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Programming Technology 

  Platform 

Compiler 

Program Libraries 

Executable 

High-level programming abstractions 

(object-oriented, synchronous, domain-specific..) 

Semantics-preserving transformations 

(low-level optimizations, type inference ..) 

Verification Technology 

  Platform 

Specifications 

Executable 

Analysis Tool 

Tests Program 

Automated verification 

(model checking, static analysis,  
specification-based testing ..) 
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Challenges 

Today’s software is commonly buggy, fragile, untrustworthy… 

Verification/testing done after design  

Costly system design cycle 
Many reported bugs not fixed 

Computing power is transforming many engineering disciplines with the 
notable exception of programming itself 

Opportunities 

Enormous computing power available on desktops of today’s 
programmers 

Impressive strides in formal verification technology  

Highly optimized SAT solvers that can solve real-world problems 
Off-the-shelf tools for static analysis, machine learning… 

Research driven by external demand 

Receptive industry 

Shifting goal of system design from performance to predictability 
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Algorithmic Synthesis 

Mapping “what” to “how” 

Derive an executable implementation from a high-level specification 

Correct-by-construction design 

Church (1963): how to synthesize sequential circuits from temporal-
logic specifications  

Harel (2008): Can programming be liberated? 

Computational problem: Find values for controlled decisions so that for 
all choices of uncontrolled decisions (e.g. inputs), spec is satisfied  

Quantifier alternation, Games, finding winning strategies 

Note: No solution may exist to such a synthesis question 

How computers can help programmers? 

Program Sketching 

  Given a program with holes and assertions, tool fills in the holes 

Concurrency Synchronization 
  In sequential code for data structures, tool inserts minimal 

 synchronization to design linearizable concurrent data structure 

Specification Mining 

  From library code, tool discovers behavioral specs 

Learning by Examples 

  From positive and negative examples of scenarios, tool infers the 
 necessary program logic 
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How computers can help programmers? 

Program repair 

  Verification tool not only finds a counter-example, but 
 recommends a fix by analyzing source of bug 

Controller Synthesis 
  From temporal logic specifications, low-level control laws are 

 generated for reactive planning for robot motion 

Component Composition 

  From component interfaces, add glue logic for interaction 

Synthesis in idealized form is arguably unrealistic, but plausible in these 
limited forms, allowing more “active” role for computer in programming 

User Guided Synthesis 

  Platform 

Partial 
Programs 

Libraries Specifications 

Executable 

Scenarios 

1. Computer and programmer collaborate 
2. Synthesizer discovers new artifacts 
3. Computational tasks may be heavy-duty 
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Talk Outline  

 Motivation 

 Representation dependence testing via program inversion 

Joint  with A. Kanade, S. Rajamani, G. Ramalingam (FSE’10) 

 Synthesis of behavioral interfaces for Java classes 

  Joint with P. Cerny, P. Madhusudan, W. Nam (POPL’05) 

 Conclusions 

Representation Dependence 

TIFF Image Library 

Picasa Open Office FastStone 

Client program P using a data structure  has 
representation dependence if P behaves differently 
on two distinct, but logically equivalent, values  

GIMP 
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Example from Windows DirectDraw API 

typedef struct _ddsurfacedesc{ 
 dword height, width, pitch; 
 lpvoid surface; 

} 

pitch 

width slack 

Client computes  (i,j)-th entry to be d.surface[i*width+j] 

Spec allows pitch >= width 
Documented in text 

Implicitly assumes pitch=width 
Bug undetected over multiple releases 

width slack 

Testing for Representation Dependence 

Specification: Equivalence relation over a data type T  

 Equivalent values represent same logical content 

Goal: Given client C and test input d, generate multiple 
inputs d’ equivalent to d, and check if C(d) equals C(d’)  

Motivation: Detect bugs that may show up only later during 
version upgrades 

Challenges 
How to specify equivalence ? 

How to automate generation of equivalent test inputs? 
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Normalization Routines 

User specifies equivalence by writing a function f that 
maps data values of type T to canonical values of type T’: 

 d and d’ are equivalent iff f(d) = f(d’) 

For ddsurfacedesc, the normal form is two-dimensional 
array without slack bytes (fields: height, width, data) 

Normalization Function 

width 

height 

pitch 

width slack width slack 
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Normalization Routine 

Normalization function f:  
 input d, output n 

 n.height = d.height; 
 n.width = d.width; 
 for (i = 0; i++; i < n.height) { 
     for (j = 0; j++; j < n.width) { 
   n.data[i][j] = d.surface[d.pitch*i +j] 
   } 
  } 

Hypothesis: Writing C code for normalization is easier 
 than giving a correct, precise logical spec 

Program Inversion 

width 

height 

pitch 

width slack width slack 

To generate equivalent test inputs, 
we need inverse g of normalization  
routine f: given d, compute g(f(d)) 

g is nondeterministic  
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Inverse Function 

Inverse function g: input n, output d 

 ensure(d.pitch : d.pitch >= n.width); 
 d.height = n.height; 
 d.width = n.width; 
 for (i =0; i++; i < d.height) { 
     for (j =0; j++; j < d.width) { 
   d.surface[d.pitch*i+j] = n.data[i][j] 
   } 
  } 

Automated Program Inversion 

Key insight: “Sketch” of inverted program is same as 
normalization routine (same loop structure)  

Inversion done statement by statement (locally)  

Need  forward static analysis to compute which input vars 
are determined by output vars at each program point 
 “Free” vars replaced by calls to “ensure” with constraints 

Current focus: programs with iterators over arrays 

Challenges 
Constraint propagation over straight-line blocks of code 
Indirection in array indexing (e.g. x[y[i]]) 
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TIFF Case Study 

Multiple representations of same matrix of pixels possible 
Image may be stored left-to-right / right-to-left 
Image may be stored top-to-bottom / bottom-to-top 
Slack bytes possible 

1. Wrote normalization routine 

2. Automatic program inversion 
3. Generated multiple equivalent variants of a TIFF file 
4. Tested following open source software 

  Picasa 3.6 
  Open Office 2.0.4 
  GIMP 2.2.13 
  KView 3.5.4 
  FastStone 3.6 

Summary of Results of Testing 

Effect of varying the number of rows per strip: 
  All clients process image correctly 

Effect of varying the orientation 
  Open Office and GIMP display image incorrectly 

Effect of physically reordering logically adjacent strips, in 
conjunction with change in orientation: 
  Picasa displays image incorrectly 

Caveat: Bugs detected by human observer of images 
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Talk Outline  

 Motivation 

Representation dependence testing via program inversion 

 Synthesis of behavioral interfaces for Java classes 

Conclusions 

package java.security; 

  … 

 public abstract class Signature extends java.security.SignatureSpi { 

<<variable declarations>> 

protected int state = UNINITIALIZED; 

public final void initVerify (PublicKey publicKey) {…} 

public final byte[] sign () throws SignatureException { ….} 

public final boolean verify (byte[] signature) throws SignatureException { ….} 

public final void update (byte b) throws SignatureException {…} 

.. 

} 

Static Interfaces for Java Classes 
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Behavioral Interface 

 Methods: initVerify (IV), verify (V), initSign (IS), sign(S), update (U) 

 Constraints on invocation of methods so that the exception 
signatureException is not thrown 

initVerify (initSign) must be called just before verify (sign), but 
update can be called in between 
update cannot be called at the beginning 

S, U, IS 

V, U, IV 

IS IV 

IV 

IS 

Behavioral Interface 

public Object next() { 
  … 
 lastRet = cursor++; 
  …} 
public Object prev() { 
  … 
  lastRet = cursor; 
  …} 
public void remove() { 
  if (lastRet==-1) 
       throw new IllegalExc(); 
  … 
  lastRet = -1; 
  …} 
public void add(Object o) { 
   … 
   lastRet = -1; 
   …} 

AbstractList.ListItr  

Start 

Unsafe Safe 

add 
next 

add 

remove,add 

next,prev 

next,prev 
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Interfaces for Java classes 

Given a Java class C with methods M and return values R, an interface I 
is a function from (MxR)* to 2M 

Interface specifies which methods can be called after a given history 

Given a safety requirement S over class variables, interface I is safe 
for S if calling methods according to I keeps C within S 

Given C and S, there exists most permissive interface that is safe wrt S 

Interfaces can be useful for many purposes 
Documentation 
Modular software verification (check client conforms to interface) 
Version consistency checks 

JIST: Automatic extraction of finite-state interfaces 
Phase 1: Abstract Java class into a Boolean class using predicate abstraction 
Phase 2: Generate interface as a solution to game in abstract class 

Game in Abstracted Class 

next 

prev 

From black states, 
Player0 gets to choose 
the input method call 

From purple states,  
Player1 gets to choose  
a path in the abstract  
class till call returns 

Objective for Player0: Ensure error states (from which exception can be 
 raised) are avoided 

Winning strategy: Correct method sequence calls 
Most General winning strategy: Most permissive safe interface 
Game is partial information! 
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Interface Synthesis 

Most permissive safe interface can be captured by a finite automaton 
(as a regular language over MxR) 

For partial information games, the standard way (subset 
construction) to generate the interface is exponential in the 
number of states of abstract class 

Number of states  of abstract class is exponential in the number 
of predicates used for abstraction  

Use of symbolic methods (e.g. OBDDs) desired 

Novel approach: Use algorithms for learning a regular language to 
learn interface 

Angluin’s L* algorithm 

Works well if we expect the final interface to have a small 
representation as a minimized DFA 

L* Algorithm for Learning DFAs 

Infers the structure of an unknown 
DFA by 

– membership queries  

– equivalence queries 

Observation table (S,E,T) 
T: (S U S• )•E {0, 1} 

Constructs a minimal DFA using a 
polynomial number of queries 

O(| |n2 + n log m) member 

at most n-1 equivalence  

S := { }; // states of DFA 

E := { }; // distinguishing  expts 

repeat: 

   Update T;  
   // member tests for (S U S• )•E 

   MakeTClosed(S,E,T); 

   C := MakeConjecture(S,E,T); 

   if !(c=IsEquiv(C)) then return C; 

   else{ 
       e = FindSuffix(c); 

       Add e to E; 

   } 
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Implementing L* 

Transform abstract class into a model M in NuSMV (a state-of-the-
art BDD-based model checker) 

Membership Query: Is a string s in the desired language? 

Are all runs of M on s safe? 
Construct an environment Es that invokes methods according to s, 
and check M||Es safe using NuSMV 

Equivalence Query: Is current conjecture interface C equivalent to 
the  final answer I? If not, return a string in the difference 

Subset check: Is C contained in I ? Are all strings allowed by C 
safe? Check if C||M is safe using NuSMV 

Superset check: Does C contain I ? Is C   most permissive? 

JIST: Java Interface Synthesis Tool 

Jimple 

Interface 

Automaton 

NuSMV 

Language 

Boolean 
Jimple 

Java 
Java Byte 

Code 

Soot 

Predicate 

Abstarctor 

BJP2SMV 

Interface 

Synthesis 
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Signature Class 

global variable predicates used for abstraction 
24 boolean variables in abstract model 
83 membership, 3 subset, 3 superset queries 
time: 10 seconds 
JIST synthesized the most permissive interface 

S, U, IS 

V, U, IV 

IS 
IV 

IV 

IS 

package java.security; 
  … 
 public abstract class Signature extends 
java.security.SignatureSpi { 

<<variable declarations>> 

protected int state = UNINITIALIZED; 

public final void initVerify (PublicKey publicKey) {…} 

public final byte[] sign () throws SignatureException { ….} 

public final boolean verify (byte[] signature) throws 

SignatureException 
 { ….} 

public final void update (byte b) throws SignatureException 
{…} 
…} 

User Guided Synthesis 
An Emerging Paradigm for System Design 

  Platform 

Partial 
Programs 

Libraries Specifications 

Executable 

Scenarios 

1. Computer and programmer collaborate 
2. Synthesizer discovers new artifacts 
3. Computational power exploited for non-trivial programming tasks 
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Discussion Questions 

1. Is synthesis really different than high-level programming? Isn’t the 
synthesizer  just another compiler? 

2. Synthesis is computationally hard, and researchers have tried it for 
decades. So what’s new?  

3. Formal verification has seen some real-world success recently, but 
only in a limited form. Is that the best we can hope for? 

4. This workshop is on “Software at Scale”, can synthesis go beyond 
“toy” problems? 

5. Are tools/techniques ready? Are they robust? 

6. Do components have to be “correct”? 


