

1. Context

Stream processing applications

- Multi-processor system
- End-to-end performance requirements

Multiple streams processed concurrently

- User starts and stops streams
- Not all streams completely characterised

2. Problem

Task graphs

- Can be cyclic
- Use blocking writes (wait on sufficient space) Dataflow is natural model
 - Suff. conditions for functional determinism
 - Known how to model static-order schedules
 - *Unknown* how to model run-time scheduling

4. Approach

Task graph

• One-to-one relation with functionally deterministic dataflow graph

Functionally deterministic dataflow

• Temporally monotonic, smaller firing duration cannot lead to later token arrivals

7. Conclusion

Accurate conservative dataflow model is proposed

- Includes effects of run-time scheduling
- Has monotonic temporal behavior
- No scheduling anomalies in *model*

Monotonicity and Run-Time Scheduling Maarten Wiggers (post-doc in collaboration with University of Twente, The Netherlands)

3. Contribution

Dataflow model of an individual application scheduled by run-time schedulers

- Functionally deterministic task graph
- Budget schedulers

Conservative simulation of individual application

• Prerequisite for conservative analysis and synthesis

6. Accuracy and expressivity

Comparing cycle-true and timed dataflow simulation

