
Edward A. Lee March 15, 2010

1

Design Challenges for

Cyber-Physical Systems

Edward A. Lee
Robert S. Pepper Distinguished Professor

UC Berkeley

Strategies for Embedded Computing Research

International policy conference

Vienna, March 18 - March 19, 2010

Lee, Berkeley 2

Abstract

Cyber-Physical Systems (CPS) are integrations of computation and physical processes.

Embedded computers and networks monitor and control the physical processes, usually

with feedback loops where physical processes affect computations and vice versa. These

systems are multi-scale and heterogeneous, mixing wide ranges of technologies. One of
the key challenges is that prevailing abstractions used in computing do not mesh well with

the physical world. Most critically, software systems speak about the passage of time only

very indirectly and in non-compositional ways, whereas for physical systems, the passage

of time is intrinsic in their dynamic behavior. This talk examines the obstacles in software

and networking technologies that are impeding progress, and in particular raises the
question of whether today's computing and networking technologies provide an adequate

foundation for CPS. It argues that it will not be sufficient to improve design processes, raise

the level of abstraction, or verify (formally or otherwise) designs that are built on today's

abstractions. To realize the full potential of CPS, we will have to modify key software

technologies. These abstractions will have to embrace physical dynamics and computation
in a unified way. This talk will discuss research challenges and potential solutions.

Edward A. Lee March 15, 2010

2

Lee, Berkeley 3 Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS):
Orchestrating networked computational

resources with physical systems

Power

generation and

distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation

(Air traffic

control at
SFO)

Avionics

Telecommunications

Factory automation

Instrumentation

(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

Lee, Berkeley 4

CPS Example – Printing Press

•

•

•

•

•

•

•

•

•

•

Edward A. Lee March 15, 2010

3

Lee, Berkeley 5

Where CPS Differs from

the traditional embedded software problem:

The traditional embedded software problem:

 Embedded software is software on small

computers. The technical problem is one of

optimization (coping with limited resources).

The CPS problem:

 Computation and networking integrated with

physical processes. The technical problem is

managing dynamics, time, and concurrency in
networked computational + physical systems.

Lee, Berkeley 6

Cyber Physical Systems:

Computational +
Physical

CPS is Multidisciplinary

Computer Science:

Carefully abstracts the

physical world

System Theory:

Deals directly with

physical quantities

Edward A. Lee March 15, 2010

4

Lee, Berkeley 7

A Key Challenge

Models for the physical world and for computation diverge.

physical: time continuum, ODEs, DAEs, PDEs, dynamics

computational: a “procedural epistemology,” logic

There is a huge cultural gap.

Physical system models must be viewed as semantic
frameworks, and theories of computation must be viewed as

alternative ways of talking about dynamics.

Lee, Berkeley 8

First Challenge on the Cyber Side:

Real-Time Software

Correct execution of a program in C, C#, Java,

Haskell, etc. has nothing to do with how long it

takes to do anything. All our computation and

networking abstractions are built on this premise.

Timing of programs is not repeatable,

except at very coarse granularity.

Programmers have to step outside the

programming abstractions to specify

timing behavior.

Edward A. Lee March 15, 2010

5

Lee, Berkeley 9

Techniques that Exploit this Fact

Programming languages

Virtual memory

Caches

Dynamic dispatch

Speculative execution

Power management (voltage scaling)

Memory management (garbage collection)

Just-in-time (JIT) compilation

Multitasking (threads and processes)

Component technologies (OO design)

Networking (TCP)

…

Lee, Berkeley 10

A Story

In “fly by wire” aircraft, certification of the

software is extremely expensive. Regrettably, it

is not the software that is certified but the entire

system. If a manufacturer expects to produce a

plane for 50 years, it needs a 50-year stockpile of

fly-by-wire components that are all made from

the same mask set on the same production line.

Even a slight change or “improvement” might

affect timing and require the software to be re-

certified.

Edward A. Lee March 15, 2010

6

Lee, Berkeley 11

Consequences

Stockpiling for a product run

Some systems vendors have to purchase up front the entire
expected part requirements for an entire product run.

Frozen designs

Once certified, errors cannot be fixed and improvements cannot
be made.

Product families

Difficult to maintain and evolve families of products together.

It is difficult to adapt existing designs because small changes
have big consequences

Forced redesign

A part becomes unavailable, forcing a redesign of the system.

Lock in

Cannot take advantage of cheaper or better parts.

Risky in-field updates

In the field updates can cause expensive failures.

Lee, Berkeley 12

Abstraction Layers in Common Use

 The purpose for an

abstraction is to

hide details of the

implementation

below and provide a

platform for design

from above.

Edward A. Lee March 15, 2010

7

Lee, Berkeley 13

Abstraction Layers in Common Use

 Every abstraction

layer has failed in

the fly-by-wire

scenario.

 The design is the

implementation.

Lee, Berkeley 14

Abstraction Layers

 How about “raising

the level of

abstraction” to solve

these problems?

Edward A. Lee March 15, 2010

8

Lee, Berkeley 15

But these higher abstractions rely on an

increasingly problematic fiction: WCET

Example war story:

Analysis of:

• Motorola ColdFire

• Two coupled pipelines (7-stage)
• Shared instruction & data cache

• Artificial example from Airbus

• Twelve independent tasks

• Simple control structures

• Cache/Pipeline interaction
leads to large integer linear

programming problem

And the result is valid only for that exact

Hardware and software!

Fundamentally, the ISA of the processor
has failed to provide an adequate abstraction.

C. Ferdinand et al., “Reliable and
precise WCET determination for a
real-life processor.” EMSOFT 2001.

Lee, Berkeley 16

The Key Problem

 Electronics technology

delivers highly reliable and

precise timing…

… and the overlaying software

abstractions discard it.

20.000 MHz (± 100 ppm)

Edward A. Lee March 15, 2010

9

Lee, Berkeley 17

Second Challenge on the Cyber Side:

Concurrency
(Needed for real time and multicore)

Threads dominate concurrent software.

Threads: Sequential computation with shared memory.

Interrupts: Threads started by the hardware.

Incomprehensible interactions between threads are the sources
of many problems:

Deadlock
Priority inversion

Scheduling anomalies
Timing variability

Nondeterminism

Buffer overruns
System crashes

Even distributed software

commonly goes to considerable

lengths to emulate this rather poor

abstraction using middleware that

supports RPC, proxies, and data

replication.

Lee, Berkeley 18

My Claim

Nontrivial software written with threads is

incomprehensible to humans, and it

cannot deliver repeatable or predictable

behavior, except in trivial cases.

Edward A. Lee March 15, 2010

10

Lee, Berkeley 19

Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

 “humans are quickly overwhelmed by
concurrency and find it much more difficult to
reason about concurrent than sequential code.
Even careful people miss possible interleavings
among even simple collections of partially
ordered operations.”

 H. Sutter and J. Larus. Software and the concurrency
revolution. ACM Queue, 3(7), 2005.

Lee, Berkeley 20

Is Concurrency Hard?

It is not

concurrency that

is hard…

Edward A. Lee March 15, 2010

11

Lee, Berkeley 21

…It is Threads that are Hard!

Threads are sequential processes that

share memory. From the perspective of

any thread, the entire state of the universe

can change between any two atomic

actions (itself an ill-defined concept).

Imagine if the physical world did that…

Lee, Berkeley 22

Concurrent programs using shared memory are

incomprehensible because concurrency in the

physical world does not work that way.

We have no experience!

Edward A. Lee March 15, 2010

12

Lee, Berkeley 23

Concurrent Programs with Threads and Interrupts

are Brittle

Small changes can have big consequences.

Consider a multithreaded program on multicore:

 Theorem (Richard Graham, 1976): If a task set
with fixed priorities, execution times, and
precedence constraints is optimally scheduled on
a fixed number of processors, then increasing the
number of processors, reducing execution times,
or weakening precedence constraints can increase
the schedule length.

Lee, Berkeley 24

The Current State of Affairs

We build embedded

software on abstractions

where time is irrelevant

using concurrency

models that are

incomprehensible.

Just think what we could do with the

right abstractions!

Edward A. Lee March 15, 2010

13

Lee, Berkeley 25

The Berkeley Approach

Time and concurrency in the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

Lee, Berkeley 26

Foundations:

Timed-Computational Semantics.

s S N

Causal systems operating on

signals are usually naturally
(Scott) continuous.

concurrent actor-

oriented models

abstraction

fixed-point

semantics

super-dense

time

Edward A. Lee March 15, 2010

14

Lee, Berkeley 27

Hierarchical

Multimodeling

Hierarchical compositions of

models of computation.

Maintaining temporal

semantics across MoCs is a

key challenge.

The example

here was

developed in a

collaborative

project with

Lockheed-

Martin.

Fault Model

Test

Model

Concurrency Model

Modal Behavior

Fault

Adaptation

Etc.

Lee, Berkeley 28

The Berkeley Approach

Time and concurrency in the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

Edward A. Lee March 15, 2010

15

Lee, Berkeley 29

Bottom Up: Make Timing Repeatable

Precision-Timed (PRET) Machines

Make temporal behavior as important as logical function.

Timing precision with performance: Challenges:

Memory hierarchy (scratchpads?)

Deep pipelines (interleaving?)

ISAs with timing (deadline instructions?)

Predictable memory management (Metronome?)

Languages with timing (discrete events? Giotto?)

Predictable concurrency (synchronous languages?)

Composable timed components (actor-oriented?)

Precision networks (TTA? Time synchronization?)

See S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET)

Machine," in the Wild and Crazy Ideas Track of the Design Automation

Conference (DAC), June 2007.

Lee, Berkeley 30

The Berkeley Approach

Time and concurrency in the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

Edward A. Lee March 15, 2010

16

Lee, Berkeley 31

Rethinking Software Components:

Object Oriented vs. Actor Oriented

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

 Output data

What flows through

an object is

evolving data

class name

data

methods

call return

What flows through

an object is

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

Lee, Berkeley 32

Examples of Actor-Oriented Systems

UML 2 and SysML (activity diagrams)

ASCET (time periods, interrupts, priorities, preemption, shared variables)

Autosar (software components w/ sender/receiver interfaces)

Simulink (continuous time, The MathWorks)

LabVIEW (structured dataflow, National Instruments)

SCADE (synchronous, based on Lustre and Esterel)

CORBA event service (distributed push-pull)

ROOM and UML-2 (dataflow, Rational, IBM)

VHDL, Verilog (discrete events, Cadence, Synopsys, ...)

Modelica (continuous time, constraint-based, Linkoping)

OPNET (discrete events, Opnet Technologies)

SDL (process networks)

Occam (rendezvous)

SPW (synchronous dataflow, Cadence, CoWare)

…

The semantics of

these differ
considerably in their

approaches to
concurrency and time.

Some are loose

(ambiguous) and
some rigorous. Some

are strongly actor-
oriented, while some

retain much of the

flavor (and flaws) of
threads.

Edward A. Lee March 15, 2010

17

Lee, Berkeley 33

Ptolemy II: Our Laboratory for Experiments with

Actor-Oriented Design

Director from a library

defines component

interaction semantics

Large, behaviorally-

polymorphic component

library.

Visual editor supporting an abstract syntax

Type system for

transported data

Concurrency management supporting

dynamic model structure.

Lee, Berkeley 34

Approach: Concurrent Composition of

Components designed with Conventional

Languages

Edward A. Lee March 15, 2010

18

Lee, Berkeley 35

A Key Concern: Timing Properties in the Interface

of Software Components

One approach is a model of computation that we call PTIDES,

which combines discrete events with a binding to real time.

Input time stamps are

 real time

Input time stamps are

 real time

Output time stamps

are real time

Output time stamps

are real time

Lee, Berkeley 36

The Berkeley Approach

Time and concurrency in the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

Edward A. Lee March 15, 2010

19

Lee, Berkeley 37

A Taxonomy of Modeling Issues

Lee, Berkeley 38

Challenges:

• Scalability

• Understandability

• Composability

Abstract Syntax
Communicating Hierarchical Components

Edward A. Lee March 15, 2010

20

Lee, Berkeley 39

Static Semantics

Correctly Composing Models

Our approach:

Leverage/generalize type theories:

Foundations: Fixed-point

theorems for monotonic

functions on mathematical

lattices.

Modern type systems are based

on efficient algorithms for

solving inequality constraints on

lattices.

Such lattices, however, can

represent much more than data

types.

Simple example of a type lattice

Challenges:

• Scalability

• Understandability

• Composability

• Consistency

Lee, Berkeley 40 Edward Lee

Challenges:

• Scalability

• Understandability

• Composability

• Consistency

• Verification

Our approach:

Behavioral Types

Dynamic Semantics

Correctly Composing Models

Behavioral types can represent dynamic properties of

components of a system within a type-theoretic framework

that enables compatibility checking. We will:
• Identify properties of interfaces that enable composition and

show how compositional interfaces can be used in hierarchical

heterogeneous specifications.

• Build prototype software that composes interfaces.

• Refine algorithms for composition of interfaces and identify

performance bottlenecks

Edward A. Lee March 15, 2010

21

Lee, Berkeley 41

Beyond Embedded to

Cyber-Physical Systems
The Berkeley Approach

Foundations

Concurrency and time

Bottom up

Make behaviors predictable and repeatable

Top down

Actor component architectures

Holistic

Model engineering

