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Abstract. The problem addressed by this paper is that real-time embedded soft-
ware today is commonly built using programming abstractions with little or no
temporal semantics. The paper discusses the use of an extension to the Ptolemy
II framework as a coordination language for the design of distributed real-time
embedded systems. Specifically, the paper shows how to use modal models in the
context of the PTIDES extension of Ptolemy II to provide a firm basis for the
design of an important class of problems. We show the use of this environment in
the design of interesting practical real-time systems.

1 Introduction

In cyber-physical systems (CPS) the passage of time becomes a central feature — in
fact, it is this key constraint that distinguishes these systems from distributed comput-
ing in general. Time is central to predicting, measuring, and controlling properties of
the physical world: given a physical model, the initial state, the inputs, and the amount
of time elapsed, one can compute the current state of the plant. This principle pro-
vides the foundations of control theory. However, for current mainstream programming
paradigms, given the source code, the program’s initial state, and the amount of time
elapsed, we cannot reliably predict future program state. When that program is inte-
grated into a system with physical dynamics, this makes principled design of the entire
system difficult. Moreover, the disparity between the dynamics of the physical plant and
the program potentially leads to errors, some of which can be catastrophic.

The challenge of integrating computing and physical processes has been recognized
for some time, motivating the emergence of hybrid systems theories. Progress in that
area, however, remains limited to relatively simple systems combining ordinary differ-
ential equations with automata. These models inherit from control theory a uniform no-
tion of time, an oracle called ¢ available simultaneously in all parts of the system. Even
adaptations of traditional computer science concepts to distributed control problems
make the assumption of the oracle ¢. For example, in [21] consensus problems from
computer science are translated into control systems formulations. These formulations,
however, break down without the uniform notion of time that governs the dynamics. In
networked software implementations, such a uniform notion of time cannot be precisely
realized. Time triggered networks [12] can be used to approximate a uniform model of
time, but the analysis of the dynamics has to include the imperfections.

Although real-time software is not a new problem there exist trends with a potential
to change the landscape. Model-based design [11], for example, has caught on in in-
dustrial practice, through the use of tools such as Simulink, TargetLink, and LabVIEW.
Domain-specific modeling languages are increasingly being used because they tend to
have formal semantics that experts can use to describe their domain constraints. This
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enables safety or quality of service verification, and thus helps with integration and
scalability of designed systems. For CPS, models with temporal semantics are particu-
larly natural to system designers. An example of such a language is Timing-Augmented
Description Language [10], a domain-specific language recently developed within the
automotive initiative AUTOSAR. However, the multiplication of modeling languages
raises the question of mutual consistency and interoperability. This is mainly why the
OMG consortium extended UML with a profile called MARTE (Modeling and Anal-
ysis of Real-Time and Embedded Systems) [23]. Another trend is the acceptance of
synchronous-reactive languages, particularly SCADE [1], in safety critical applications.
The model-based design approach we propose in this paper borrows sound fixed-point
semantics from the synchronous languages, but is more flexible and concurrent. Also
related to our work are component frameworks based on formal verification methods,
like the BIP framework [2], but they mostly focus on compositional verification of prop-
erties such as deadlock freedom. BIP relies on priorities to model scheduling policies
and, as far as we know, has not been used to address modeling and design problems for
components with explicit timing requirements.

To ensure proper real-time interaction between the dynamics of the controller and
the dynamics of the controlled physical system, programmers of embedded systems
typically use platform-specific system timers. However, design of the system should be
independent of implementation details, in order to allow for portability of the design.
In [26] we presented a programming model called PTIDES (programming temporally-
integrated distributed embedded systems) that addresses this problem by relying on a
suitable abstraction of time. With PTIDES, application programmers specify the inter-
action between the control program and the physical dynamics in the system model,
without the knowledge of details such as timers. Paper [28] studies the semantic prop-
erties of an execution model that permits out of order processing of events without
sacrificing determinacy and without requiring backtracking.

The goal of this work is to demonstrate the usefulness of PTIDES for time-critical
CPS applications. We first explain how design with PTIDES results in deterministic
processing of events. Then we illustrate how to specify timed reactions to events in
PTIDES models. This results in traces from model simulation and execution of auto-
matically generated code being identical. In order to account for different modes of
operation, modal models have been widely used in embedded system design [8]. Here,
we show the use of modal models within the context of a timed environment, i.e., we
illustrate timed mode transitions and operations in modes at certain time instants.

This paper is organized as follows. First, section 2 discusses the PTIDES design
environment, which enables a programmer to first model and simulate the design, and
then implement it through a target-specific code generator. At the top level, this envi-
ronment uses the PTIDES [26] extension to the Ptolemy II simulation framework [7] as
a coordination language for the design of distributed real-time embedded systems. Sec-
tion 3 then explains temporal semantics of PTIDES, and shows how the use of modal
models in the context of PTIDES provides a firm basis for the design of an important
class of CPS. This is followed by a detailed example in section 4, which shows the use
of this environment and particularly the ability to explicitly address timing in the design
of interesting practical real-time systems. We conclude in section 5.
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2 Design Environment

2.1 PTIDES Workflow

PTIDES
el Simulator tation. The proposed PTIDES
e T oTE - design environment is an ex-
T tension of the Ptolemy II
I o Schedulabiity)  {ramework which supports mod-
ol \’ m Analysis eling, simulation, and design
I"\_f\’ i of systems using mixed mod-

Code. Program
Generation Analysis
PtidyOS
Runtime

PtidyOS

Fig. 1 shows our envisioned
workflow, from modeling to
code generation to implemen-

els of computation. PTIDES
models define the functional
and temporal interaction of
distributed software compo-
nents, the networks that bind

them together, sensors, actu-
ators, and physical dynamics.
Simulation can be done on
such models, such that func-
tionality and timing can be tested. In particular, each actor can be annotated with exe-
cution time, and with several implemented scheduling schemes simulation can be per-
formed to confirm whether real-time constraints can be met for a given set of inputs.

The PTIDES design environment leverages the Ptolemy II code generation frame-
work, and allows a programmer to generate target-specific implementations from the
PTIDES model once she is satisfied with the design. The generated executable includes
a lightweight real-time operating system (RTOS) which we call PtidyOS. Its real-time
scheduler implements PTIDES semantics and therefore preserves the timing specifi-
cations present in the top level PTIDES design. Like TinyOS [17], PtidyOS is a set
of C libraries that glues together application code, which then runs on bare-iron. Cur-
rently, our code generation framework supports a Luminary Micro board as our target
platform. Once implemented in PtidyOS, platform specific worst-case-execution times
need to be extracted through program analysis, and schedulability analysis is needed to
ensure the real-time requirements are met. It is important to point out, at this point of
our PTIDES project, program and schedulability analysis are still under development.
Though we have carried out modeling, simulation, and implementation of a number of
small examples using the PTIDES simulator and PtidyOS, in this paper we only focus
on the modeling and simulation of several applications to illustrate how explicit timing
constraints can be used, but not on their PtidyOS implementations.

Fig. 1. PTIDES Code Generation Workflow

2.2 Model Time and Physical Time

PTIDES is based on discrete-event (DE) systems [3] [25], which provide a model of
time and concurrency. We specify DE systems using the actor-oriented approach. Ac-
tors are concurrent components that exchange time-stamped events via input and output

Oslo, Norway, October 4, 2010



MoDELS 2010 ACES-MB Workshop Proceedings

ports. The time in time stamps is a part of the model, playing a formal role in the com-
putation. We refer to this time as model time. It may or may not bear any relationship
to time in the physical world, which in this paper we will call physical time. In basic
DE semantics, each actor processes input events in time-stamp order. There are no con-
straints on the physical time at which events are processed. We assume a variant of DE
that has been shown to integrate well with models of continuous dynamics [16]. The
purpose of this paper is not to study its rigorous and determinate semantics. For that an
interested reader is referred to [18] and [13].

PTIDES extends DE by establishing a relationship between model time and physi-
cal time at sensors, actuators, and network interfaces. Whereas DE models have tradi-
tionally been used to construct simulations, PTIDES provides a programmer’s model
for the specification of both functional and temporal properties of deployable cyber-
physical systems. There are three key constraints that define the relationship between
model time and physical time: 1) sensors produce events with timetamp 7 at physical
time ¢ > 7, 2) actuators receives events with timestamp 7 at physical time ¢ < 7, and 3)
network interfaces receive events with timestamp 7 at physical time ¢ < 7. We explain
these constraints in detail below.

The basic PTIDES
model is explained

Platform 1 . )
by referring to Fig-
il o [ Compuaton | atorm 3 el ure 2, which shows
) Computation3 oo three computational
E— J platforms (typically
o Compuation i vorge embedded computers)
‘ qacer s Jt— - connected by a net-
. Local b4 i .

|E\Tgs§:el - ‘ﬁ.heyffffé work and haVlng lo
fabric | Souce Rl cal sensors and actu-
[ L i

e ators. On Platform 3,

a component labeled

Local Event Source

produces a sequence

Fig. 2. Prototypical CPS of events that drive

an actuator through

two other components. The component labeled Computation4 processes each event and

produces an output event with the same time stamp as the input event that triggers the

computation. Those events are merged in time stamp order by a component Merge and
delivered to a component labeled Actuatorl.

Physical
plant

In PTIDES, an actuator component interprets its input events as commands to per-
form some physical action at a physical time equal to the time stamp of the event. The
physical time of this event is measured based on clocks commensurate with UTC or a
local system-wide real-time clock. This interpretation imposes our first real-time con-
straint on all the software components upstream of the actuator. Each event must be
delivered to the actuator at a physical time earlier than the event’s time stamp to avoid
causality violations. Either PtidyOS or the design of the actuator itself ensures that the
actuation affects the physical world at a time equal to the event time stamp. Therefore
the deployed system exhibits the exact temporal behavior specified in the design to
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within the limits of the accuracy of clock synchronization between platforms and the
temporal resolution of the actuators and clocks.

In Figure 2, Platform 3 contains an actuator that is affected both by some local
control and by messages received over the network. The local control commands are
generated by the actor Local Event Source, and modified by the component Computa-
tion4. The Merge component can inject commands to the actuator that originate from
either the local event source or from the network. The commands are merged in order of
their time stamps. Notice that the top input to the Merge component comes from com-
ponents that get inputs from sensors on the remote platforms. The sensor components
produce on their output ports time-stamped events. Here, the PTIDES model imposes a
second relationship between model time stamps and physical time. Specifically, when a
sensor component produces a time-stamped output event, that time stamp must be less
than or equal to physical time, however physical time is measured. The sensor can only
tell the system about the past, not about the future.

The third and final relationship refers to network interfaces. In this work we assume
that the act of sending an event via a network is similar to delivering an event to an
actuator; i.e., the event must be delivered to the network interface by a deadline equal
to the time stamp of the event. Consider Platform 1 in Figure 2 as an example. When
an event of time stamp 7 is to be sent into the network fabric, the transmission of this
event needs to happen no later than physical time 7. In general, we could set the dead-
line to something other than the time stamp, but for our purposes here, it is sufficient
that there be a deadline, and that the deadline be a known function of the time stamp.
Our assumption that it equals the time stamp makes the analysis in next subsections
particularly simple, so for the purposes of this paper we proceed with that.

2.3 Event Processing in PTIDES

Under benign conditions [13], DE models are determinate in that given the time-stamped
inputs to the model, all events are fully defined. Thus, any correct execution of the
model must deliver the same time-stamped events to actuators, given the same time-
stamped events from the sensors (this assumes that each software component is itself
determinate). An execution of a PTIDES model is required to follow DE semantics,
and hence deliver this determinacy. It is this property that makes executions of PTIDES
models repeatable. A test of any “correct” execution of a PTIDES model will match
the behavior of any other correct execution.

The key question is how to deliver a “correct” execution. For example, consider the
Merge component in Figure 2. This component must merge events in time-stamp order
for delivery to the actuator. Given an event from the local Computation4 component,
when can it safely pass that event to the actuator? Here lies a key feature of PTIDES.
The decision to pass the event to the actuator is made locally at run time by comparing
the time stamp of the event against a local clock that is tracking physical time. This
strategy results in decentralized control, removing the risks introduced by a single point
of failure, and making systems much more modular and composable.

There are two key assumptions made in PTIDES. First, distributed platforms have
real-time clocks synchronized with bounded error. The PTIDES model of computation
works with any bound on the error, but the smaller the bound, the tighter the real-time
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constraints can be. Time synchronization techniques such as IEEE 1588 [9] can deliver
real-time clock precision on the nanosecond order.

Second, PTIDES requires that there be a bound on the communication delay be-
tween any two hardware components. Specifically, sensors and actuators must deliver
time-stamped events to the run-time system within a bounded delay, and a network
must transport a time-stamped event with a bounded delay. Bounding network delay
is potentially more problematic when using generic networking technologies such as
Ethernet, but bounded network delay is already required today in the applications of in-
terest here. This has in fact historically forced deployments of these applications to use
specialized networking techniques (such as time-triggered architectures [12], FlexRay
[19], and CAN buses [24]). One of the goals of our research is to use PTIDES on less
constraining networking architectures, e.g. to allow more flexibility in processing aperi-
odic events. In the time-triggered architectures, all actions are initiated by the computer
system at known time instants. In our approach, events coming from the environment
are allowed and are treated deterministically. Here it is sufficient to observe that these
boundedness assumptions are achievable in practice. Since PTIDES allows detection of
run-time timing errors, it is possible to model responses to failures of these assumptions.

Once these two assumptions (bounded time synchronization error and communica-
tion delays) are accepted, together with deadlines for network interfaces and actuators,
local decisions can be made to deliver events in Figure 2 without compromising DE
semantics. Specifically, in Figure 2, notice that the top input to the Merge comes from
Sensor1 and Sensor2 through a chain of software components and a network link. Static
analysis of these chains reveals the operations performed on time stamps. In particular,
in this figure, assume that the only components that manipulate time stamps are the
components labeled model time delay d;. These components accept an input event and
produce an output event with the same data but with a time stamp incremented by d;.

Assume we have an event e with time stamp 7 at the bottom input of Merge, and that
there is no other event on Platform 3 with an earlier time stamp. This event can be passed
to the output only when we are sure that no event will later appear at the top input of
Merge with a time stamp less than or equal to 7. This will preserve DE semantics. When
can we be sure that e is safe to process in this way? We assume that events destined to
the top input of Merge must be produced by a reaction in Computation3 to events that
arrive over the network. Moreover, the outputs of Computation3 are further processed
to increment their time stamps by ds. Thus, we are sure e is safe to process when no
events from the network will arrive at Platform 3 with time stamps less than or equal to
7 — do. When can we be sure of this? Let us assume a network delay bound of n and
a clock synchronization error bound of s between platforms. By the network interface
assumption discussed above, we know that all events sent by Platform 1 or Platform 2
with time stamps less than 7 — dy will be sent over the network by the physical time
T — ds. Consequently, all events with time stamp less than or equal to 7 — d2 will be
received on Platform3 by the physical time 7 — ds + n + s, where the s term accounts
for the possible disagreement in the measurement of physical time. Thus when physical
time on Platform 3 exceeds 7 —dz+n+s, event e will be safe to process. In other words,
to ensure that the processing of an event obeys DE semantics, at run time, the only test
that is needed is to compare time stamps to physical time with an offset (in the previous
example, the offset is —dy+n+s). Notice, if we assume the model is static (components
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are not added during runtime and connections are not changed); minimum bounds on
model time delays (d;’s) for components are known statically; and the upper bounds
for sensor processing times, network delays, and network synchronization errors are
known, then the offsets can be calculated statically using a graph traversal algorithm.

Note that the distributed execution control of PTIDES introduces another valuable
form of robustness in the system. For example, in Figure 2, if, say, Platform 1 ceases
functioning altogether, and stops sending events on the network, that fact alone cannot
prevent Platform 3 from continuing to drive its actuator with locally generated control
signals. This would not be true if we preserved DE semantics by conservative tech-
niques based on the work by Chandy and Misra [4]. It is also easy to see that PTIDES
models can include components that monitor system integrity. For example, Platform
3 could raise an alarm and change operating modes if it fails to get messages from
Platform 1. It could also raise an alarm if it later receives a message with an unexpect-
edly small time stamp. Time synchronization with bounded error helps to give such
mechanisms a rigorous semantics.

As long as events are delivered on time and in time-stamp order to actuators, the
execution will look exactly the same to the environment. This makes PTIDES models
much more robust than typical real-time software, because small changes in the (phys-
ical) execution timing of internal events are not visible to the environment (as long as
real-time constraints are met at sensors, actuators and network interfaces). Moreover,
since execution of a PTIDES model carries time stamps at run time, run time violations
of deadlines at actuators can be detected. PTIDES models can be easily made adaptive,
changing modes of operation, for example, when such real-time violations occur. In
general, therefore, PTIDES models provide adequate runtime information for detecting
and reacting to a rich variety of timing faults.

3 Temporal Semantics in PTIDES

PTIDES semantics is fully described in [26] and [28], and is based on a tagged-signal
model [15]. For this discussion the important point is that actors define a functional
relationship between a set of tagged signals on the input ports and a set of tagged signals
on the output ports of the actor, F, : ST — S©. Here, I is a set of input ports, O is a
set of output ports, and S a set of signals. The signals s € S are sets of (time stamp,
value) pairs of the form (7,v) € T'x V where the time set 7" represents time and V' is a
set of values (the data payloads) of events. For simulation, the most common use of DE
modeling, time stamps typically have no connection with real time, and can advance
slower or faster than real time [25].
Prides Basic Director Actors are permitted
to modify the time stamp
@(zs seconds, 15 volts) [ "] (35 seconds, 15 volts)m (35 seconds, 30 volts) @ and most commonly will
acor reer L modify the model time
@ member, i.e. the time
@(25 seconds, 15 vollS)JTl (25 seconds, 30 vol(s)_’m (35 seconds, 30 volts) :{@ Stamp, tO 1Ild1C3.te the

v ] “l 10.0 ]
® passage of model time.
For example, a delay ac-
Fig. 3. Linear combination of actors tor has one input port and
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one output port and its behavior is given by Fj(s) : S — S where for each s € S we
have Fs(s) = {(t + 0,v) | (t,v) € s}. That is, the output events are identical to input
events except that the model time is increased by 4, a parameter of the actor.

Consider the simple sensor, actor, actuator system of Figure 3. In this example we
assume Fy,(s) = {(¢,2*v) | (t,v) € s};i.e., the output is the same as the input but with
its value scaled by a factor of 2. Both variants (a) and (b) of this figure show a serial
combination of a sensor, delay, scaling, and actuator actors. The sensor actors produce
an event (25 seconds, 15 volts) where the time stamp 25 seconds is the physical time
at the time of sensing. The delay actor increments the model time by 10 and the scale
actor doubles the value from 15 volts to 30 volts. In both cases the actuator receives
an event (35 seconds, 30 volts), which it interprets as a command to the actuator to
instantiate the value 30 volts at a physical time of 35 seconds. As long as deadlines
at the actuators are met, all observable effects with models (a) and (b) are identical,
regardless of computation times and scheduling decisions.

Modal Models. ModalModel

The use of modal models Z:IQ
is well established both in the TG
outputActions
setActions

literature, for example Stat-
echarts [8], UML [22], and
in commercial products such
as Simulink/Stateflow from
MathWorks [20]. Note that

we use the term modal to | pes= Riscin

describe models that extend

finite-state machines by al- | m in1

lowing states to have Ptolemy »- out »- out
I models as refinements [14]. | in2 = i
The time-centric modal mod-

els discussed here are particu-
larly useful for the specifica-
tion of modes of operation in Fig. 4. General pattern of a modal model with two modes,
a CPS as we explain in section each with its own refinement

4. Our style for modal models

follows the pattern shown in Figure 4. A modal model is an actor, shown in the figure
with two input ports and one output port. Inside the actor is a finite state machine (FSM),
shown in the figure with two states, labeled model and mode2. The transitions between
states have guards and actions, and each state has a refinement that is a submodel. The
meaning of such a modal model is that the input-output behavior of the ModalModel
actor is given by the input-output behavior of the refinement of the current state.

Modal models introduce additional temporal considerations into a design. This is
especially true for modal models that modify the time stamp of a signal. While the
Ptolemy II environment provides several modal model execution options such as a pre-
emptive evaluation of guards prior to execution of a state refinement, the principal fea-
tures critical to the discussion of the examples in this paper are as follows. A modal
model executes internal operations in the following order:
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— When the modal model reacts to a set of input events with time stamp 7, it first
presents those input events to the refinement of the current state <. That refinement
may, in reaction, produce output events with time stamp 7.

— If any of input events have an effect within the refinement at a later time stamp
7/ > 7, that effect is postponed. The modal model is invoked again at time stamp
7/, and only if the current state is still 7 will the effect be instantiated.

— The guards of all transitions originating from the current state are evaluated based
on the current inputs, state variables, and outputs of the current state refinement
with the same time stamp 7 as the current inputs.

— If one of the guards evaluates to true, the transition and any associated actions
are executed, and the new current state i/ becomes that at the destination of the
transition.

Thus all phases
of the execution of
a modal model occur
in strict time stamp
order in accordance e
with DE semantics.
While straightforward, @D, S o @
these rules can yield .- g
surprises particularly scale

sensor sigrsa'i'Out
when one or more of »—-D—p

ModalModel
e
I

uard: signalout == 4
output: flag = -5

\ Scale
the refinements mod-

sensor E signalOut
ify the model time of :
: Scale TimedDelay N
a s1gnal. sensor signalOu
» 7.0
For example con- - -

sider the simple modal
model of Figure 5.
The two inputs to
this state machine are mode and sensor. The two outputs are signalOut and flag. For
this example, it is assumed that the guards are never both true. Suppose a sensor event
(t,v) = (10, 30) is received while the FSM is in state gain 2. The refinement of this
state generates an output (17, 60). If no state transition occurs before time ¢ = 17 then
at that time the postponed signalOut event (17,60) will be produced. However suppose
that at time ¢ = 12 a mode event (12, true) occurs. This will cause a transition to state
gain 3 at time t = 12. In this case the postponed signalOut event (17, 60) is not pro-
duced. While in state gain 3 a sensor event, say (15, 3), will result in a signalOut event
(15,9). The event is not postponed since the refinement does not contain a delay actor.
Similarly, suppose sensor events (5,1) and (9,2) are received with the FSM in
state gain 2. The refinement of this state generates output events (12,2) and (16,4)
which must be postponed until times ¢ = 12 and ¢t = 16 respectively. Following the
rules above, at time ¢t = 12, a signalOut event (12,2) occurs. At t = 16 the FSM
again executes to handle the postponed event (16, 4). The first thing that happens is the
instantiation of the signalOut event (16, 4). Next, the guards on the FSM are evaluated
and a transition occurs at ¢ = 16 to the state gain 5. A subsequent sensor signal (17, 1)
then results in a signalOut event (17, 5). These examples illustrate that careful attention

Fig. 5. Simple time-sensitive modal model

Oslo, Norway, October 4, 2010

29



MoDELS 2010 ACES-MB Workshop Proceedings

must be paid to the temporal semantics of the modal models to ensure that the desired
application behavior results.

4 Application Study

PTIDES can be used to integrate models of software, networks, and physical plants.
This is achieved by adopting the fixed-point semantics that makes it possible to mix
continuous and discrete-event models [16]. A practical consequence is to enable CPS
co-design and co-simulation. It also facilitates hardware in the loop (HIL) simulation,
where deployable software can be tested (at greatly reduced cost and risk) against sim-
ulations of the physical plant. The DE semantics of the model ensures that simulations
will match implementations, even if the simulation of the plant cannot execute in real
time. Conversely, prototypes of the software on generic execution platforms can be
tested against the actual physical plant. The model can be tested even if the software
controllers are not fully implemented. This (extremely valuable) property cannot be
achieved today because the temporal properties of the software emerge from an im-
plementation, and therefore complete tests of the dynamics often cannot be performed
until the final stages of system integration, with the actual physical plant, using the final
platform.

The inclusion of a network into an embedded system introduces three principal
complications in the design of embedded systems:

— To preserve DE semantics and the resulting determinism system wide, it is neces-
sary to provide a common sense of time to all platforms. As noted in section 2 this
is often based on a time-slotted network protocol but can also be based on a clock
synchronization protocol such as IEEE 1588 [9].

— The design of model delays must now account not only for execution time within an
actuation platform, e.g. the platform containing an actuator causally dependent on
signals from other platforms, but must include network delay as well as execution
time in platforms providing signals via the network to the actuation platform.

— To ensure bounded network delay it is usually necessary to enforce some sort of
admission control explicitly controlling the time that traffic is introduced onto the
network.

The introduction of timed reactions further complicates the design and analysis of
system temporal semantics, particularly when these reactions must be synchronized
across a multi-platform system. PTIDES is well suited in managing these multi-platform
design issues. The remainder of this section illustrates the following features of the
PTIDES design environment:

— The use of time-based detection of missing signals to drive mode changes in the
operation of power plants.

— The use of time-based models of the plant in testing controller implementations of
power plants.

— The use of a modal model to specify the temporal behavior of the operational modes
of a device.
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— The use of synchronized clocks in a multi-platform system to allow FSMs and other
actors in each platform to enforce system-wide temporal behavior.

— The enforcement of correspondence between model and physical time at sensors
and actuators to ensure that such timing specifications are realized

— The enforcement at platform network outputs of sending deadlines to ensure that
multi-platform feasible solutions are computable.

Power Plant Control.

The design of the con-
trol systems for large electric
power stations is interesting in
that the physical extent of the
plant requires a networked so-
lution. The two critical design
issues of interest here are the
precision of the turbine speed
control loop and the system
reaction time to failures. The
loop time is relatively long but
for serious failures the fuel
supply to the turbine must typ-
ically be reduced within a few
milliseconds. A typical power
plant can involve sampling
of up to 3000 nodes com-
prising monitoring equipment
separated by several hundred
meters. Since the purpose of
these data is to make decisions
about the state of the physi-
cal plant, it is critical that the
time at which each measure-
ment is made be known to
an accuracy and precision ap-
propriate to the physics being
measured. The PTIDES de-
sign system allows these mea-
surement times to be precisely
specified and time-stamped
with respect to the synchro-
nized real-time clocks in the
separate platforms.

Figure 6 illustrates a model
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guard: measuredOutput
< errorThreshold
output: plantState = -1

guard: startup == true
output: fuel = 0;

plantstate = -2
set: ControlLaw.gain = -0.3

guard: abs(error) < errorThreshold
&& error 1=
output: plantState = -3
set: ControlLaw.initialTargetOutput = 5.0

guard: emergency_isPresent

output: plantState = -4

set
ControlLaw.initialTargetOutput = 0.0;
ControlLaw.gain = -0.

Shutdown -4

guard: emergency_isPresent

output: plantSta 4

set: ControlLaw.initialTargetOutput = 0.0;
ControlLaw.gain = -0.5

Fig. 6. Model of a small power plant

of a power plant that is hopefully readable without much additional explanation. The
model includes a Generator/Turbine Model, which models continuous dynamics, a
model of a communication network, and a model the supervisory controller. The de-
tails of these three components are not shown. Indeed, each of these three components
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can be quite sophisticated models, although for our purposes here will use rather sim-
ple versions. The model in Figure 6 also includes a local controller, which is expanded
showing two main components, a Heartbeat Detector and Plant Control block. A power
plant, like many CPS, can be characterized by several modes of operation each of which
can have different time semantics. This is reflected in the design of the Plant Control
block that is implemented with a four state modal model based on the discussion of
section 3 . The Down state represents the off state of the power plant. Upon receipt of a
(time-stamped) startup event from the supervisory controller, this modal model transi-
tions to the Startup state. When the measured discrepancy between electric power output
and the target output gets below a threshold given by errorThreshold, the modal model
transitions to the Normal state. If it receives a (time-stamped) emergency event from
the Heartbeat Detector, then it will transition to the Shutdown state, and after achieving
shutdown, to the Down state. Each of these states has a refinement (not shown) that uses
input sensor data to specify the amount of fuel to supply to the generator/turbine. The
fuel amount is sent over the network to the actuators on the generator/turbine. Because
both the controller sensor input data and the resulting fuel control signal sent to the
actuators are time stamped, the designer is able to use PTIDES construct to precisely
specify the delay between sensors and actuators. Furthermore as described earlier exe-
cutable code generated from the PTIDES models shown here, forces these time stamps
to correspond to physical time at both sensors and actuators thus ensuring determin-
istic and temporally correct execution meeting the designed specifications even across
multiple platforms linked by a network.

Plant Input (fuel), Output, and Operating Target

] electiicoutput —
operatingTarget ---
g fuel

To further aid the designer
these models are executable.
For example, the plots gen-
erated by the two Plotter ac-
tors in Figure 6 are shown
in Figure 7 for one sim-
ulation. In this simulation,
the supervisory controller is-
sues a startup request at time
1, which results in the fuel
supply being increased and

5
4
3k
2
1
0

N,
. . S —
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and Plant State Display
T T T T
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{%HW %%WW%W? M% TTWWWI

state o
sensor x
clock o
emergency a
warning o

own

Startup Down

Ab b 4o anow

Normal

. . : : : & Shutdown, .
the power plant entering its o s 01520025 30 3% 40
Startup mode. Near time 7.5, a
warning event occurs and the Fig. 7. Power plant output and events

supervisory controller reduces

the target output level of the power plant. It then reinstates the higher target level around
time 13. The power plant reaches normal operation shortly before time 20, and around
time 26, a warning and emergency occur in quick succession. The power plant enters
its Shutdown state, and around time 33 its Down state. Only a startup signal from the
supervisory controller can restart the plant.

The time stamps not only give a determinate semantics to the interleaving of events,
but they can also be explicitly used in the control algorithms. This power plant control
example illustrates this point in the way it uses to send warning and emergency events.
As shown in Figures 6 and 7, the Generator/Turbine Model sends (time-stamped) sen-
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sor readings over the network to the Local Control component. These sensor events
are shown with “x” symbols in Figure 7. Notice that just prior to each warning event,
there is a gap in these sensor events. Indeed, this Local Control component declares a
warning if between any two local clock ticks it fails to receive a sensor reading from the
Generator/Turbine Model. If a second consecutive interval between clock ticks elapses
without a sensor message arriving, it declares an emergency and initiates shutdown.

The mechanism for de- o Meartbeat Detector
tecting the missing sensor M fmom
reading messages is shown in -
Figure 8 and illustrates an- monitoredsignal warning

other use of the modal model . LA
temporal semantics of section @

MissDetector

localClock = emergency

3. In that figure, the mon-

itoredSignal input provides g&l‘pdt‘kk‘t;"
time-stamped sensor reading
messages. The localClock in- last
put provides time-stamped events| .., —
from the local clock. The | &cifren
MissDetector component is

guard: missed
output: warning = 2

guard: missed
output: emergency = 3

guard: ok

guard: sensor_isPresent
output: ok = true

emergency

a finite state machine with
two states. It keeps track

guard: clock_isPresent

of whether the most recently o R
received event was a sen-
sor message or a local clock Fig. 8. Heartbeat detector that raises alarms

event. This is possible because

PTIDES guarantees that this message will be delivered to this component in time-stamp
order, even when the messages and their time stamps originate on a remote platform
elsewhere in the network. This MissDetector component issues a missed event if two
successive local clock events arrive without an intervening sensor event. The missed
event will have the same time stamp as the local clock event that triggered it.

The second component, labeled StatusClassifier, determines how to react to missed
events. In this design, upon receiving one missed event, it issues a warning event. Upon
receiving a second missed event, it issues an emergency event. Note that this design
can be easily elaborated, for example to require some number of missed events before
declaring a warning. Also note that it is considerably easier in this framework to evalu-
ate the consequences of design choices like the local clock interval. Our point is not to
defend this particular design, but to show how explicit the design is.

If the generated code correctly performs a comparison between timestamp and phys-
ical time, as explained in section 2.3, it is guaranteed that the implementation will be-
have exactly like the simulation, given the same time-stamped inputs. Moreover, it is
easy to integrate a simulation model of the plant, thus evaluating total system design
choices well before system integration.

A detailed discussion of the design issues illustrated in this example for an actual
commercial power plant control system is found in [5]. In an accompanying technical
report [6] we discuss other PTIDES applications such as power supply shutdown se-
quencing. In many distributed systems such as high speed printing presses, when an

Oslo, Norway, October 4, 2010

33



MoDELS 2010 ACES-MB Workshop Proceedings

emergency shutdown signal is received, one cannot simply turn off power throughout
the system. Instead, a carefully orchestrated shutdown sequence needs to be performed.
During this sequence, different parts of the system will have different timing relation-
ships with the primary shutdown signal. As presented in [6], this relationship is easily
captured in the timed semantics of PTIDES.

5 Conclusion

This paper reviewed Ptolemy II enhancements for several important aspects of CPS
design and deployment, namely PTIDES for distributed real-time systems, and modal
models for multi-mode system behavior. The timed semantics of PTIDES allows us to
specify the interaction between the control program and the physical dynamics in the
system model, independent of underlying hardware details. Because of this indepen-
dence, PTIDES models are more robust than typical real-time software, because small
changes in the physical execution timing of internal events are not visible to the en-
vironment, as long as real-time constraints are met at sensors, actuators and network
interfaces. By combining PTIDES with modal models, we illustrated timed mode tran-
sitions which enable time-based detection of missing signals to drive mode changes in
the operation of common industrial applications.

Our future activities include work on several components of the PTIDES frame-
work. PTIDES relies on software components providing information about model delay
they introduce. This information is captured by causality interfaces [27], and causality
analysis is used to ensure that DE semantics is preserved in an execution. The precise
causality analysis when modal models are allowed is undecidable in general, but we
expect that common use cases will yield to effective analysis. Another challenge is to
provide feasibility analysis for the PTIDES programming model, which would allow
for a static analysis of the deployability of a given application on a set of resources.

A major component of our work will be refinement to the design of a distributed
execution platform for PTIDES. The code generator integrated within the Ptolemy II
environment will generate C code from PTIDES models and glue them together with
the preexisting software components to produce executable programs for each of the
platforms in the network. The code will be executed in the context of PtidyOS that can
be considered as a lightweight operating system with PTIDES semantics.
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