
Embedded Tutorial

CPS Foundations

Edward A. Lee
Robert S. Pepper Distinguished Professor

UC Berkeley

Special Session: Cyber-Physical Systems Demystified

Design Automation Conference (DAC 2010)

Annaheim, CA, Thursday, June 17, 2010

2

Abstract

This talk argues that cyber-physical systems present a

substantial intellectual challenge that requires changes in both

theories of computation and dynamical systems theory. The

CPS problem is not the union of cyber and physical problems,

but rather their intersection, and as such it demands models

that embrace both. Two complementary approaches are

identified: cyberizing the physical (CtP) means to endow

physical subsystems with cyber-like abstractions and interfaces;

and physicalizing the cyber (PtC) means to endow software and

network components with abstractions and interfaces that

represent their dynamics in time.

3 Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS):
Orchestrating networked computational

resources with physical systems

Power

generation and

distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation

(Air traffic

control at
SFO)

Avionics

Telecommunications

Factory automation

Instrumentation

(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

4

CPS Example – Printing Press

•

•

•

•

•

•

•

•

•

•

5

Where CPS Differs from

the traditional embedded software problem:

The traditional embedded software problem:

 Embedded software is software on small

computers. The technical problem is one of

optimization (coping with limited resources).

The CPS problem:

 Computation and networking integrated with

physical processes. The technical problem is

managing dynamics, time, and concurrency in
networked computational + physical systems.

6

Cyber Physical Systems:

Computational +
Physical

CPS is Multidisciplinary

Computer Science:

Carefully abstracts the

physical world

System Theory:

Deals directly with

physical quantities

7

A Key Challenge

Models for the physical world and for computation diverge.

physical: time continuum, ODEs, DAEs, PDEs, dynamics

computational: a “procedural epistemology,” logic

There is a huge cultural gap.

Physical system models must be viewed as semantic
frameworks (cyberizing the physical), and theories of

computation must be viewed as alternative ways of talking

about dynamics (physicalizing the cyber)

8

First Challenge on the Cyber Side:

Real-Time Software

Correct execution of a program in C, C#, Java,

Haskell, etc. has nothing to do with how long it

takes to do anything. All our computation and

networking abstractions are built on this premise.

Programmers have to step outside the

programming abstractions to specify

timing behavior.

9

Techniques that Exploit this Fact

Programming languages

Virtual memory

Caches

Dynamic dispatch

Speculative execution

Power management (voltage scaling)

Memory management (garbage collection)

Just-in-time (JIT) compilation

Multitasking (threads and processes)

Component technologies (OO design)

Networking (TCP)

…

10

A Story

In “fly by wire” aircraft, certification of the

software is extremely expensive. Regrettably, it

is not the software that is certified but the entire

system. If a manufacturer expects to produce a

plane for 50 years, it needs a 50-year stockpile of

fly-by-wire components that are all made from

the same mask set on the same production line.

Even a slight change or “improvement” might

affect timing and require the software to be re-

certified.

11

Consequences

Stockpiling for a product run

Some systems vendors have to purchase up front the entire
expected part requirements for an entire product run.

Frozen designs

Once certified, errors cannot be fixed and improvements cannot
be made.

Product families

Difficult to maintain and evolve families of products together.

It is difficult to adapt existing designs because small changes
have big consequences

Forced redesign

A part becomes unavailable, forcing a redesign of the system.

Lock in

Cannot take advantage of cheaper or better parts.

Risky in-field updates

In the field updates can cause expensive failures.

12

Abstraction Layers in Common Use

 The purpose for an

abstraction is to

hide details of the

implementation

below and provide a

platform for design

from above.

13

Abstraction Layers in Common Use

 Every abstraction

layer has failed in

the fly-by-wire

scenario.

 The design is the

implementation.

14

Abstraction Layers

 How about “raising

the level of

abstraction” to solve

these problems?

15

But these higher abstractions rely on an

increasingly problematic fiction: WCET

Example war story:

Analysis of:

• Motorola ColdFire

• Two coupled pipelines (7-stage)
• Shared instruction & data cache

• Artificial example from Airbus

• Twelve independent tasks

• Simple control structures

• Cache/Pipeline interaction
leads to large integer linear

programming problem

And the result is valid only for that exact

Hardware and software!

Fundamentally, the ISA of the processor
has failed to provide an adequate abstraction.

C. Ferdinand et al., “Reliable and
precise WCET determination for a
real-life processor.” EMSOFT 2001.

16

The Key Problem

 Electronics technology

delivers highly reliable and

precise timing…

… and the overlaying software

abstractions discard it.

20.000 MHz (± 100 ppm)

17

Second Challenge on the Cyber Side:

Concurrency
(Needed for real time and multicore)

Threads dominate concurrent software.

Threads: Sequential computation with shared memory.

Interrupts: Threads started by the hardware.

Incomprehensible interactions between threads are the sources
of many problems:

Deadlock
Priority inversion

Scheduling anomalies
Timing variability

Nondeterminism

Buffer overruns
System crashes

Even distributed software

commonly goes to considerable

lengths to emulate this rather poor

abstraction using middleware that

supports RPC, proxies, and data

replication.

18

My Claim

Nontrivial software written with threads is

incomprehensible to humans, and it

cannot deliver repeatable or predictable

behavior, except in trivial cases.

19

Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

 “humans are quickly overwhelmed by
concurrency and find it much more difficult to
reason about concurrent than sequential code.
Even careful people miss possible interleavings
among even simple collections of partially
ordered operations.”

 H. Sutter and J. Larus. Software and the concurrency
revolution. ACM Queue, 3(7), 2005.

20

Is Concurrency Hard?

It is not

concurrency that

is hard…

21

…It is Threads that are Hard!

Threads are sequential processes that

share memory. From the perspective of

any thread, the entire state of the universe

can change between any two atomic

actions (itself an ill-defined concept).

Imagine if the physical world did that…

22

Concurrent programs using shared memory are

incomprehensible because concurrency in the

physical world does not work that way.

We have no experience!

23

Concurrent Programs with Threads and Interrupts

are Brittle

Small changes can have big consequences.

Consider a multithreaded program on multicore:

 Theorem (Richard Graham, 1976): If a task set
with fixed priorities, execution times, and
precedence constraints is optimally scheduled on
a fixed number of processors, then increasing the
number of processors, reducing execution times,
or weakening precedence constraints can increase
the schedule length.

24

The Current State of Affairs

We build embedded

software on abstractions

where time is irrelevant

using concurrency

models that are

incomprehensible.

Just think what we could do with the

right abstractions!

25

Approaching the CPS Challenge

Cyberizing the Physical (CtP): to endow physical

subsystems with cyber-like abstractions and interfaces

Physicalizing the cyber (PtC): to endow software and network components

with abstractions and interfaces that represent their dynamics in time.

26

Projects at Berkeley focused on

Physicalizing the Cyber

Time and concurrency in the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

27

Bottom Up: Make Timing Repeatable

Precision-Timed (PRET) Machines

Make temporal behavior as important as logical function.

Timing precision with performance: Challenges:

Memory hierarchy (scratchpads?)

Deep pipelines (interleaving?)

ISAs with timing (deadline instructions?)

Predictable memory management (Metronome?)

Languages with timing (discrete events? Giotto?)

Predictable concurrency (synchronous languages?)

Composable timed components (actor-oriented?)

Precision networks (TTA? Time synchronization?)

See S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET)

Machine," in the Wild and Crazy Ideas Track of the Design Automation

Conference (DAC), June 2007.

28

Projects at Berkeley focused on

Physicalizing the Cyber

Time and concurrency in the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

29

Rethinking Software Components:

Object Oriented vs. Actor Oriented

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

 Output data

What flows through

an object is

evolving data

class name

data

methods

call return

What flows through

an object is

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

30

Examples of Actor-Oriented Systems

UML 2 and SysML (activity diagrams)

ASCET (time periods, interrupts, priorities, preemption, shared variables)

Autosar (software components w/ sender/receiver interfaces)

Simulink (continuous time, The MathWorks)

LabVIEW (structured dataflow, National Instruments)

SCADE (synchronous, based on Lustre and Esterel)

CORBA event service (distributed push-pull)

ROOM and UML-2 (dataflow, Rational, IBM)

VHDL, Verilog (discrete events, Cadence, Synopsys, ...)

Modelica (continuous time, constraint-based, Linkoping)

OPNET (discrete events, Opnet Technologies)

SDL (process networks)

Occam (rendezvous)

SPW (synchronous dataflow, Cadence, CoWare)

…

The semantics of

these differ
considerably in their

approaches to
concurrency and time.

Some are loose

(ambiguous) and
some rigorous. Some

are strongly actor-
oriented, while some

retain much of the

flavor (and flaws) of
threads.

31

Ptolemy II: Our Laboratory for Experiments with Actor-

Oriented Design

Director from a library

defines component

interaction semantics

Large, behaviorally-

polymorphic component

library.

Visual editor supporting an abstract syntax

Type system for

transported data

Concurrency management supporting

dynamic model structure.

32

Conclusion

The core intellectual challenge in CPS is in

developing abstractions that embrace

computation, networking, and physical dynamics

in a coherent way.

