# Engineering **Processes** that Engineer **Scalable Systems**

Leon J. Osterweil (Ijo@cs.umass.edu)
University of Massachusetts Amherst

http://laser.cs.umass.edu

Key collaborators: Lori A. Clarke George Avrunin Forrest Shull

Software at Scale Workshop Berkeley, 18-19 August 2010

Systems that scale

### Systems that scale

- Some Challenges
  - Size
  - Complexity
  - Speed
  - Human Intensiveness
  - Security
  - Composability
  - Evolvability

### Systems that scale

- Some Challenges
  - Size
  - Complexity
  - Speed
  - Human Intensiveness
  - Security
  - Composability
  - Evolvability

- Some Process Approaches
  - Scrum
  - Test first
  - Team development
  - Pair programming
  - Daily build
  - Spiral Model
  - Continuous Integration

#### Some Obvious Questions

- What do these process labels mean?
- What properties does each one have?
- What are the various processes good for, not good for?
- How to use these to
  - Select appropriate processes
  - Compose and configure them

Which (combinations of)
process approaches
meet
Which (combinations of)
needs?

# Needed: A Discipline of Process Engineering

- Define processes rigorously
  - Needed: Appropriate process languages
- Create process variants, customizations, syntheses
  - Needed: Support for process composition and synthesis
- Select and compose processes
  - Needed: Process evaluation and suitability measures
- Reason about process definitions to infer properties
  - Needed: Effective process analyzers (static and dynamic)
- Improve processes systematically and archive them
  - Needed: A continuous system process improvement environment integrating all of the above



### Early Steps in Needed Directions: Little-JIL definitions and analyses

- The Little-JIL process definition language
  - Rigorously defined executable semantics
  - Pictorial
- Process analyses
  - Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA)
  - Finite state verification (model checking)
  - Dynamic process testing and monitoring
  - Discrete event simulation
  - Scenario generation
- Integrations of the above

Costs are incremental: Initially modest, increasing cost of Increasingly valuable details and insights.







#### "The" Scrum Process

- An "agile" SW development approach
  - Actually a family of processes
  - A well-accepted high-level characterization
  - A variety of lower-level elaborations
- Numerous imputed advantageous properties
- Can they be inferred from a rigorous scrum process definition?
  - Can lower level details undermine these?
  - How do you know if you are "doing scrum?"

# Reasoning about an example Scrum property for an example Scrum process

- Property: At the end of each sprint the Scrum Master will always be able to present a product that actually runs
  - This will be studied using a specific example scrum process definition
  - Other members of the scrum process family will be different and may have different properties
- Use FTA to determine which incorrect step performance(s) may endanger this property?

### A Few Bare Essentials

- Process definition is a hierarchical decomposition
- Think of steps as procedure invocations
  - They define scopes
  - Copy and restore argument semantics
- Encourages use of abstraction
  - Eg. process fragment reuse















### Recall the example Scrum property

- Property: At the end of each sprint the Scrum Master will always be able to present a product that actually runs
- What incorrect step performance(s) may endanger this property?
  - This can also be reported by making appropriate use of post-conditions

### Using Fault Tree Analysis

- Helps determine where a process is vulnerable
- General approach
  - Specify a hazard that is of concern
    - · Hazard: A condition in which a serious loss becomes possible
  - Create fault tree for that hazard
  - Derive Minimal Cut Sets (MCSs)--minimal event combinations that can cause the hazard
- Our approach
  - Automatically generate fault trees from the process definition
    - Manual fault tree derivation is time consuming and error prone for non-trivial processes

A Single Point of Failure in our Scrum process creates the hazard that the desired property may not be achieved by the process



A Single Point of Failure in our Scrum process creates the hazard that the desired property may not be achieved by the process















# The Fault Tree for the process using "Checked Work"



### Removing SPFs one at a time

- We removed the E4 SPF by adding a checking step
- We remove E3 and E5 by reasoning...
  - Both assume an incorrect product coming into the Sprint
  - But as the output from a previous sprint
  - But we have shown that the output from a sprint can only be incorrect by a multiple failure
- Improved FT generation will do this reasoning automatically
  - Incorporated into a more recent FT generation tool

## Complementary Analysis Techniques

- Fault Tree Analysis assumes that the tasks/artifacts might be wrong and shows where the process is vulnerable if such problems arise
- Finite State Verification assumes tasks are done correctly, but detects when the order of events can lead to problems (as indicated in a property specification)
- Dynamic checking and monitoring supports real-time management/customer tracking, and can trigger desired interventions

Another desirable Scrum property: During a Sprint, the Sprint Backlog can only be changed by the team.

Is it always necessarily true that

"Change Sprint Backlog" occurs between a "Start Sprint" event and an "End Sprint" event only if "Change Sprint Backlog" is performed by the team?

# Define the potentially worrisome situation using an FSA



# Define the potentially worrisome situation using an FSA



# Define the potentially worrisome situation using an FSA



The worrisome state is clearly identified, and can be reached only by execution of the Change Sprint Backlog.~team event

### Verifying that the process is consistent with the property



 To determine consistency, property events must be bound to process steps

### Finite-state verification with FLAVERS

- The FLAVERS verifier has been extended to automatically construct optimized models of Little-JIL process definitions
  - Applies a dataflow analysis algorithm to determine if the model is consistent with the property
- If the process is inconsistent with the property, a counter-example trace is produced

FLAVERS determines that there is a path whose execution causes a property violation

#### **Future Directions**

- Identify key relevant system development processes
- Evolve a repository of these processes with information/ attributes about their properties, performance, capabilities, weaknesses, histories, etc.
- Support execution of these processes
  - With collection of execution history data stored in repository
- Develop support for process selection and composition based on the these attributes and history data
- Apply additional analyses
  - Discrete event simulation
  - Scenario/use case generation
- Demonstrate cost-effectiveness of this approach
- Continuously improve all of the above:
  - Tools, processes, properties, repository, user guidance, selection/ composition, cost effectiveness



# NOTE ALSO... Apply this to all kinds of processes

- We are applying this to processes in:
  - Healthcare, negotiation, scientific data processing, elections, etc.
- Apply it also to DoD processes
  - E.g. troop deployment, weapon system firing, intelligence gathering and analysis
- A form of Model-Based System Development(?)
- Such system usage processes can define contexts
  - For inferring system requirements
  - Against which to evaluate suitability of components
  - And help document changes in these contexts
    - · To show impacts of usage changes on systems and components

#### Four Questions

- How to support (dynamically changeable?) decisions about which processes to use when?
- What are the most useful characterizations of processes and how to derive them?
  - Including studies of the cost-effectiveness of deriving these characterizations
- How to monitor system development processes to mine data to support timely decision-making?
- How to build a repository of reusable, configurable, composable system processes? What would it look like internally and externally?

Backup Little-JIL Slides

### The Little-JIL Process Language

- Vehicle for exploring language abstractions for
  - Reasoning (rigorously defined)
  - Automation (execution semantics)
  - Understandability (visual)
- Supported by
  - Visual-JIL graphical editor
  - Juliette interpreter
- Evaluation by application to broad domains
- A third-generation process language
- A "work in progress"

#### Little-JIL Overview

- Visual language for coordinating tasks
- Uses hierarchically decomposed steps
- Step icon



### Hierarchy, Scoping, and Abstraction in Little-JIL

- Process definition is a hierarchical decomposition
- Think of steps as procedure invocations
  - They define scopes
  - Copy and restore argument semantics
- Encourages use of abstraction
  - Eg. process fragment reuse

### Proactive Flow Specified by four Sequencing Kinds

- $\rightarrow$
- Sequential
  - In order, left to right
- Parallel
  - Any order (or parallel)
- -
- Choice
  - Choose from Agenda
  - Only one choice allowed
- Try
- \*
- In order, left to right

### Proactive Flow Specified by four Sequencing Kinds

- $\rightarrow$
- Sequential
  - In order, left to right
- Parallel
  - Any order (or parallel)
- Choice
- These step kinds support human flexibility in process performance
- -
- Choose from Agenda
- Only one choice allowed
- Try
  - In order, left to right

### Proactive Flow Specified by four Sequencing Kinds

- $\rightarrow$
- Sequential
  - In order, left to right
- Parallel
  - Any order (or parallel)
- -
- Choice
  - Choose from Agenda
  - Only one choice allowed
- Try
- **X**
- In order, left to right

Iteration usually through recursion Alternation using pre/post requisites

#### Pre- and Post-requisites

- Steps guarded by (optional) pre- and postrequisites
- Are steps themselves
- Can throw exceptions
- · May be executed by different agents
  - From each other
  - From the main step

### Exception Handling: A Special Focus of Little-JIL

- Steps may have one or more exception handlers
- Handlers are steps themselves
  - With parameter flow
- React to exceptions thrown in descendent steps
  - By Pre- or Post-requisites
  - Or by Agents

### Four different continuations on exception handlers

- Complete
- **/**
- Handler was a "fixup"; substep is completed
- Continue
  - Handler cleaned up; parent step is completed
- Restart



- Rethrow
- $\uparrow$
- Rethrow to parent step

#### Artifact flow

- Primarily along parent-child edges
  - As procedure invocation parameters
  - Passed to exception handlers too
  - Often omitted from coordination diagrams to reduce visual clutter
- This is inadequate
  - Artifacts also need to flow laterally
  - And subtasks need to communicate with each other

#### Channels and Lateral flow

- Channel supports message passing
- Multiple steps can add artifacts
- And multiple steps that can take them
- Use for synchronization and passing artifacts

#### Resources

- Entities needed in order to perform step
- Step specifies resource needed as a type
  - Perhaps with attributes, qualifiers
- Resource instances bound at runtime
- Exception thrown when "resource unavailable"

#### Resources

- Entities needed in order to perform step
- Step specifies resource needed as a type
  - Perhaps with attributes, qualifiers
- Resource instances bound at runtime
- Exception thrown when "resource unavailable"

Much research is needed here

### Agents

- Collection of all entities that can perform a step
  - Human or automated
- Process definition is orthogonal to assignments of agents to steps
  - Path to automation of process
- Have freedom to execute leaf steps in any way they want

### Use an Example to Demonstrate This

- Define a part of a Scrum process
  - In detail
  - Using the Little-JIL process language
- Show the importance of details for understanding and coordination of efforts
- Apply rigorous analyzers to
  - Infer properties
  - Compare them to requirements
  - Identify weaknesses
  - Support monitoring and reporting
  - Suggest improvements
- Confirm effectiveness of improvements

Technology-based Process Improvement: Engineer superior cost-benefits ratios