realizations of the ISA, but it must be 
specified for each realization, so that 
tools can analyze timing. 

Add timing instructions: 

Force a block to take a minimum 
amount of time. 

Branch and/or exception on  
exceeding this minimum. 

Block 1 

Block 2 
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Our stab at a solution: 

Precision-Time (PRET) Machines 

Make temporal behavior as important as logical function.  

Timing precision with performance: Challenges: 

ISAs with timing (repeatable instr. timing? deadline instructions?) 

Deep pipelines (interleaving?) 

Memory hierarchy (scratchpads? DRAM banks?) 

Predictable memory management (Metronome?) 

Languages with timing (discrete events? Giotto?) 

Predictable concurrency (synchronous languages?) 

Composable timed components (actor-oriented?) 

Precision networks (TTA? Time synchronization?) 

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”  

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007. 
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Pipelining 

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007. 
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Pipeline Hazards 

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007. 
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Forwarding reduces stalls, but complicates 

hardware, and makes timing non-repeatable 

and hard to analyze. 

Example execution time analysis of: 

• Motorola ColdFire 

• Two coupled pipelines (7-stage) 

• Shared instruction & data cache 
• Artificial example from Airbus 

• Twelve independent tasks 

• Simple control structures 

• Cache/Pipeline interaction 

leads to large integer linear  
programming problem 

And the result is valid only for that exact 

Hardware and software! 

Fundamentally, the ISA of the processor  
has failed to provide an adequate abstraction. 

C. Ferdinand et al., “Reliable and 
precise WCET determination for a 
real-life processor.” EMSOFT 2001. 
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An Alternative: Pipeline Interleaving 

Stall pipeline Dependencies result in complex 

timing behaviors 

Repeatable 

timing 
behavior of 

instructions 

Thread-interleaved pipeline: 

Traditional pipeline: 



Lee et al., Berkeley, Columbia, Waterloo, Vienna 20 

Pipeline Interleaving 

An old idea: 

1960s: 

CDC 6600 

Denelcore HEP 

... 

2000s 

Sandbridge Sandblaster 

(John Glossner, et al.) 

XMOS 

(David May, et al.) 

There are various detractors. See Ungerer, T., B. Robic and J. Silc (2003). "A survey of 

processors with explicit multithreading." Computing Surveys 35(1): 29-63. 

Lee and Messerschmitt, Pipeline 

Interleaved Programmable DSPs, 

ASSP-35(9), 1987. 



Lee et al., Berkeley, Columbia, Waterloo, Vienna 21 

Our stab at a solution: 

Precision-Time (PRET) Machines 

Make temporal behavior as important as logical function.  

Timing precision with performance: Challenges: 

ISAs with timing (repeatable instr. timing? deadline instructions?) 

Deep pipelines (interleaving?) 

Memory hierarchy (scratchpads? DRAM banks?) 

Predictable memory management (Metronome?) 

Languages with timing (discrete events? Giotto?) 

Predictable concurrency (synchronous languages?) 

Composable timed components (actor-oriented?) 

Precision networks (TTA? Time synchronization?) 

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”  

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007. 
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Forget the datapath… 

“It’s the Memory, Stupid!” 

   R. Sites. Microprocessor Report, Aug. 1996. 



Lee et al., Berkeley, Columbia, Waterloo, Vienna 23 

Memory Hierarchy 

Register file is a temporary memory under program control. 

Why is it so small? 

Cache is a temporary memory under hardware control. 

Why is replacement strategy is application independent? 

PRET principle: any temporary memory is under program control. 

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007. 

Instruction word size. 

Separation of concerns. 



Lee et al., Berkeley, Columbia, Waterloo, Vienna 24 

Hardware 

thread Hardware 

thread Hardware 

thread 

One Possible PRET Architecture 

Hardware 

thread 

registers 

scratch 

pad 
memory I/O devices 

Interleaved 

pipeline with one 

set of registers 

per thread 

SRAM 

scratchpad 

shared among 

threads 

DRAM main 

memory 
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What about Main Memory? 

Modern DRAMs: 

Micron corp. 

DDR2: Four pipelined banks 

DDR3: Eight pipelined banks 

DDRn: 2n pipelined banks? 
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Hardware 

thread Hardware 

thread Hardware 

thread 

One Possible PRET Architecture 

Hardware 

thread 

registers 

scratch 

pad 

memory 

I/O devices 

Interleaved 

pipeline with one 

set of registers 

per thread 

SRAM 

scratchpad 

shared among 

threads 

DRAM main 

memory, 

separate banks 

per thread 

memory 
memory 

memory 

Note inverted memory 

compared to multicore!  

Fast, close memory is 

shared, slow remote 

memory is private! 
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A Few of the (Many) Remaining 

Challenges and Opportunities 

DRAM designs today foil timing repeatability even 

with private banks (e.g. write-after-read latencies) 

Interleaved pipelines may not be the best choice 

for power optimization 

How to expose timing properties in programming 

models (completely absent in today’s languages) 

Need I/O mechanisms that do not disrupt 

repeatable timing 

Multicore networks-on-chip may benefit 

dramatically from repeatable timing 

… 
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Conclusion 

Repeatable timing could be very useful 

Requires timed semantics in the ISA, and a 

different approach to: 

pipelining, 

memory hierarchy, 

multicore 

I/O 

networking 

programming models 

Full employment for computer architects! 

See http://chess.eecs.berkeley.edu/pret   


