
Embedded Tutorial 

CPS Foundations 

Edward A. Lee 
Robert S. Pepper Distinguished Professor 

UC Berkeley 

Special Session: Cyber-Physical Systems Demystified 

Design Automation Conference (DAC 2010) 

Annaheim, CA, Thursday, June 17, 2010 



2 

Abstract 

This talk argues that cyber-physical systems present a 

substantial intellectual challenge that requires changes in both 

theories of computation and dynamical systems theory. The 

CPS problem is not the union of cyber and physical problems, 

but rather their intersection, and as such it demands models 

that embrace both. Two complementary approaches are 

identified: cyberizing the physical (CtP) means to endow 

physical subsystems with cyber-like abstractions and interfaces; 

and physicalizing the cyber (PtC) means to endow software and 

network components with abstractions and interfaces that 

represent their dynamics in time. 
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Cyber-Physical Systems (CPS): 
Orchestrating networked computational  

resources with physical systems 

Power 
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Courtesy of  
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Military systems: 
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Automotive 

Building Systems 
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CPS Example – Printing Press  
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Where CPS Differs from 

the traditional embedded software problem: 

The traditional embedded software problem: 

 Embedded software is software on small 

computers. The technical problem is one of 

optimization (coping with limited resources). 

The CPS problem: 

 Computation and networking integrated with 

physical processes. The technical problem is 

managing dynamics, time, and concurrency in 
networked computational + physical systems. 
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Cyber Physical Systems: 

Computational + 
Physical 

CPS is Multidisciplinary  

Computer Science: 

Carefully abstracts the 

physical world  

System Theory: 

Deals directly with  

physical quantities 
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A Key Challenge 

Models for the physical world and for computation diverge. 

physical: time continuum, ODEs, DAEs, PDEs, dynamics 

computational: a “procedural epistemology,” logic 

There is a huge cultural gap. 

Physical system models must be viewed as semantic 
frameworks (cyberizing the physical), and theories of 

computation must be viewed as alternative ways of talking 

about dynamics (physicalizing the cyber) 
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First Challenge on the Cyber Side: 

Real-Time Software 

Correct execution of a program in C, C#, Java, 

Haskell, etc. has nothing to do with how long it 

takes to do anything. All our computation and 

networking abstractions are built on this premise. 

Programmers have to step outside the 

programming abstractions to specify 

timing behavior. 
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Techniques that Exploit this Fact 

Programming languages 

Virtual memory 

Caches 

Dynamic dispatch 

Speculative execution 

Power management (voltage scaling) 

Memory management (garbage collection) 

Just-in-time (JIT) compilation 

Multitasking (threads and processes) 

Component technologies (OO design) 

Networking (TCP) 

… 
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A Story 

In “fly by wire” aircraft, certification of the 

software is extremely expensive. Regrettably, it 

is not the software that is certified but the entire 

system. If a manufacturer expects to produce a 

plane for 50 years, it needs a 50-year stockpile of 

fly-by-wire components that are all made from 

the same mask set on the same production line. 

Even a slight change or “improvement” might 

affect timing and require the software to be re-

certified. 
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Consequences 

Stockpiling for a product run 

Some systems vendors have to purchase up front the entire 
expected part requirements for an entire product run. 

Frozen designs 

Once certified, errors cannot be fixed and improvements cannot 
be made. 

Product families 

Difficult to maintain and evolve families of products together. 

It is difficult to adapt existing designs because small changes 
have big consequences 

Forced redesign 

A part becomes unavailable, forcing a redesign of the system. 

Lock in 

Cannot take advantage of cheaper or better parts. 

Risky in-field updates 

In the field updates can cause expensive failures. 
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Abstraction Layers in Common Use 

 The purpose for an 

abstraction is to 

hide details of the 

implementation 

below and provide a 

platform for design 

from above. 
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Abstraction Layers in Common Use 

 Every abstraction 

layer has failed in 

the fly-by-wire 

scenario. 

 The design is the 

implementation. 
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Abstraction Layers 

 How about “raising 

the level of 

abstraction” to solve 

these problems? 
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But these higher abstractions rely on an 

increasingly problematic fiction: WCET 

Example war story: 

Analysis of: 

• Motorola ColdFire 

• Two coupled pipelines (7-stage) 
• Shared instruction & data cache 

• Artificial example from Airbus 

• Twelve independent tasks 

• Simple control structures 

• Cache/Pipeline interaction 
leads to large integer linear  

programming problem 

And the result is valid only for that exact 

Hardware and software! 

Fundamentally, the ISA of the processor  
has failed to provide an adequate abstraction. 

C. Ferdinand et al., “Reliable and 
precise WCET determination for a 
real-life processor.” EMSOFT 2001. 
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The Key Problem 

 Electronics technology 

delivers highly reliable and 

precise timing… 

… and the overlaying software 

abstractions discard it. 

20.000 MHz (± 100 ppm) 
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Second Challenge on the Cyber Side: 

Concurrency  
(Needed for real time and multicore) 

Threads dominate concurrent software. 

Threads: Sequential computation with shared memory. 

Interrupts: Threads started by the hardware. 

Incomprehensible interactions between threads are the sources 
of many problems: 

Deadlock 
Priority inversion 

Scheduling anomalies 
Timing variability 

Nondeterminism  

Buffer overruns 
System crashes 

Even distributed software 

commonly goes to considerable 

lengths to emulate this rather poor 

abstraction using middleware that 

supports RPC, proxies, and data 

replication. 
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My Claim 

Nontrivial software written with threads is 

incomprehensible to humans, and it 

cannot deliver repeatable or predictable 

behavior, except in trivial cases. 
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Perhaps Concurrency is Just Hard… 

Sutter and Larus observe: 

 “humans are quickly overwhelmed by 
concurrency and find it much more difficult to 
reason about concurrent than sequential code. 
Even careful people miss possible interleavings 
among even simple collections of partially 
ordered operations.” 

 H. Sutter and J. Larus. Software and the concurrency 
revolution. ACM Queue, 3(7), 2005. 
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Is Concurrency Hard? 

It is not 

concurrency that 

is hard… 
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…It is Threads that are Hard! 

Threads are sequential processes that 

share memory. From the perspective of 

any thread, the entire state of the universe 

can change between any two atomic 

actions (itself an ill-defined concept). 

Imagine if the physical world did that… 
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Concurrent programs using shared memory are 

incomprehensible because concurrency in the 

physical world does not work that way. 

We have no experience! 
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Concurrent Programs with Threads and Interrupts 

are Brittle 

Small changes can have big consequences. 

Consider a multithreaded program on multicore: 

 Theorem (Richard Graham, 1976): If a task set 
with fixed priorities, execution times, and 
precedence constraints is optimally scheduled on 
a fixed number of processors, then increasing the 
number of processors, reducing execution times, 
or weakening precedence constraints can increase 
the schedule length. 
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The Current State of Affairs 

We build embedded 

software on abstractions  

where time is irrelevant  

using concurrency  

models that are  

incomprehensible. 

Just think what we could do with the  

right abstractions! 
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Approaching the CPS Challenge 

Cyberizing the Physical (CtP): to endow physical 

subsystems with cyber-like abstractions and interfaces 

Physicalizing the cyber (PtC): to endow software and network components 

with abstractions and interfaces that represent their dynamics in time.  
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Projects at Berkeley focused on  

Physicalizing the Cyber 

Time and concurrency in the core abstractions: 

Foundations: Timed computational semantics. 

Bottom up: Make timing repeatable. 

Top down: Timed, concurrent components. 

Holistic: Model engineering. 
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Bottom Up: Make Timing Repeatable 

Precision-Timed (PRET) Machines 

Make temporal behavior as important as logical function.  

Timing precision with performance: Challenges: 

Memory hierarchy (scratchpads?) 

Deep pipelines (interleaving?) 

ISAs with timing (deadline instructions?) 

Predictable memory management (Metronome?) 

Languages with timing (discrete events? Giotto?) 

Predictable concurrency (synchronous languages?) 

Composable timed components (actor-oriented?) 

Precision networks (TTA? Time synchronization?) 

See S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET) 

Machine," in the Wild and Crazy Ideas Track of the Design Automation 

Conference (DAC), June 2007. 
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Projects at Berkeley focused on  

Physicalizing the Cyber 

Time and concurrency in the core abstractions: 

Foundations: Timed computational semantics. 

Bottom up: Make timing repeatable. 

Top down: Timed, concurrent components. 

Holistic: Model engineering. 
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Rethinking Software Components: 

Object Oriented vs. Actor Oriented 

The alternative: Actor oriented: 

actor name 

data (state) 

ports 

Input data 

parameters 

         Output data 

What flows through 

an object is 

evolving data 

class name 

data 

methods 

call return 

What flows through 

an object is 

sequential control 

The established: Object-oriented: 

Things happen to objects 

Actors make things happen 
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Examples of Actor-Oriented Systems 

UML 2 and SysML (activity diagrams) 

ASCET (time periods, interrupts, priorities, preemption, shared variables ) 

Autosar (software components w/ sender/receiver interfaces) 

Simulink (continuous time, The MathWorks) 

LabVIEW (structured dataflow, National Instruments) 

SCADE (synchronous, based on Lustre and Esterel) 

CORBA event service (distributed push-pull) 

ROOM and UML-2 (dataflow, Rational, IBM) 

VHDL, Verilog (discrete events, Cadence, Synopsys, ...) 

Modelica (continuous time, constraint-based, Linkoping) 

OPNET (discrete events, Opnet Technologies) 

SDL (process networks) 

Occam (rendezvous) 

SPW (synchronous dataflow, Cadence, CoWare) 

… 

The semantics of 

these differ 
considerably in their 

approaches to 
concurrency and time. 

Some are loose 

(ambiguous) and 
some rigorous. Some 

are strongly actor-
oriented, while some 

retain much of the 

flavor (and flaws) of 
threads. 
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Ptolemy II: Our Laboratory for Experiments with Actor-

Oriented Design 

Director from a library 

defines component 

interaction semantics 

Large, behaviorally-

polymorphic component 

library. 

Visual editor supporting an abstract syntax 

Type system for 

transported data 

Concurrency management supporting 

dynamic model structure. 
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Conclusion 

The core intellectual challenge in CPS is in 

developing abstractions that embrace 

computation, networking, and physical dynamics 

in a coherent way. 


