
1

Rajeev Alur

University of Pennsylvania
 http://www.cis.upenn.edu/~alur/

Software at Scale Workshop, August 2010

Software Design

 Platform

Compiler

Program Libraries Specifications

Executable

Analysis Tool

Tests

2

Programming Technology

 Platform

Compiler

Program Libraries

Executable

High-level programming abstractions

(object-oriented, synchronous, domain-specific..)

Semantics-preserving transformations

(low-level optimizations, type inference ..)

Verification Technology

 Platform

Specifications

Executable

Analysis Tool

Tests Program

Automated verification

(model checking, static analysis,
specification-based testing ..)

3

Challenges

Today’s software is commonly buggy, fragile, untrustworthy…

Verification/testing done after design

Costly system design cycle
Many reported bugs not fixed

Computing power is transforming many engineering disciplines with the
notable exception of programming itself

Opportunities

Enormous computing power available on desktops of today’s
programmers

Impressive strides in formal verification technology

Highly optimized SAT solvers that can solve real-world problems
Off-the-shelf tools for static analysis, machine learning…

Research driven by external demand

Receptive industry

Shifting goal of system design from performance to predictability

4

Algorithmic Synthesis

Mapping “what” to “how”

Derive an executable implementation from a high-level specification

Correct-by-construction design

Church (1963): how to synthesize sequential circuits from temporal-
logic specifications

Harel (2008): Can programming be liberated?

Computational problem: Find values for controlled decisions so that for
all choices of uncontrolled decisions (e.g. inputs), spec is satisfied

Quantifier alternation, Games, finding winning strategies

Note: No solution may exist to such a synthesis question

How computers can help programmers?

Program Sketching

 Given a program with holes and assertions, tool fills in the holes

Concurrency Synchronization
 In sequential code for data structures, tool inserts minimal

 synchronization to design linearizable concurrent data structure

Specification Mining

 From library code, tool discovers behavioral specs

Learning by Examples

 From positive and negative examples of scenarios, tool infers the
 necessary program logic

5

How computers can help programmers?

Program repair

 Verification tool not only finds a counter-example, but
 recommends a fix by analyzing source of bug

Controller Synthesis
 From temporal logic specifications, low-level control laws are

 generated for reactive planning for robot motion

Component Composition

 From component interfaces, add glue logic for interaction

Synthesis in idealized form is arguably unrealistic, but plausible in these
limited forms, allowing more “active” role for computer in programming

User Guided Synthesis

 Platform

Partial
Programs

Libraries Specifications

Executable

Scenarios

1. Computer and programmer collaborate
2. Synthesizer discovers new artifacts
3. Computational tasks may be heavy-duty

6

Talk Outline

 Motivation

 Representation dependence testing via program inversion

Joint with A. Kanade, S. Rajamani, G. Ramalingam (FSE’10)

 Synthesis of behavioral interfaces for Java classes

 Joint with P. Cerny, P. Madhusudan, W. Nam (POPL’05)

 Conclusions

Representation Dependence

TIFF Image Library

Picasa Open Office FastStone

Client program P using a data structure has
representation dependence if P behaves differently
on two distinct, but logically equivalent, values

GIMP

7

Example from Windows DirectDraw API

typedef struct _ddsurfacedesc{
 dword height, width, pitch;
 lpvoid surface;

}

pitch

width slack

Client computes (i,j)-th entry to be d.surface[i*width+j]

Spec allows pitch >= width
Documented in text

Implicitly assumes pitch=width
Bug undetected over multiple releases

width slack

Testing for Representation Dependence

Specification: Equivalence relation over a data type T

 Equivalent values represent same logical content

Goal: Given client C and test input d, generate multiple
inputs d’ equivalent to d, and check if C(d) equals C(d’)

Motivation: Detect bugs that may show up only later during
version upgrades

Challenges
How to specify equivalence ?

How to automate generation of equivalent test inputs?

8

Normalization Routines

User specifies equivalence by writing a function f that
maps data values of type T to canonical values of type T’:

 d and d’ are equivalent iff f(d) = f(d’)

For ddsurfacedesc, the normal form is two-dimensional
array without slack bytes (fields: height, width, data)

Normalization Function

width

height

pitch

width slack width slack

9

Normalization Routine

Normalization function f:
 input d, output n

 n.height = d.height;
 n.width = d.width;
 for (i = 0; i++; i < n.height) {
 for (j = 0; j++; j < n.width) {
 n.data[i][j] = d.surface[d.pitch*i +j]
 }
 }

Hypothesis: Writing C code for normalization is easier
 than giving a correct, precise logical spec

Program Inversion

width

height

pitch

width slack width slack

To generate equivalent test inputs,
we need inverse g of normalization
routine f: given d, compute g(f(d))

g is nondeterministic

10

Inverse Function

Inverse function g: input n, output d

 ensure(d.pitch : d.pitch >= n.width);
 d.height = n.height;
 d.width = n.width;
 for (i =0; i++; i < d.height) {
 for (j =0; j++; j < d.width) {
 d.surface[d.pitch*i+j] = n.data[i][j]
 }
 }

Automated Program Inversion

Key insight: “Sketch” of inverted program is same as
normalization routine (same loop structure)

Inversion done statement by statement (locally)

Need forward static analysis to compute which input vars
are determined by output vars at each program point
 “Free” vars replaced by calls to “ensure” with constraints

Current focus: programs with iterators over arrays

Challenges
Constraint propagation over straight-line blocks of code
Indirection in array indexing (e.g. x[y[i]])

11

TIFF Case Study

Multiple representations of same matrix of pixels possible
Image may be stored left-to-right / right-to-left
Image may be stored top-to-bottom / bottom-to-top
Slack bytes possible

1. Wrote normalization routine

2. Automatic program inversion
3. Generated multiple equivalent variants of a TIFF file
4. Tested following open source software

 Picasa 3.6
 Open Office 2.0.4
 GIMP 2.2.13
 KView 3.5.4
 FastStone 3.6

Summary of Results of Testing

Effect of varying the number of rows per strip:
 All clients process image correctly

Effect of varying the orientation
 Open Office and GIMP display image incorrectly

Effect of physically reordering logically adjacent strips, in
conjunction with change in orientation:
 Picasa displays image incorrectly

Caveat: Bugs detected by human observer of images

12

Talk Outline

 Motivation

Representation dependence testing via program inversion

 Synthesis of behavioral interfaces for Java classes

Conclusions

package java.security;

 …

 public abstract class Signature extends java.security.SignatureSpi {

<<variable declarations>>

protected int state = UNINITIALIZED;

public final void initVerify (PublicKey publicKey) {…}

public final byte[] sign () throws SignatureException { ….}

public final boolean verify (byte[] signature) throws SignatureException { ….}

public final void update (byte b) throws SignatureException {…}

..

}

Static Interfaces for Java Classes

13

Behavioral Interface

 Methods: initVerify (IV), verify (V), initSign (IS), sign(S), update (U)

 Constraints on invocation of methods so that the exception
signatureException is not thrown

initVerify (initSign) must be called just before verify (sign), but
update can be called in between
update cannot be called at the beginning

S, U, IS

V, U, IV

IS IV

IV

IS

Behavioral Interface

public Object next() {
 …
 lastRet = cursor++;
 …}
public Object prev() {
 …
 lastRet = cursor;
 …}
public void remove() {
 if (lastRet==-1)
 throw new IllegalExc();
 …
 lastRet = -1;
 …}
public void add(Object o) {
 …
 lastRet = -1;
 …}

AbstractList.ListItr

Start

Unsafe Safe

add
next

add

remove,add

next,prev

next,prev

14

Interfaces for Java classes

Given a Java class C with methods M and return values R, an interface I
is a function from (MxR)* to 2M

Interface specifies which methods can be called after a given history

Given a safety requirement S over class variables, interface I is safe
for S if calling methods according to I keeps C within S

Given C and S, there exists most permissive interface that is safe wrt S

Interfaces can be useful for many purposes
Documentation
Modular software verification (check client conforms to interface)
Version consistency checks

JIST: Automatic extraction of finite-state interfaces
Phase 1: Abstract Java class into a Boolean class using predicate abstraction
Phase 2: Generate interface as a solution to game in abstract class

Game in Abstracted Class

next

prev

From black states,
Player0 gets to choose
the input method call

From purple states,
Player1 gets to choose
a path in the abstract
class till call returns

Objective for Player0: Ensure error states (from which exception can be
 raised) are avoided

Winning strategy: Correct method sequence calls
Most General winning strategy: Most permissive safe interface
Game is partial information!

15

Interface Synthesis

Most permissive safe interface can be captured by a finite automaton
(as a regular language over MxR)

For partial information games, the standard way (subset
construction) to generate the interface is exponential in the
number of states of abstract class

Number of states of abstract class is exponential in the number
of predicates used for abstraction

Use of symbolic methods (e.g. OBDDs) desired

Novel approach: Use algorithms for learning a regular language to
learn interface

Angluin’s L* algorithm

Works well if we expect the final interface to have a small
representation as a minimized DFA

L* Algorithm for Learning DFAs

Infers the structure of an unknown
DFA by

– membership queries

– equivalence queries

Observation table (S,E,T)
T: (S U S•)•E {0, 1}

Constructs a minimal DFA using a
polynomial number of queries

O(| |n2 + n log m) member

at most n-1 equivalence

S := { }; // states of DFA

E := { }; // distinguishing expts

repeat:

 Update T;
 // member tests for (S U S•)•E

 MakeTClosed(S,E,T);

 C := MakeConjecture(S,E,T);

 if !(c=IsEquiv(C)) then return C;

 else{
 e = FindSuffix(c);

 Add e to E;

 }

16

Implementing L*

Transform abstract class into a model M in NuSMV (a state-of-the-
art BDD-based model checker)

Membership Query: Is a string s in the desired language?

Are all runs of M on s safe?
Construct an environment Es that invokes methods according to s,
and check M||Es safe using NuSMV

Equivalence Query: Is current conjecture interface C equivalent to
the final answer I? If not, return a string in the difference

Subset check: Is C contained in I ? Are all strings allowed by C
safe? Check if C||M is safe using NuSMV

Superset check: Does C contain I ? Is C most permissive?

JIST: Java Interface Synthesis Tool

Jimple

Interface

Automaton

NuSMV

Language

Boolean
Jimple

Java
Java Byte

Code

Soot

Predicate

Abstarctor

BJP2SMV

Interface

Synthesis

17

Signature Class

global variable predicates used for abstraction
24 boolean variables in abstract model
83 membership, 3 subset, 3 superset queries
time: 10 seconds
JIST synthesized the most permissive interface

S, U, IS

V, U, IV

IS
IV

IV

IS

package java.security;
 …
 public abstract class Signature extends
java.security.SignatureSpi {

<<variable declarations>>

protected int state = UNINITIALIZED;

public final void initVerify (PublicKey publicKey) {…}

public final byte[] sign () throws SignatureException { ….}

public final boolean verify (byte[] signature) throws

SignatureException
 { ….}

public final void update (byte b) throws SignatureException
{…}
…}

User Guided Synthesis
An Emerging Paradigm for System Design

 Platform

Partial
Programs

Libraries Specifications

Executable

Scenarios

1. Computer and programmer collaborate
2. Synthesizer discovers new artifacts
3. Computational power exploited for non-trivial programming tasks

18

Discussion Questions

1. Is synthesis really different than high-level programming? Isn’t the
synthesizer just another compiler?

2. Synthesis is computationally hard, and researchers have tried it for
decades. So what’s new?

3. Formal verification has seen some real-world success recently, but
only in a limited form. Is that the best we can hope for?

4. This workshop is on “Software at Scale”, can synthesis go beyond
“toy” problems?

5. Are tools/techniques ready? Are they robust?

6. Do components have to be “correct”?

