
8/19/10

1

Engineering Processes that

Engineer Scalable Systems

Leon J. Osterweil (ljo@cs.umass.edu)

University of Massachusetts Amherst

http://laser.cs.umass.edu
Key collaborators:

Lori A. Clarke

George Avrunin

Forrest Shull

Software at Scale Workshop

Berkeley, 18-19 August 2010

Systems that scale

8/19/10

2

Systems that scale

• Some Challenges

– Size

– Complexity

– Speed

– Human Intensiveness

– Security

– Composability

– Evolvability

Systems that scale

• Some Challenges

– Size

– Complexity

– Speed

– Human Intensiveness

– Security

– Composability

– Evolvability

• Some Process Approaches

– Scrum

– Test first

– Team development

– Pair programming

– Daily build

– Spiral Model

– Continuous Integration

8/19/10

3

Some Obvious Questions

• What do these process labels mean?

• What properties does each one have?

• What are the various processes good

for, not good for?

• How to use these to

– Select appropriate processes

– Compose and configure them

Which (combinations of)

 process approaches

meet

Which (combinations of)

needs?

8/19/10

4

Needed: A Discipline of

Process Engineering

• Define processes rigorously
– Needed: Appropriate process languages

• Create process variants, customizations, syntheses
– Needed: Support for process composition and synthesis

• Select and compose processes
– Needed: Process evaluation and suitability measures

• Reason about process definitions to infer properties
– Needed: Effective process analyzers (static and dynamic)

• Improve processes systematically and archive them
– Needed: A continuous system process improvement

environment integrating all of the above

Process Engineering: Treating

Processes Like Software and Systems
“Define requirements:”

Understanding project-specific needs,

goals, and constraints for the process.

Understand governance needs.

Also, monitor to see when the context

changes.

“Design end-to-end process:”

Compose Methods, Processes that satisfy

the requirements and can be integrated.

Compose a monitoring regimen based on

those components.

“Implementation:”

Process executed, with support from

monitoring tools that address governance

needs and support process minimization.

“Ongoing V&V:”

Tools indicate when

results of process are

not as expected, or

when underlying

assumptions are

violated. Either case

may lead to process

redesign.

Define Design

Implement

Evaluate

Iterate

8/19/10

5

Early Steps in Needed Directions:

Little-JIL definitions and analyses

• The Little-JIL process definition language
– Rigorously defined executable semantics

– Pictorial

• Process analyses
– Fault Tree Analysis (FTA) and Failure Mode and

Effects Analysis (FMEA)

– Finite state verification (model checking)

– Dynamic process testing and monitoring

– Discrete event simulation

– Scenario generation

• Integrations of the above
Costs are incremental: Initially modest, increasing cost of

Increasingly valuable details and insights.

Conventional Macro-Process

Approach

Process

Resources:
 People
 Money
 Tools
 Time

Input Artifacts

Common approaches:

CMMI, ISO 9000, Six Sigma

Outputs
 Systems
that Scale

Other Behaviors
 Money used
 Time spent
 Errors committed

8/19/10

6

NOT what we are doing

Process

Resources:
 People
 Money
 Tools
 Time

Input Artifacts

Common approaches:

CMMI, ISO 9000, Six Sigma

Outputs
 Systems
That Scale

Other Behaviors
 Money used
 Time spent
 Errors committed

Micro-Process Approach

Process

Resources:
 People
 Money
 Tools
 Time

Input Artifacts
Outputs

 Systems
That Scale

Other Behaviors
 Money used
 Time spent
 Errors committed

Needed approach: Define, analyze

Automate, precise process definitions

8/19/10

7

“The” Scrum Process

• An “agile” SW development approach

– Actually a family of processes

– A well-accepted high-level characterization

– A variety of lower-level elaborations

• Numerous imputed advantageous properties

• Can they be inferred from a rigorous scrum process

definition?

– Can lower level details undermine these?

– How do you know if you are “doing scrum?”

Reasoning about an example

Scrum property for an

example Scrum process

• Property: At the end of each sprint the Scrum

Master will always be able to present a product

that actually runs

– This will be studied using a specific example scrum

process definition

– Other members of the scrum process family will be

different and may have different properties

• Use FTA to determine which incorrect step

performance(s) may endanger this property?

8/19/10

8

A Few Bare Essentials

• Process definition is a hierarchical

decomposition

• Think of steps as procedure invocations
– They define scopes

– Copy and restore argument semantics

• Encourages use of abstraction
– Eg. process fragment reuse

Development Iteration:
Activity Skeleton

Development Iteration

Sprint Planning Meeting Sprint Sprint Review Sprint Retrospective

X

8/19/10

9

Development Iteration

Development Iteration

Sprint Planning Meeting Sprint Sprint Review Sprint Retrospective

X

product: Product

sprint backlog channel: Backlog Channel

sprint backlog sprint backlog channel

sprint backlog sprint backlog channel

product product

agent: ScrumMaster

owner: ProductOwner

deadline: Hours = 4

Product: Product

product product

agent: team

Little-JIL is Executable

Development Iteration

Sprint Planning Meeting Sprint Sprint Review Sprint Retrospective

X

product: Product

sprint backlog channel: Backlog Channel

sprint backlog sprint backlog channel

sprint backlog sprint backlog channel

product product

agent: ScrumMaster

owner: ProductOwner

deadline: Hours = 4

Product: Product

product product

agent: team

Note: Pre- and Post- Conditions provide excellent “hooks”

 for recording and reporting process progress:

Important benefit from modest incremental cost

8/19/10

10

Now Elaborate on the Sprint Step

Development Iteration

Sprint Planning Meeting Sprint Sprint Review Sprint Retrospective

X

product: Product

sprint backlog channel: Backlog Channel

sprint backlog sprint backlog channel

sprint backlog sprint backlog channel

product product

agent: ScrumMaster

owner: ProductOwner

deadline: Hours = 4

Product: Product

product product

agent: team

Sprint:
Activity Skeleton Sprint

Daily Sprint

Daily Scrum

Work

Revise Sprint Backlog

= X

X

30

+

*

8/19/10

11

Sprint
Sprint

Daily Sprint

Daily Scrum

Work

Revise Sprint Backlog

= X

X

sprint backlog sprint backlog channel

sprint backlog sprint backlog channel sprint backlog sprint backlog channel

sprint backlog sprint backlog channel

agent: ScrumMaster

team: Team

sprint burndown: BurndownTool

editor: BacklogTool

deadline: Minutes = 15

sprint backlog: Backlog

30

+

*

product product

product product

product: Product

product: Product

deadline: Days = 1

agent: Team

product: Product

agent: Team

editor: BacklogTool

sprint backlog: Backlog

Sprint
Sprint

Daily Sprint

Daily Scrum

Work

Revise Sprint Backlog

= X

X

sprint backlog sprint backlog channel

sprint backlog sprint backlog channel sprint backlog sprint backlog channel

sprint backlog sprint backlog channel

agent: ScrumMaster

team: Team

sprint burndown: BurndownTool

editor: BacklogTool

deadline: Minutes = 15

sprint backlog: Backlog

30

+

*

product product

product product

product: Product

product: Product

deadline: Days = 1

agent: Team

product: Product

agent: Team

editor: BacklogTool

sprint backlog: Backlog

Post-Conditions here can be used to report

on outcomes of each daily sprint, archive outcomes, etc.

8/19/10

12

Recall the example Scrum property

• Property: At the end of each sprint the Scrum

Master will always be able to present a product

that actually runs

• What incorrect step performance(s) may

endanger this property?

– This can also be reported by making appropriate use

of post-conditions

Using Fault Tree Analysis
• Helps determine where a process is vulnerable

• General approach

– Specify a hazard that is of concern

• Hazard: A condition in which a serious loss becomes possible

– Create fault tree for that hazard

– Derive Minimal Cut Sets (MCSs)--minimal event combinations that
can cause the hazard

• Our approach

– Automatically generate fault trees from the process definition

• Manual fault tree derivation is time consuming and error prone for
non-trivial processes

8/19/10

13

A Single Point of Failure in our Scrum process

creates the hazard that the desired property may

not be achieved by the process

A Single Point of Failure in our Scrum process

creates the hazard that the desired property may

not be achieved by the process

E1

E2

E4 E3

E1 = E2

E2 = E3 + E4

E1 = E3 + E4

 E3 and E4 are single points of failure

 Let’s defer E3 for now, and focus on E4

8/19/10

14

A Single Point of Failure in our Scrum process

creates the hazard that the desired property may

not be achieved by the process

A process modification can remove the E4 SPF

Sprint Step

Elaboration
Sprint

Daily Sprint

Daily Scrum

Work

Revise Sprint Backlog

= X

X

sprint backlog sprint backlog channel

sprint backlog sprint backlog channel sprint backlog sprint backlog channel

sprint backlog sprint backlog channel

agent: ScrumMaster

team: Team

sprint burndown: BurndownTool

editor: BacklogTool

deadline: Minutes = 15

sprint backlog: Backlog

30

+

*

product product

product product

product: Product

product: Product

deadline: Days = 1

agent: Team

product: Product

agent: Team

editor: BacklogTool

sprint backlog: Backlog

Replace with

“Checked Work”

8/19/10

15

Checked Work Subprocess

Work

Checked Work

Work

Integrate

X

product: Product

agent: Team

agent: Builder

product: Product

Build Failed

report Build Failed

product product

product product

X

agent: Team

product: Product

report: Build Failed

Check Build

product: Product

product product

Checked Work Subprocess

Work

Checked Work

Work

Integrate

X

product: Product

agent: Team

agent: Builder

product: Product

Build Failed

report Build Failed

product product

product product

X

agent: Team

product: Product

report: Build Failed

Check Build

product: Product

product product

Rework step:

Note context provided through use
 of abstraction/instantiation

8/19/10

16

The Fault Tree for the process

using “Checked Work”

The Fault Tree for the process

using “Checked Work”

E1

E2

E3 E4

E5 E6

E7 E8

E9
E10

E11

E1=E2

E2=E3+E4

E4=E5+E6

E6=E7*E8

E7=-E9 E8=E10+E11

8/19/10

17

The Fault Tree for the process

using “Checked Work”

E1

E2

E3 E4

E5 E6

E7 E8

E9
E10

E11

E1=E2

E2=E3+E4

E4=E5+E6

E6=E7*E8

E7=-E9 E8=E10+E11

E4= E5+(-E9)*(E10+E11)

 = E5 + (-E9*E10) + (-E9*E11)

E4 is no longer an SPF
(although E5 now appears to be,

just as E3 does….)

Removing SPFs one at a time

• We removed the E4 SPF by adding a checking
step

• We remove E3 and E5 by reasoning…
– Both assume an incorrect product coming into the

Sprint

– But as the output from a previous sprint

– But we have shown that the output from a sprint can
only be incorrect by a multiple failure

• Improved FT generation will do this reasoning
automatically

– Incorporated into a more recent FT generation tool

8/19/10

18

Complementary Analysis

Techniques

• Fault Tree Analysis assumes that the tasks/artifacts
might be wrong and shows where the process is
vulnerable if such problems arise

• Finite State Verification assumes tasks are done
correctly, but detects when the order of events can
lead to problems (as indicated in a property
specification)

• Dynamic checking and monitoring supports real-time
management/customer tracking, and can trigger
desired interventions

Another desirable Scrum property:

During a Sprint, the Sprint Backlog can

only be changed by the team.

Is it always necessarily true that

“Change Sprint Backlog" occurs between a “Start

Sprint” event and an “End Sprint" event only if

“Change Sprint Backlog" is performed by the

team?

8/19/10

19

Define the potentially worrisome

situation using an FSA

Define the potentially worrisome

situation using an FSA

Two types of events:

Change Sprint Backlog.team

and

Change Sprint Backlog.~team

drive FSA to different states

8/19/10

20

Define the potentially worrisome

situation using an FSA

Error State

The worrisome state is clearly identified,

and can be reached only by execution of

the Change Sprint Backlog.~team event

FLAVERS finite-state verifier

Verifying that the process is

consistent with the property
Property specified as a FSA Little-JIL process definition

Bindings between property
events and process steps

OR

• To determine consistency, property events must be bound

to process steps

8/19/10

21

Finite-state verification with

FLAVERS
• The FLAVERS verifier has been extended to

automatically construct optimized models of Little-JIL
process definitions

– Applies a dataflow analysis algorithm to determine if the
model is consistent with the property

• If the process is inconsistent with the property, a
counter-example trace is produced

FLAVERS determines that there is a path

whose execution causes a property violation

Future Directions
• Identify key relevant system development processes

• Evolve a repository of these processes with information/
attributes about their properties, performance, capabilities,
weaknesses, histories, etc.

• Support execution of these processes
– With collection of execution history data stored in repository

• Develop support for process selection and composition
based on the these attributes and history data

• Apply additional analyses
– Discrete event simulation

– Scenario/use case generation

• Demonstrate cost-effectiveness of this approach

• Continuously improve all of the above:
– Tools, processes, properties, repository, user guidance, selection/

composition, cost effectiveness

8/19/10

22

Process Engineering Approach

NOTE ALSO…

Apply this to all kinds of processes
• We are applying this to processes in:

– Healthcare, negotiation, scientific data processing,
elections, etc.

• Apply it also to DoD processes
– E.g. troop deployment, weapon system firing, intelligence

gathering and analysis

• A form of Model-Based System Development(?)

• Such system usage processes can define contexts
– For inferring system requirements

– Against which to evaluate suitability of components

– And help document changes in these contexts
• To show impacts of usage changes on systems and components

8/19/10

23

Four Questions

• How to support (dynamically changeable?) decisions
about which processes to use when?

• What are the most useful characterizations of
processes and how to derive them?

– Including studies of the cost-effectiveness of deriving these
characterizations

• How to monitor system development processes to
mine data to support timely decision-making?

• How to build a repository of reusable, configurable,
composable system processes? What would it look
like internally and externally?

Backup Little-JIL Slides

8/19/10

24

The Little-JIL Process Language

• Vehicle for exploring language abstractions for
– Reasoning (rigorously defined)

– Automation (execution semantics)

– Understandability (visual)

• Supported by
– Visual-JIL graphical editor

– Juliette interpreter

• Evaluation by application to broad domains

• A third-generation process language

• A “work in progress”

Step Name

Sequencing Badge

Prerequisite Badge Postrequisite Badge

Exception Handlers Badge

…

Substeps Exception Handlers

Resources and interfaces

Little-JIL Overview

• Visual language for coordinating tasks

• Uses hierarchically decomposed steps

• Step icon

8/19/10

25

Hierarchy, Scoping, and Abstraction

 in Little-JIL

• Process definition is a hierarchical

decomposition

• Think of steps as procedure invocations
– They define scopes

– Copy and restore argument semantics

• Encourages use of abstraction
– Eg. process fragment reuse

Proactive Flow Specified by four

Sequencing Kinds

• Sequential
– In order, left to right

• Parallel
– Any order (or parallel)

• Choice
– Choose from Agenda

– Only one choice allowed

• Try
– In order, left to right

8/19/10

26

Proactive Flow Specified by four

Sequencing Kinds

• Sequential
– In order, left to right

• Parallel
– Any order (or parallel)

• Choice
– Choose from Agenda

– Only one choice allowed

• Try
– In order, left to right

These step

kinds support

human flexibility
in process

performance

Iteration usually through recursion
Alternation using pre/post requisites

Proactive Flow Specified by four

Sequencing Kinds

• Sequential
– In order, left to right

• Parallel
– Any order (or parallel)

• Choice
– Choose from Agenda

– Only one choice allowed

• Try
– In order, left to right

8/19/10

27

Pre- and Post-requisites

• Steps guarded by (optional) pre- and post-

requisites

• Are steps themselves

• Can throw exceptions

• May be executed by different agents

– From each other

– From the main step

Exception Handling: A Special

Focus of Little-JIL

• Steps may have one or more exception handlers

• Handlers are steps themselves
– With parameter flow

• React to exceptions thrown in descendent steps
– By Pre- or Post-requisites

– Or by Agents

8/19/10

28

Four different continuations

on exception handlers

• Complete

– Handler was a “fixup”; substep is completed

• Continue

– Handler cleaned up; parent step is completed

• Restart

– Handler cleaned up; repeat substep (deprecated)

• Rethrow

– Rethrow to parent step

Artifact flow

• Primarily along parent-child edges

– As procedure invocation parameters

– Passed to exception handlers too

– Often omitted from coordination
diagrams to reduce visual clutter

• This is inadequate
– Artifacts also need to flow laterally

– And subtasks need to communicate with
each other

8/19/10

29

Channels and Lateral flow

• Channel supports message passing

• Multiple steps can add artifacts

• And multiple steps that can take them

• Use for synchronization and passing

artifacts

Resources

• Entities needed in order to perform step

• Step specifies resource needed as a type

– Perhaps with attributes, qualifiers

• Resource instances bound at runtime

• Exception thrown when “resource unavailable”

8/19/10

30

Resources

• Entities needed in order to perform step

• Step specifies resource needed as a type

– Perhaps with attributes, qualifiers

• Resource instances bound at runtime

• Exception thrown when “resource unavailable”

Much research is needed here

Agents

• Collection of all entities that can perform a
step
– Human or automated

• Process definition is orthogonal to
assignments of agents to steps
– Path to automation of process

• Have freedom to execute leaf steps in any
way they want

8/19/10

31

Use an Example to Demonstrate This
• Define a part of a Scrum process

– In detail

– Using the Little-JIL process language

• Show the importance of details for understanding and
coordination of efforts

• Apply rigorous analyzers to
– Infer properties

– Compare them to requirements

– Identify weaknesses

– Support monitoring and reporting

– Suggest improvements

• Confirm effectiveness of improvements

Technology-based Process Improvement:

Engineer superior cost-benefits ratios

