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Abstract 

Cyber-Physical Systems (CPS) are integrations of computation and physical processes. 

Embedded computers and networks monitor and control the physical processes, usually 

with feedback loops where physical processes affect computations and vice versa. These 

systems are multi-scale and heterogeneous, mixing wide ranges of technologies. One of 
the key challenges is that prevailing abstractions used in computing do not mesh well with 

the physical world. Most critically, software systems speak about the passage of time only 

very indirectly and in non-compositional ways, whereas for physical systems, the passage 

of time is intrinsic in their dynamic behavior. This talk examines the obstacles in software 

and networking technologies that are impeding progress, and in particular raises the 
question of whether today's computing and networking technologies provide an adequate 

foundation for CPS. It argues that it will not be sufficient to improve design processes, raise 

the level of abstraction, or verify (formally or otherwise) designs that are built on today's 

abstractions. To realize the full potential of CPS, we will have to modify key software 

technologies. These abstractions will have to embrace physical dynamics and computation 
in a unified way. This talk will discuss research challenges and potential solutions. 
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Cyber-Physical Systems (CPS): 
Orchestrating networked computational  

resources with physical systems 

Power 

generation and 

distribution 

Courtesy of  
General Electric 

Military systems: 

E-Corner, Siemens 

Transportation 

(Air traffic 

control at 
SFO) 

Avionics 

Telecommunications 

Factory automation 

Instrumentation 

(Soleil Synchrotron) 

Daimler-Chrysler 

Automotive 

Building Systems 
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CPS Example – Printing Press  
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Where CPS Differs from 

the traditional embedded software problem: 

The traditional embedded software problem: 

 Embedded software is software on small 

computers. The technical problem is one of 

optimization (coping with limited resources). 

The CPS problem: 

 Computation and networking integrated with 

physical processes. The technical problem is 

managing dynamics, time, and concurrency in 
networked computational + physical systems. 
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Cyber Physical Systems: 

Computational + 
Physical 

CPS is Multidisciplinary  

Computer Science: 

Carefully abstracts the 

physical world  

System Theory: 

Deals directly with  

physical quantities 
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A Key Challenge 

Models for the physical world and for computation diverge. 

physical: time continuum, ODEs, DAEs, PDEs, dynamics 

computational: a “procedural epistemology,” logic 

There is a huge cultural gap. 

Physical system models must be viewed as semantic 
frameworks, and theories of computation must be viewed as 

alternative ways of talking about dynamics. 
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First Challenge on the Cyber Side: 

Real-Time Software 

Correct execution of a program in C, C#, Java, 

Haskell, etc. has nothing to do with how long it 

takes to do anything. All our computation and 

networking abstractions are built on this premise. 

Timing of programs is not repeatable, 

except at very coarse granularity.  

Programmers have to step outside the 

programming abstractions to specify 

timing behavior. 
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Techniques that Exploit this Fact 

Programming languages 

Virtual memory 

Caches 

Dynamic dispatch 

Speculative execution 

Power management (voltage scaling) 

Memory management (garbage collection) 

Just-in-time (JIT) compilation 

Multitasking (threads and processes) 

Component technologies (OO design) 

Networking (TCP) 

… 
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A Story 

In “fly by wire” aircraft, certification of the 

software is extremely expensive. Regrettably, it 

is not the software that is certified but the entire 

system. If a manufacturer expects to produce a 

plane for 50 years, it needs a 50-year stockpile of 

fly-by-wire components that are all made from 

the same mask set on the same production line. 

Even a slight change or “improvement” might 

affect timing and require the software to be re-

certified. 
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Consequences 

Stockpiling for a product run 

Some systems vendors have to purchase up front the entire 
expected part requirements for an entire product run. 

Frozen designs 

Once certified, errors cannot be fixed and improvements cannot 
be made. 

Product families 

Difficult to maintain and evolve families of products together. 

It is difficult to adapt existing designs because small changes 
have big consequences 

Forced redesign 

A part becomes unavailable, forcing a redesign of the system. 

Lock in 

Cannot take advantage of cheaper or better parts. 

Risky in-field updates 

In the field updates can cause expensive failures. 

Lee, Berkeley 12 

Abstraction Layers in Common Use 

 The purpose for an 

abstraction is to 

hide details of the 

implementation 

below and provide a 

platform for design 

from above. 
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Abstraction Layers in Common Use 

 Every abstraction 

layer has failed in 

the fly-by-wire 

scenario. 

 The design is the 

implementation. 
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Abstraction Layers 

 How about “raising 

the level of 

abstraction” to solve 

these problems? 
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But these higher abstractions rely on an 

increasingly problematic fiction: WCET 

Example war story: 

Analysis of: 

• Motorola ColdFire 

• Two coupled pipelines (7-stage) 
• Shared instruction & data cache 

• Artificial example from Airbus 

• Twelve independent tasks 

• Simple control structures 

• Cache/Pipeline interaction 
leads to large integer linear  

programming problem 

And the result is valid only for that exact 

Hardware and software! 

Fundamentally, the ISA of the processor  
has failed to provide an adequate abstraction. 

C. Ferdinand et al., “Reliable and 
precise WCET determination for a 
real-life processor.” EMSOFT 2001. 
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The Key Problem 

 Electronics technology 

delivers highly reliable and 

precise timing… 

… and the overlaying software 

abstractions discard it. 

20.000 MHz (± 100 ppm) 
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Second Challenge on the Cyber Side: 

Concurrency  
(Needed for real time and multicore) 

Threads dominate concurrent software. 

Threads: Sequential computation with shared memory. 

Interrupts: Threads started by the hardware. 

Incomprehensible interactions between threads are the sources 
of many problems: 

Deadlock 
Priority inversion 

Scheduling anomalies 
Timing variability 

Nondeterminism  

Buffer overruns 
System crashes 

Even distributed software 

commonly goes to considerable 

lengths to emulate this rather poor 

abstraction using middleware that 

supports RPC, proxies, and data 

replication. 
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My Claim 

Nontrivial software written with threads is 

incomprehensible to humans, and it 

cannot deliver repeatable or predictable 

behavior, except in trivial cases. 
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Perhaps Concurrency is Just Hard… 

Sutter and Larus observe: 

 “humans are quickly overwhelmed by 
concurrency and find it much more difficult to 
reason about concurrent than sequential code. 
Even careful people miss possible interleavings 
among even simple collections of partially 
ordered operations.” 

 H. Sutter and J. Larus. Software and the concurrency 
revolution. ACM Queue, 3(7), 2005. 
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Is Concurrency Hard? 

It is not 

concurrency that 

is hard… 
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…It is Threads that are Hard! 

Threads are sequential processes that 

share memory. From the perspective of 

any thread, the entire state of the universe 

can change between any two atomic 

actions (itself an ill-defined concept). 

Imagine if the physical world did that… 
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Concurrent programs using shared memory are 

incomprehensible because concurrency in the 

physical world does not work that way. 

We have no experience! 
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Concurrent Programs with Threads and Interrupts 

are Brittle 

Small changes can have big consequences. 

Consider a multithreaded program on multicore: 

 Theorem (Richard Graham, 1976): If a task set 
with fixed priorities, execution times, and 
precedence constraints is optimally scheduled on 
a fixed number of processors, then increasing the 
number of processors, reducing execution times, 
or weakening precedence constraints can increase 
the schedule length. 
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The Current State of Affairs 

We build embedded 

software on abstractions  

where time is irrelevant  

using concurrency  

models that are  

incomprehensible. 

Just think what we could do with the  

right abstractions! 
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The Berkeley Approach 

Time and concurrency in the core abstractions: 

Foundations: Timed computational semantics. 

Bottom up: Make timing repeatable. 

Top down: Timed, concurrent components. 

Holistic: Model engineering. 
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Foundations:  

Timed-Computational Semantics. 

s  S N 

Causal systems operating on 

signals are usually naturally 
(Scott) continuous. 

concurrent actor-

oriented models 

abstraction 

fixed-point 

semantics 

super-dense 

time 
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Hierarchical 

Multimodeling 

Hierarchical compositions of 

models of computation. 

Maintaining temporal 

semantics across MoCs is a 

key challenge. 

The example 

here was 

developed in a 

collaborative 

project with 

Lockheed-

Martin. 

Fault Model 

Test 

Model 

Concurrency Model 

Modal Behavior 

Fault 

Adaptation 

Etc. 
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The Berkeley Approach 

Time and concurrency in the core abstractions: 

Foundations: Timed computational semantics. 

Bottom up: Make timing repeatable. 

Top down: Timed, concurrent components. 

Holistic: Model engineering. 
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Bottom Up: Make Timing Repeatable 

Precision-Timed (PRET) Machines 

Make temporal behavior as important as logical function.  

Timing precision with performance: Challenges: 

Memory hierarchy (scratchpads?) 

Deep pipelines (interleaving?) 

ISAs with timing (deadline instructions?) 

Predictable memory management (Metronome?) 

Languages with timing (discrete events? Giotto?) 

Predictable concurrency (synchronous languages?) 

Composable timed components (actor-oriented?) 

Precision networks (TTA? Time synchronization?) 

See S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET) 

Machine," in the Wild and Crazy Ideas Track of the Design Automation 

Conference (DAC), June 2007. 
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The Berkeley Approach 

Time and concurrency in the core abstractions: 

Foundations: Timed computational semantics. 

Bottom up: Make timing repeatable. 

Top down: Timed, concurrent components. 

Holistic: Model engineering. 
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Rethinking Software Components: 

Object Oriented vs. Actor Oriented 

The alternative: Actor oriented: 

actor name 

data (state) 

ports 

Input data 

parameters 

         Output data 

What flows through 

an object is 

evolving data 

class name 

data 

methods 

call return 

What flows through 

an object is 

sequential control 

The established: Object-oriented: 

Things happen to objects 

Actors make things happen 
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Examples of Actor-Oriented Systems 

UML 2 and SysML (activity diagrams) 

ASCET (time periods, interrupts, priorities, preemption, shared variables ) 

Autosar (software components w/ sender/receiver interfaces) 

Simulink (continuous time, The MathWorks) 

LabVIEW (structured dataflow, National Instruments) 

SCADE (synchronous, based on Lustre and Esterel) 

CORBA event service (distributed push-pull) 

ROOM and UML-2 (dataflow, Rational, IBM) 

VHDL, Verilog (discrete events, Cadence, Synopsys, ...) 

Modelica (continuous time, constraint-based, Linkoping) 

OPNET (discrete events, Opnet Technologies) 

SDL (process networks) 

Occam (rendezvous) 

SPW (synchronous dataflow, Cadence, CoWare) 

… 

The semantics of 

these differ 
considerably in their 

approaches to 
concurrency and time. 

Some are loose 

(ambiguous) and 
some rigorous. Some 

are strongly actor-
oriented, while some 

retain much of the 

flavor (and flaws) of 
threads. 
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Ptolemy II: Our Laboratory for Experiments with 

Actor-Oriented Design 

Director from a library 

defines component 

interaction semantics 

Large, behaviorally-

polymorphic component 

library. 

Visual editor supporting an abstract syntax 

Type system for 

transported data 

Concurrency management supporting 

dynamic model structure. 
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Approach: Concurrent Composition of 

Components designed with Conventional 

Languages 
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A Key Concern: Timing Properties in the Interface 

of Software Components 

One approach is a model of computation that we call PTIDES, 

which combines discrete events with a binding to real time. 

Input time stamps are 

 real time 

Input time stamps are 

 real time 

Output time stamps 

are  real time 

Output time stamps 

are  real time 
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The Berkeley Approach 

Time and concurrency in the core abstractions: 

Foundations: Timed computational semantics. 

Bottom up: Make timing repeatable. 

Top down: Timed, concurrent components. 

Holistic: Model engineering. 
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A Taxonomy of Modeling Issues 
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Challenges: 

• Scalability 

• Understandability 

• Composability 

Abstract Syntax 
Communicating Hierarchical Components 



Edward A. Lee March 15, 2010 

20 

Lee, Berkeley 39 

Static Semantics 

Correctly Composing Models 

Our approach: 

Leverage/generalize type theories: 

Foundations: Fixed-point 

theorems for monotonic 

functions on mathematical 

lattices. 

Modern type systems are based 

on efficient algorithms for 

solving inequality constraints on 

lattices. 

Such lattices, however, can 

represent much more than data 

types. 

Simple example of a type lattice 

Challenges: 

• Scalability 

• Understandability 

• Composability 

• Consistency 
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Challenges: 

• Scalability 

• Understandability 

• Composability 

• Consistency 

• Verification 

Our approach: 

Behavioral Types 

Dynamic Semantics 

Correctly Composing Models 

Behavioral types can represent dynamic properties of 

components of a system within a type-theoretic framework 

that enables compatibility checking. We will: 
• Identify properties of interfaces that enable composition and 

show how compositional interfaces can be used in hierarchical 

heterogeneous specifications. 

• Build prototype software that composes interfaces. 

• Refine algorithms for composition of interfaces and identify 

performance bottlenecks 
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Beyond Embedded to 

Cyber-Physical Systems 
The Berkeley Approach 

Foundations 

Concurrency and time 

Bottom up 

Make behaviors predictable and repeatable 

Top down 

Actor component architectures 

Holistic 

Model engineering 


