Engineering Processes that
Engineer Scalable Systems

Leon J. Osterwell (ljo@cs.umass.edu)
University of Massachusetts Amherst

http://laser.cs.umass.edu
Key collaborators:
Lori A. Clarke
George Avrunin
Forrest Shull

Software at Scale Workshop
Berkeley, 18-19 August 2010

Systems that scale

8/19/10

Systems that scale

* Some Challenges

— Size
— Complexity
— Speed
— Human Intensiveness
— Security
— Composability
— Evolvability
Systems that scale
« Some Challenges » Some Process Approaches
— Size — Scrum
— Complexity — Test first
— Speed — Team development
— Human Intensiveness — Pair programming
— Security — Daily build
— Composability — Spiral Model
— Evolvability — Continuous Integration

8/19/10

Some Obvious Questions

What do these process labels mean?
What properties does each one have?

What are the various processes good
for, not good for?

How to use these to

— Select appropriate processes

— Compose and configure them

Which (combinations of)
process approaches
meet
Which (combinations of)
needs?

8/19/10

Needed: A Discipline of
Process Engineering

Define processes rigorously

— Needed: Appropriate process languages

Create process variants, customizations, syntheses
— Needed: Support for process composition and synthesis
Select and compose processes

— Needed: Process evaluation and suitability measures
Reason about process definitions to infer properties
— Needed: Effective process analyzers (static and dynamic)
Improve processes systematically and archive them

— Needed: A continuous system process improvement
environment integrating all of the above

Process Engineering: Treating
Processes Like Software and Systems

“Design end-to-end process:”
Compose [vettots; Prcesses that satisfy
the requirg @esagmc hn be integrated.
Compose aTmomitonmg regimen based on
those components.

“Define requirements:”
Undd4rstangmg ploject-specific needs,
goal Defth€tlaints for the process.
Understand governance needs.

Also, monitor to see when the context
changes.

> >
“Rrocess Cugnposed of L‘O‘nxeor»blc, Well

Envirgnmental Factors \
) 1 ‘undwsroMMPTsnndCoh-mn»nh
Y

—_—

Objectives, context,
situation

.) Y CSFs/FMs
Ongoing V&V: PRt (et Aspects of Interest

Tools indicate when Results not as expected? Necessary Prereq

rests-ef-process e Outcomes

wher
assumptions are
violated. Either case
ggisl.ea: to process Process execfited Wt%&i%po t from

'gn. monitoring todl m:p !130 ernance

needs and support process minimization.

not aquAg}F[at@r
o Toe Ty Ty

To oversight/compliance
monitors

“Implementation:”

8/19/10

Early Steps in Needed Directions:
Little-JIL definitions and analyses

» The Little-JIL process definition language
— Rigorously defined executable semantics
— Pictorial

* Process analyses

— Fault Tree Analysis (FTA) and Failure Mode and
Effects Analysis (FMEA)

— Finite state verification (model checking)
— Dynamic process testing and monitoring
— Discrete event simulation

— Scenario generation

* Integrations of the above
Costs are incremental: Initially modest, increasing cost of
Increasingly valuable details and insights.

Conventional Macro-Process
Appéoach

/ \ / Outputs\\

Input Artifacys /System S
\ 7 that Scale
Resources: / \
,\F,,)iﬁzlf / Process N\Other Behaviorg
Tools Money used
Time Time spent

L/ Common approaches: Errors committ
CMMI, ISO 9000, Six Sigma

8/19/10

S

N

Common approaches:
CMMI, 1SO 9000, Six Sigma

Micro-Process Approach

Input Artifacts

Resources:

People
Money
Tools
Time

Outputs

ystems
That Scale

Process

Other Behaviors

Money used
Time spent

Needed approach: Define, analyze
Automate, precise process definitions

Errors committed

8/19/10

“The” Scrum Process

* An “agile” SW development approach
— Actually a family of processes
— A well-accepted high-level characterization
— A variety of lower-level elaborations
* Numerous imputed advantageous properties
» Can they be inferred from a rigorous scrum process
definition?
— Can lower level details undermine these?
— How do you know if you are “doing scrum?”

Reasoning about an example
Scrum property for an
example Scrum process

* Property: Atthe end of each sprint the Scrum
Master will always be able to present a product
that actually runs

— This will be studied using a specific example scrum
process definition

— Other members of the scrum process family will be
different and may have different properties
» Use FTA to determine which incorrect step
performance(s) may endanger this property?

8/19/10

A Few Bare Essentials

» Process definition is a hierarchical
decomposition
» Think of steps as procedure invocations

— They define scopes
— Copy and restore argument semantics

* Encourages use of abstraction
— Eg. process fragment reuse

Development Iteration:
Activity Skeleton

Development Iteration

% A

Sprint Planning Meeting Sprint Sprint Review Sprint Retrospective

. . VI A VI A

8/19/10

Development Iteration

() product: Product
& sprint backlog channel: Backlog Channel

Development Iteration

\Y% A

sprint backlog B sprint backlog channel
sprint backlog sprint backlog channel

@agent: team

@ agent: ScrumMaster
@ owner: ProductOwner
< deadline: Hours = 4

} Product: Product
Sprint Planning Meeting Sprint Sprint Review Sprint Retrospective

. . VI A VI A

product «— product

product—sproduct

Little-JIL is Executable

() product: Product
& sprint backlog channel: Backlog Channel

Development Iteration

sprint backlog B sprint backlog channel
sprint backlog sprint backlog channel

@agent: team

@ agent: erumMaster
@ owneff ProductOwner
< deagfline: Hours = 4

1 Prgfiuct: Product

product «— product

product—sproglict

Sprint Planning Meeting

Sprint

Sprint Review Sprint Retrospective
/v—/A ;7‘
Note: Pre- and Post- Conditions provide excellent “hooks”

for recording and reporting process progress:
Important benefit from modest incremental cost

8/19/10

Now Elaborate on the Sprint Step

() product: Product
& sprint backlog channel: Backlog Channel

Development Iteration

sprint backlog B sprint backlog channel
sprint backlog sprint backlog channel

@agent: team

@ agent: ScrumMaster
@ owner: ProductOwner
< deadline: Hours = 4

1 Product: Product

product «— product

product—sproduct

Sprint Planning Meeting

Sprint Review Sprint Retrospective

VIEEE A VIEEE A

o Sprint:

v A Activity Skeleton

Daily Sprint

Work

Daily Scrum V _ A

V _ A Revise Sprint Backlog
VIEEE A

8/19/10

10

1 ot Prodc }—S.t S P rint
\Y% A

t product: Product
deadiine: Days =1

product—sproduct

Daily Sprint
sprint backlog <@ sprint backlog channel Y 5P

sprint backlog sprint backlog channel sprint backlog <@ sprint backlog channel

sprint backlog sprint backlog channel

L4 agent: Team

@ editor: BacklogTool

agent: ScrumMaster
¢ sprint backlog: Backlog

]
@ team: Team

@ sprint burndown: BurndownTool
@ editor: BacklogTool
Odeadline: Minutes = 15

sprint backlog: Backlog product—sproduct

Work
®agent: Team

Daily Scrum ; _ A product: Product

V _ A Revise Sprint Backlog
VIEEE A

T ’—gt S P rint
W\

A

t product: Product
Odeadiine: Days =1

product—sproduct

Daily Sprint
sprint backlog <@ sprint backlog channel Y 5P

sprint backlog sprint backlog channel sprint backlog <@ sprint backlog channel

sprint backlog sprint backlog channel

e agent: Team

@ editor: BacklogTool

agent: ScrumMaster
¢ sprint backlog: Backlog

]
@ team: Team

@ sprint burndown: BurndownTool
@ editor: BacklogTool
<>dead|ine: Minutes = 15

sprint backlog: Backlog product—sproduct

Work
®agent: Team

Daily Scrum ; _ A product: Product

V _ A Revise Sprint Backlog
VI A

Post-Conditions here can be used to report
on outcomes of each daily sprint, archive outcomes, etc.

8/19/10

11

Recall the example Scrum property

* Property: Atthe end of each sprint the Scrum
Master will always be able to present a product
that actually runs

« What incorrect step performance(s) may
endanger this property?

— This can also be reported by making appropriate use
of post-conditions

Using Fault Tree Analysis

» Helps determine where a process is vulnerable

» General approach

— Specify a hazard that is of concern

» Hazard: A condition in which a serious loss becomes possible

— Create fault tree for that hazard

— Derive Minimal Cut Sets (MCSs)--minimal event combinations that
can cause the hazard

» Our approach

— Automatically generate fault trees from the process definition

* Manual fault tree derivation is time consuming and error prone for
non-trivial processes

8/19/10

12

A Single Point of Failure in our Scrum process
creates the hazard that the desired property may
not be achieved by the process

Artifact "product” from
"Sprint" is wrong

Amfact “product” is wrong when
step "Daily Sprint" is completed

0

]
Artifact " product to tep "Work" produces
step "Sprint" is wrong wrong "product”

A Single Point of Failure in our Scrum process
creates the hazard that the desired property may
not be achieved by the process

Artifact "product” from
"Sprint" is wrong

El1=E2

step "Daily Sprint" is completed

E2=E3+E4 é

]
E3 [sArtrlact product to tep "Work" producesj E4

tep "Sprint" is wrong wrong "product”

E2 Amfact “product” is wrong when]

=E1=E3+E4
= E3 and E4 are single points of failure
Let's defer E3 for now, and focus on E4

8/19/10

13

A Single Point of Failure in our Scrum process
creates the hazard that the desired property may
not be achieved by the process

Artifact "product” from
"Sprint" is wrong

Artifact "product” is wrong when
step "Daily Sprint" is completed

Step "Work" produces
wrong "product”

A process modification can remove the E4 SPF

o] — @ Sprint Step
V s A Elaboration

t product: Product
Odeadiine: Days =1
0
product—sproduct

Daily Sprint

VIEEE A

sprint backlog <@ sprint backlog channel

sprint backlog sprint backlog channel sprint backlog <@ sprint backlog channel

sprint backlog sprint backlog channel

e agent: Team

@ agent: ScrumMaster @ editor: BacklogTool

@ team: Team

@ sprint burndown: BurndownTool

@ editor: BacklogTool

Odeadline: Minutes = 15
sprint backlog: Backlog

Revise Sprint Backlog

VEEE A

Replace with
“Checked Work”

¢ sprint backlog: Backlog

8/19/10

14

Checked Work Subprocess

t product: Product

Checked Work

v report < Build Failed
product — product

product— product

t product: Product

agent: Team

product—> product

b agent: Builder Check Build
t product: Product Work
x Build Failed
= lmegrate . I

agent: Team
product: Product
report: Build Failed

Checked Work Subprocess

t product: Product

Checked Work

v report < Build Failed
product — product
product— product

t product: Product

agent: Team

product— product

b agent: Builder
1 product: Product
Work « Build Failed

® agent: Team

product: Product
report: Build Failed

Rework step:

Note context provided through use
of abstraction/instantiation

15

8/19/10

The Fault Tree for the process
using “Checked Work”

=) (Femares)

0

[1
Step Cracked Work” groduces ‘Artact “product” s wiong whan
00 o0t step “Fngrate” 3 compleses
L]

The Fault Tree for the process
using “Checked Work”

E1=E2
E2=E3+E4
F3(E) (Femarmas) 4
Cg E4=E5+E6
E5 (Frmnmr) (e) E6
C} E6=E7*ES8
E7=-E9 E \ E8=E10+E11
B9 () (e) (Cez—) E1l

8/19/10

16

The Fault Tree for the process
using “Checked Work”

El=E2 E4= E5+(-E9)*(E10+E11)
= E5 + (-E9*E10) + (-E9*E11)
© E2=E3+E4
E3Ces) (T E4 E4 is no longer an SPF

(although E5 now appears to be,

ﬁ:-\.i' ‘E4:E5+E6 just as E3 does....)
E5 (i) (i) E6

|y E6=E7*ES8
E7 (i) (mris) ES
E7=-E9 JAY /\ E8=E10+E11

_ E10 _
EQ (gmmue (S oyz===) (= repe==~) £11

Removing SPFs one at a time

* We removed the E4 SPF by adding a checking
step
» We remove E3 and E5 by reasoning...

— Both assume an incorrect product coming into the
Sprint
— But as the output from a previous sprint

— But we have shown that the output from a sprint can
only be incorrect by a multiple failure

* Improved FT generation will do this reasoning
automatically

— Incorporated into a more recent FT generation tool

8/19/10

17

Complementary Analysis
Techniques

» Fault Tree Analysis assumes that the tasks/artifacts
might be wrong and shows where the process is
vulnerable if such problems arise

» Finite State Verification assumes tasks are done
correctly, but detects when the order of events can
lead to problems (as indicated in a property
specification)

* Dynamic checking and monitoring supports real-time
management/customer tracking, and can trigger
desired interventions

Another desirable Scrum property:
During a Sprint, the Sprint Backlog can
only be changed by the team.

Is it always necessarily true that

“Change Sprint Backlog" occurs between a “Start
Sprint” event and an “End Sprint" event only if
“Change Sprint Backlog" is performed by the

team?

8/19/10

18

Define the potentially worrisome
situation using an FSA

Change Sprint Backlog
End Sprint

E(w(gggsﬁarml Backlog.team

Change Sprint Backlog Change Sprint Backlog~team

e
@

Change Sprint Backlog

End Sprint

Begin Sprint

Define the potentially worrisome
situation using an FSA

Change Sprint Backlog
End Sprint

Two types of events:
hange Sprint Backlog.team
and
hange Sprint Backlog.~team
Change Sprint Backlog~teal drive FSA to different states

e
@

Change Sprint Backlog

E(w(gggsﬁarml Backlog.team

Change Sprint Backlog
End Sprint

Begin Sprint

8/19/10

19

Define the potentially worrisome
situation using an FSA

Change Sprint Backlog
End Sprint

/E nd Sprint
@
3

\ Change Sprint Backlog~team

R%ng’%’%p‘rm(Backlog.team

Change Sprint Backlog

End Sprint ™\ End Sprint N\
) /L\‘ Error State

-/

Change Sprint Backlog

Begm Sprint

The worrisome state is clearly identified,
and can be reached only by execution of
the Change Sprint Backlog.~team event

Verifying that the process is
consistent with the property

Property specified as a FSA Little-JIL process Sleﬁnition

‘ e ~—
4 e 4 Vet - 4 o e o s ~
W i .

Bindings between property
vents and process steps

FLAVERS finite-state verifier
/\

_ Yes, the process OR No, and a counter-example is
satisfies the property provided

» To determine consistency, property events must be bound
to process steps

8/19/10

20

Finite-state verification with
FLAVERS

The FLAVERS verifier has been extended to

automatically construct optimized models of Little-JIL

process definitions

— Applies a dataflow analysis algorithm to determine if the
model is consistent with the property

If the process is inconsistent with the property, a

counter-example trace is produced

FLAVERS determines that there is a path
whose execution causes a property violation

Future Directions

Identify key relevant system development processes

Evolve a repository of these processes with information/
attributes about their properties, performance, capabilities,
weaknesses, histories, etc.

Support execution of these processes

— With collection of execution history data stored in repository
Develop support for process selection and composition
based on the these attributes and history data

Apply additional analyses

— Discrete event simulation

— Scenario/use case generation

Demonstrate cost-effectiveness of this approach
Continuously improve all of the above:

— Tools, processes, properties, repository, user guidance, selection/
composition, cost effectiveness

8/19/10

21

Process Engineering Approach

"Pmﬁes.sf@'tmposedbj Compatible, Well-
understood MPTs and Components

-

Environmental Factors

—_
<«

Objectives, context,

situation
Agile Process Formulation (Automated decision support)
CSFs/FMs
Assumption changed? Aspects of Interest
Feedback Necessary Prere
Results not as expected? Y qg.
Outcomes

rt 1or Automatead cirectiveness vionitoring

(Leading indicators, evidence of tacit knowledge)

To oversight/compliance
monitors

NOTE ALSO...
Apply this to all kinds of processes

» We are applying this to processes in:
— Healthcare, negotiation, scientific data processing,
elections, etc.
» Apply it also to DoD processes

— E.g. troop deployment, weapon system firing, intelligence
gathering and analysis

» A form of Model-Based System Development(?)
» Such system usage processes can define contexts
— For inferring system requirements

— Against which to evaluate suitability of components

— And help document changes in these contexts
» To show impacts of usage changes on systems and components

8/19/10

22

Four Questions

How to support (dynamically changeable?) decisions

about which processes to use when?

What are the most useful characterizations of

processes and how to derive them?

— Including studies of the cost-effectiveness of deriving these
characterizations

How to monitor system development processes to

mine data to support timely decision-making?

How to build a repository of reusable, configurable,

composable system processes? What would it look

like internally and externally?

Backup Little-JIL Slides

8/19/10

23

The Little-JIL Process Language

Vehicle for exploring language abstractions for

— Reasoning (rigorously defined)
— Automation (execution semantics)
— Understandability (visual)

Supported by

— Visual-JIL graphical editor
— Juliette interpreter

Evaluation by application to broad domains
A third-generation process language
A “work in progress”

Little-JIL Overview

 Visual language for coordinating tasks
» Uses hierarchically decomposed steps

« Step icon
Resources and interfaces
Prerequisite Badge () Postrequisite Badge
V Step Name A

Sequencing Badge Exception Handlers Badge —s
Vv

‘ ljbstepg Exception Handlers

8/19/10

24

Hierarchy, Scoping, and Abstraction
in Little-JIL

» Process definition is a hierarchical
decomposition
» Think of steps as procedure invocations

— They define scopes
— Copy and restore argument semantics

* Encourages use of abstraction
— Eg. process fragment reuse

Proactive Flow Specified by four
Sequencing Kinds

— Sequential

— In order, left to right

Parallel

— Any order (or parallel)

Choice

— Choose from Agenda

— Only one choice allowed
o Try

— In order, left to right

¢

8/19/10

25

Proactive Flow Specified by four
Sequencing Kinds

— Sequential

— In order, left to right
Parallel

— Any order (or parallel)
Choice

— Choose from Agenda

kinds support — Only one choice allowed
human flexibility . Try

INn process X — In order, left to right
performance

These step -

Proactive Flow Specified by four
Sequencing Kinds

— Sequential

— In order, left to right

Parallel

— Any order (or parallel)

Choice

— Choose from Agenda

— Only one choice allowed
o Try

— In order, left to right

¢

Iteration usually through recursion
Alternation using pre/post requisites

8/19/10

26

8/19/10

Pre- and Post-requisites

Steps guarded by (optional) pre- and post-
requisites

Are steps themselves

Can throw exceptions

May be executed by different agents
— From each other
— From the main step

Exception Handling: A Special
Focus of Little-JIL

» Steps may have one or more exception handlers

» Handlers are steps themselves
— With parameter flow

» React to exceptions thrown in descendent steps
— By Pre- or Post-requisites
— Or by Agents

27

Four different continuations
on exception handlers

Complete
— Handler was a “fixup”; substep is completed

Continue
— Handler cleaned up; parent step is completed

Restart
— Handler cleaned up; repeat substep (deprecated)

Rethrow
— Rethrow to parent step

Artifact flow

* Primarily along parent-child edges
— As procedure invocation parameters
— Passed to exception handlers too
— Often omitted from coordination
diagrams to reduce visual clutter
» This is inadequate
— Artifacts also need to flow laterally

— And subtasks need to communicate with
each other

8/19/10

28

Channels and Lateral flow

Channel supports message passing
Multiple steps can add artifacts
And multiple steps that can take them

Use for synchronization and passing
artifacts

Resources

Entities needed in order to perform step

Step specifies resource needed as a type
— Perhaps with attributes, qualifiers

Resource instances bound at runtime
Exception thrown when “resource unavailable”

8/19/10

29

Resources

Entities needed in order to perform step

Step specifies resource needed as a type
— Perhaps with attributes, qualifiers

Resource instances bound at runtime
Exception thrown when “resource unavailable”

Much research is needed here

Agents

» Collection of all entities that can perform a
step

— Human or automated

» Process definition is orthogonal to
assignments of agents to steps
— Path to automation of process

» Have freedom to execute leaf steps in any
way they want

8/19/10

30

Use an Example to Demonstrate This

» Define a part of a Scrum process
— In detall
— Using the Little-JIL process language
» Show the importance of details for understanding and
coordination of efforts
« Apply rigorous analyzers to
— Infer properties
Compare them to requirements
Identify weaknesses
— Support monitoring and reporting
Suggest improvements

» Confirm effectiveness of improvements

Technology-based Process Improvement:
Engineer superior cost-benefits ratios

8/19/10

31

