Computing Needs Time

Thanks to:

Edward A. Lee .

Robert S. Pepper Distinguished Professor
UC Berkeley

Invited Talk: .

Distinguished Lecture Series on
Cyber-Physical Systems

Washington University
St. Louis, MO, November 12, 2010

Danica Chang
David Culler
Gage Eads
Stephen Edwards

o John Eidson

Jeff Jensen
Sungjun Kim
Isaac Liu
Slobodan Matic
Hiren Patel
Jan Reineke
Jia Zou

Abstract

Cyber-Physical Systems (CPS) are integrations of computation and physical
processes. Embedded computers and networks monitor and control the
physical processes, usually with feedback loops where physical processes
affect computations and vice versa. The prevailing abstractions used in
computing, however, do not mesh well with the physical world. Most critically,
software systems speak about the passage of time only very indirectly and in
non-compositional ways. This talk examines the obstacles in software
technologies that are impeding progress, and in particular raises the question of
whether today's computing and networking technologies provide an adequate
foundation for CPS. It argues that it will not be sufficient to improve design
processes, raise the level of abstraction, or verify (formally or otherwise)
designs that are built on today's abstractions. To realize the full potential of
CPS, we will have to rebuild software abstractions. These abstractions will have
to embrace physical dynamics and computation in a unified way. This talk will
discuss research challenges and potential solutions, with particular focus on two
projects at Berkeley, PRET (which is developing computer architectures with
temporal semantics) and PTIDES (which provides a programming model for
distributed real-time systems).

Lee, Berkeley 2

Cyber-Physical Systems (CPS): B 7ransportation
. . (Air traffic
Orchestrating networked computational . - [———
resources with physical systems Avionics. j SFO)
Building Systems

Telecommunications

[f:? (.

oooooo

Automotive

\ooo

/@ generation and
4 distribution

Courtesy of asciin < :
General Electric Courtesy of Kuka Robotics Corp. Lee, Berkeley 3

CPS Example — Printing Press

High-speed, high precision
* Speed: 1inch/ms
* Precision: 0.01 inch

-> Time accuracy: 10us

Open standards (Ethernet)

e Synchronous, Time-Triggered
e |EEE 1588 time-sync protocol

Application aspects
* Jocal (control)

i » distributed (coordination)
Bosch-Rexroth
* global (modes)

Lee, Berkeley 4

Where CPS Differs from
the traditional embedded software problem:

o The traditional embedded software problem:

Embedded software is software on small
computers. The technical problem is one of
optimization (coping with limited resources).

o The CPS problem:

Computation and networking integrated with
physical processes. The technical problem is

managing dynamics, time, and concurrency in
networked computational + physical systems.

Lee, Berkeley 5

Approaching the CPS Challenge

Physicalizing the cyber (PtC): to endow software and network components with abstractions
and interfaces that represent their physical properties, such as dynamics in time.

Platform 1
-_I-iCc:mputationl * model time
Platform 3

model time
delay d2

/ IComputationB h
Platform 2

tm* Senscfrz H Computation?2 *

Al

physical Local pthsicaI
interface network| Event .
fabric Source interface
N
@-* Computation4 *—

Physical
plant

Cyberizing the Physical (CtP): to endow physical
subsystems with cyber-like abstractions and interfaces

Lee, Berkeley 6

A “Success” Story 5%

| 131

The Boeing 777 was Boeing's first fly-by-wire aircraft. It is
deployed, appears to be reliable, and is succeeding in the
marketplace. Therefore, it must be a success. However...

Lee, Berkeley 7

A “Success” Story s %

T

In “fly by wire” aircraft, certification of the software is
extremely expensive. Regrettably, it is not the software
that is certified but the entire system. If a manufacturer
expects to produce a plane for 50 years, it needs a 50-
year stockpile of fly-by-wire components that are all made
from the same mask set on the same production line.
Even a slight change or “improvement”™ might affect
behavior and require the software to be re-certified.

Lee, Berkeley 8

(14 ” \ ff./‘
A “Success” Story ;/7;7\

Apparently, the software does not specify the behavior
that was certified.

Fly-by-wire is about controlling the dynamics of a physical
system. It is not about the transformation of data, which is
what Turing/Church “computation” does.

Lee, Berkeley 9

A Key Challenge:
Timing is not Part of Software Semantics

Correct execution of a program in C, C#, Java,
Haskell, etc. has nothing to do with how long it
takes to do anything. All our computation and
networking abstractions are built on this premise.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Lee, Berkeley 10

Techniques that Exploit this Fact

I.e., many of the
innovations in
CS over the last
40 years.

Programming languages

Virtual memory

Caches

Dynamic dispatch

Speculative execution

Power management (voltage scaling)
Memory management (garbage collection)
Just-in-time (JIT) compilation

Multitasking (threads and processes)
Component technologies (OO design)
Networking (TCP)

O O OO O OOOO0OOOo0OO

Lee, Berkeley 11

The software does not specify the behavior.
Consequences:

o

Stockpiling for a product run

Some systems vendors have to purchase up front the entire expected part
requirements for an entire product run.

Frozen designs

Once certified, errors cannot be fixed and improvements cannot be made.
Product families

Difficult to maintain and evolve families of products together.

It is difficult to adapt existing designs because small changes have big
consequences

Forced redesign

A part becomes unavailable, forcing a redesign of the system.
Lock in

Cannot take advantage of cheaper or better parts.
Risky in-field updates

In the field updates can cause expensive failures.

Lee, Berkeley 12

Abstraction Layers in Common Use

\ actor-oriented
\, models

- J
w

performance
lmode Vosn;h)
SIS \ ~task-level models
Cprograms
synthesuzable SystemC
*' VHDL programs programs
C++ programs \Java program
VHDL programs 7 prog

_programs

tandard

73
S
cell \(va byte cod!
designs
FPGA configurations JVM
x86 programs
executabh{s / \ S

programs

FPGAs

\ASICchrps \ P4-M 1.6GHz \

\ microprocessors

silicon chips

The purpose of an
abstraction is to
hide details of the
iImplementation
below and provide a
platform for design
from above.

Lee, Berkeley 13

Abstraction Layers in Common Use

Every abstraction

\ actor-onented, :

T~ . .
\performa\'\}‘f RS |ayer haS fa”ed N
mgd*?,_;-r \\ . .
—— W the fly-by-wire
37531‘3;;’.‘;;@_3 N W scenario.
J'”VV N
’ NN ol i i
/ 3 w% The design is the
3 R -
| 4 7 Implementation.
) i y P

FPGAs

\\Q\“\?&&&m\s

silicon chips

Lee, Berkeley 14

The Same Problem Arises in Networking

QNN
RES S . .
Dav=> \\@}\ function
g to
e ',;.'ﬁ’
o= R 4
— o ‘ﬁ]
<l % A and
F o i d ofl
Ha" # //"J g TR I
I‘ — - l’;:fl"/ ’)l’
|0y S S e b
/ ..g‘-“" ‘e = -~ ..‘.\‘.’-_ ¥ 9
N XY §
: 4y 'l: P l 4.-
o & a0 4
d AT Y
BN &
"Jt | R S » / //"_\’ ,;;»’. ,{;"i
Ps’ & Y
-r s /
Y o £
N Se? 7
)"; .\ \\\ . %"; - = A\.../' 6"/ '_' / -"" - ’ o -
R\ AN e S g e 7, Ew® ey
.“‘&\ “4\ ~"~--.-_ o (r..:’ (‘9 A /
. L N e e S LSl
. 2 N, Y - — - c)
Media Faff."' \‘.\ ';c_-* E—— _‘(gssm-g
= —— =T == v '
layers o B E
- A . ~Nas\s, signal and
Bit A TN

pinary transmission

The point of these abstraction
layers is to isolate a system
designer from the details of
the implementation below,
and to provide an abstraction
for other system designers to
build on.

In today’s networks, timing is
a property that emerges from
the details of the
Implementation, and is not
iIncluded in the abstractions.
Timing is a performance
metric, not a correctness

Cl'lterlon. Lee, Berkeley 15

actor-oriented

models .

Posix \Linux processes

_ threads \//\ task-level models
synthesizable
VHDL programs
VHDL programs ©

e
tandard -
) standar Java byte code prograk

cell
{ . designs \\ /
FPGA configurations Y" VM
| . x86 programs
| executables /
| \ T 7 -

\ ASICchips \ P4-M 1.6GHz

microprocessors

FPGAs

silicon chips

How about “raising
the level of
abstraction” to solve
these problems?

Lee, Berkeley 16

But these higher abstractions rely on an

increasingly problematic fiction: WCET

Example war story:

Analysis of:

* Motorola ColdFire

» Two coupled pipelines (7-stage)
» Shared instruction & data cache
* Artificial example from Airbus

» Twelve independent tasks

» Simple control structures

» Cache/Pipeline interaction
leads to large integer linear
programming problem

And the result is valid only for that exact
Hardware and software!

Fundamentally, the ISA of the processor

has failed to provide an adequate abstraction.

set (a) / stop

cancel

cancel

cancel

3 IAG

addr (a)

Y

wait

fetch(a)

IC1

AL

awalit (a)
Y

hold

wait

code (a)

IC2

AA

put (a)

\ 4

cancel

Y

IED

-

<+

instr
7

Y Y

next

set (a) / stop

C. Ferdinand et al.,

wait

wait

IB
start
Y read (A) / write (A)

EX |«

store
4

SST

data / hold

wait

Reliable and

precise WCET determination for a

real-life processor.” EMSOFT 2001.

U

U

Lee, Berkeley 17

The Key Problem E o—4

:

Electronics technology
delivers highly reliable and
precise timing...

20.000 MHz (+ 100 ppm)

. and the overlaying software
abstractions discard it.

// Perform the convolution.

for (int i=0; 1<10; i++) {
x[i] = al[i]l*b[j-1];
// Notify listeners.
notify(x[i]);

}

Lee, Berkeley 18

The Standard Practice
Today: WCET Analysis

Today, we augment the
model with minute details
of the realization.

(not just application logic, but
ISA, how the ISA is realized,
what memory technology is used,
how much memory of each kind,
what I/O hardware is used, exact
timing of inputs, etc.)

We can do better!

// Perform the convolution.

for (int i=0; 1<10; i++) {
x[i] = al[i]l*b[j-1];
// Notify listeners.
notify(x[i]);

}

Model

JTAG and SWD interface

{ B —— USB interface

switches
connected _ speaker
to GPIO pins «—— connected to
GPIO or PWM

.............

analog J-
(ADC) — [

inputs R <1111 o) | (Rl «—— GPIO connectors

«—— PWM outputs

: 1— CAN bus interface

removable
flash ——
memory

slot
Ethernet interface

Realization

Lee, Berkeley 19

Projects at Berkeley

Time and concurrency in the core abstractions:

o Foundations: Timed computational semantics.

o Bottom up: Make timing repeatable.

o Top down: Timed, concurrent components.

o Holistic: Model engineering.

Lee, Berkeley 20

PRET Machines

o PREcision-Timed processors = PRET
o Predictable, REpeatable Timing = PRET

// Perform the convolution.

for (int 1=0; 1i<10; 1i++) {
x[1] = al[1]*b[j-1]; =
// Notify listeners.
notify(x[i]);

}

Computing With time

Lee, Berkeley 21

A Bottom Up Approach:
Make Timing a Semantic Property of Computers

Precision-Timed (PRET) Machines
Just as we expect reliable logic operations, we should expect repeatable timing.

Timing precision with performance: Challenges:
ISAs with timing (deadline instructions?)
Memory hierarchy (scratchpads?)
Deep pipelines (interleaving?)
Predictable memory management (Metronome?)
Languages with timing (discrete events? Giotto?)
Predictable concurrency (synchronous languages?)
Composable timed components (actor-oriented?)
Multicore PRET (conflict free networks on chip?)
Precision networks (TTA? Time synchronization?)

See S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET) Machine," in the

Wild and Crazy Ideas Track of the Design Automation Conference (DAC), June 2007.
Lee, Berkeley 22

Extending an ISA with
Timing Instructions

[V1] Best effort: [V3] Immediate miss detection
set timer1, 1s set timer1, 1s
// Code block exception _on_expire r1, 1
delay until r1 // Code block

deactivate exception 1
delay _until r1

[V2] Late miss detection [V4] Exact execution:
set_timer1, 1s set_timer1, 1s
// Code block // Code block

branch _expired r1, <target>

MTFD r1
delay until r1

Lee, Berkeley 23

Other variations

[V2]-[V4] could all have a variant that does not
control the minimum execution time of the block
of code, but only controls the maximum.

[V3] Immediate miss detection

[V2] Late miss detection
set timeri, 1s

exception_on_expire r1, 1
// Code block
deactivate _exception 1

set time r1, 1s
// Code block
branch _expired r1, <target>

Lee, Berkeley 24

Exporting the Timed Semantics to a
Low-Level Language (like C)

Example:
jmp_buf buf;
tryin (600ms) {
// Code block if (Isetimp(buf)){
} catch { set _time r1, 500ms
panic(); exception_on_expire r1, 0
/ // Code block
deactivate_exception 0
This realizes variant 3, “immediate miss detection,” Jelse {
using setimp and longjmp to handle timing exceptions. panic();
setimp() returns O when directly invoked, and returns }

non zero when invoked by longimp().

exception_handler 0 () {

If the code block takes longer than 500ms to run, then longjmp (buf)

exception 0 will be thrown, and the handler code will j
run longjmp, which will return control flow to setjmp,
but returning non zero. The else statement will then be This pseudocode is neither C-level nor

run, causing the panic procedure to be called. assembly, but is meant to explain an
assembly-level implementation.

Lee, Berkeley 25

Summary of ISA extensions

o [V1] Execute a block of code taking at least a
specified time [lp & Edwards, 20006]

o [V2] Do [V1], and then conditionally branch if the
specified time was exceeded.

o [V3] Do [V1], but if the specified time is exceeded
during execution of the block, branch immediately
to an exception handler.

o [V4] Execute a block of code taking exactly the
specified time. MTFD

Variants:
*For V2 — V4, may not impose minimum execution time.
*Time may be literal (seconds) or abstract (cycles).

Lee, Berkeley 26

A Bottom Up Approach:
Make Timing a Semantic Property of Computers

Make temporal behavior as important as logical function.

Timing precision with performance: Challenges:
ISAs with timing (repeatable instr. timing? deadline instructions?)
Deep pipelines (interleaving?)
Memory hierarchy (scratchpads? DRAM banks?)

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”
Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007.

Lee, Berkeley 27

Pipelining

S

ID/EX

Instruction
memory

IF/ID
IRe..10
IR
IR 11..15 .
— MEM/WB.IR Registers

EX/MEM

Branch
ki

Zero? laken
7\
M
U 1
X ALU
(M)
u
&)

extend|

Data
memory

MEM/WB

c

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Lee, Berkeley 28

Pipeline Hazards

Data Hazard (computed branch)

Control Hazard (conditional branch)

IF/ID ID/EX

MEM/WB

FAD Ve EX/MEM
. A
M
ADD u Branch
X Zero? taken -
IRe..10
17T IRy1.15 _>'\UA
Instruction| IR = . - «
memory > — MEM/WB.IR Registers ALU
)
| u
~

NN

extend|

Data
memory

Data Hazard (IR)

Data Hazard (Memory read/ALU result)

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Lee, Berkeley 29

An Alternative: Pipeline Interleaving

Traditional pipeline: t tH] 42 t43 tH4 45 t+6 t+7 t+8 t+9 t+10 t+11
T0rcmp %42, 9 o TRTEMIW T T T]
T0: bg,a40011b8 [F[D|D[DIR |E [M|W]| |
T0: add %i1, %i2,%I3 FIF D R EM|W
Stall pipeline Dependencies result in complex

timing behaviors

Thread-interleaved pipeline:
.01 2 3 th4 thd t46 th7 t48 t+9 t+10 t+1]

TO:cmp %g2,9 F DR E MW

T1:add %00, %g1,%g2 | F'D'R!'E MW

T2:sub %g1,%g2,%g1 F D R E M W

T3:bn 430011a0 FIDR E MW Repeatable
timing

T0:bg,a40011b8 instructions
T1:cmp %g1,4

T4:1d [%fp +-121,%g1 |
T5:cmp %g1,4 behavior of

Lee, Berkeley 30

PC

SA NS,
ARG
AANALRNY
\\Q\\\
BAD BN,
SOUSNSAY

i

Pipeline Interleaving mc"{m" -®
1
An old idea: m%m
o 1960s:
CDC 6600
Denelcore HEP
o ... ACCUMULATOR 222225
o 2000s - 2
Sandbridge Sandblaster i e
(John Glossner, et al.) Mbkitteid
XMOS Lee and Messerschmitt, Pipeline
(David May, et al.) Interleaved Programmable DSPs,

ASSP-35(9), 1987.

There are various detractors. See Ungerer, T., B. Robic and J. Silc (2003). "A survey of
processors with explicit multithreading." Computing Surveys 35(1): 29-63.

Lee, Berkeley 31

Projects at Berkeley

Time and concurrency in the core abstractions:
o Foundations: Timed computational semantics.

o Bottom up: Make timing repeatable.

o Top down: Timed, concurrent components.

o Holistic: Model engineering.

Lee, Berkeley 32

A Top Down Approach:

Make Timing a Semantic Property of Software Components

PTIDES: Distributed execution under discrete-event semantics, with
“‘model time” and “real time” bound at sensors and actuators.

Input time stamps are

Platform 1
Computationl
@7{ '

A

Output time stamps

Input time stamps are

are < real time

Platform 3

> real time

I Computation3 §

Platform 2

model time
delay d3

Output time stamps
are < real time

Local
Event
Source

> real time

model time
delay d1

model time
delay d2

b 4

network
fabric
[>9 -
Computation4

Physical

Messages are

plant

processed in time-

stamp order.

This device was designed by Jeff Jensen,
now at National Instruments.

First Test Case

» Tunneling Ball Device

— sense ball
— track disk

Lee, Berkeley 34

Tunneling Ball Device in Action

Lee, Berkeley 35

Lee, Berkeley 36

Tunneling Ball Device

I [N I N N N N BN N N BN B BN | I>

Mixed event Periodic Events

Sequences | I I O N O I N N | | | I>
Quasi Periodic Events
| | >
Sporadic Events
Spnup Delay

Dynamics Model Controller, cowdsg

Maerge Cantral Delay

dediry of
1.25E4.,

TimeDelay ActuatorOutputDevice

controlSignal
celay of
1 ‘255‘ .%

SansorinpuiDenice2

encoderPulse B

SensornpuiDevicad

discPosition

- Align Pides Basic Direclor

Lee, Berkeley 37

Second Test Case: Distributed

Synchrophasor Measurement & Control

Generator
Voltage Current
Transformer Transformer

Thanks to
Vaselin Skendzic,

Synchrophasor data: ©4, V11 ,Oy

Schweitzer Engineering Pener faehon oslRum

Power swing and
Unstability detection

Generator

l

l

Voltage

Current

Transformer Transformer

N
%

Synchrophasor data: ©;, V5 |3 ,0vi2
Power factor: cos(©y2)

Power Grid Emulator
(conventional instrumentation)

Experiment

[]
D I a g ra I I I Generator-1 Generator-2
Frequency f; Frequency f,
Voltage V; Voltage V,
Current |4 Current |,
Current Angle (wrt V) ©, Current Angle (wrt V) ©,
0-5 V Signal 0-5 V Signal 0-5V Signal 0-5 V Signal
. . . Generator Generator Generator Generator
Grid emulator built with
National Instruments PXI . r— o
> g Q o
Z “““““““““““““ ["""" 25T Tlse \&
® A

‘Primary Measurement Ed £

Unit (PMU) built with ESlES ! [er] (]

various

Renesas demo boards e |

- |-
. Synchrophasor Control g Control Synchrophasor |
3 ®
with DP83640 : 22| | ¢F v r
Synchrophasor IEC 865 TEC Synchrophasor
IEC 61850 message s1ss0 | 4 00 61850 message IEC 61850
transmission GOOSE | To 3 S GOOSE transmission
various| 28
' | = % !
|IEEE 1588 Clock & =g
1=
Ethernet bridge or 1588 T [s e :

PTIDES pTiEs 4

boundary/transparent clock

A
Ethernet Bridge (IEEE 1588 Boundary Clock)
Synchrophasor Vector ;
Processing unit (SVP) built gl p— g Sobchor ho i
with Renesas demo board with " t B —
DP83640 gRd || LE T eun

Thanks to Vaselin Skendzic, Schweitzer Engineering Lee, Berkeley 39

Distributed PTIDES Relies on Network Time
Synchronization with Bounded Error

Press Release October 1, 2007

National

Semiconductor
The Sight & Sound of Information

NEWS RELEASE

For More Information Contact

Media Contact

Naomi Mitchell

National Semiconductor
(408) 721-2142
naomi.mitchell@nsc.com

Reader Information
Design Support Group
(800) 272-9959
www.national.com

% o |EEE158812 v2 compliant

o
% " %o sub10nSaccuracy
. .12 GPI0S for event trigger or capture
»

Industry’s First Ethernet
Transceiver with IEEE 1588 PTP
Hardware Support from National Semiconductor Delivers
Outstanding Clock Accuracy

Using DP83640, Designers May Choose Any Microcontroller, FPGA or ASIC to
Achieve 8- Nanosecond Precision with Maximum System Flexibility

This may become
routine!

With this PHY, clocks
on a LAN agree on the
current time of day to
within 8ns, far more
precise than older
techniques like NTP.

A question we are
addressing at
Berkeley: How does
this change how we
develop distributed
CPS software?

Lee, Berkeley 40

An Extreme Example: The Large Hadron Collider

The WhiteRabbit project at CERN is synchronizing the clocks of computers
10 km apart to within about 80 psec using a combination of IEEE 1588 PTP
and synchronous ethernet.

LARGE HADRON COLLIDER

Four detectors around the 27-km-long accelerator will hunt for new particles, including the
Higgs boson or “God particle”

O Particle detectors

FRANCE

\ Versoix
[

U
Ferney

ALCE Q Voltaile

.....

SWITZERLAND

i i GENEVA
/\ Rhéne

More Generally than PTIDES:

Rethinking Software Components to Admit Time.
Object Oriented vs. Actor Oriented

The established: Object-oriented:

r

call

class name
data
methods 1
return

The alternative: Actor oriented:

>

actor name

data (state)

parameters ‘

ports

Input data Output data

What flows through
an object is
sequential control

Things happen to objects

Actors make things happen

What flows through
an object is
evolving data

Lee, Berkeley 42

Examples of Actor-Oriented Systems

retain much of the
flavor (and flaws) of
threads.

Occam (rendezvous)
SPW (synchronous dataflow, Cadence, CoWare)

o UML 2 and SysML (activity diagrams)

o ASCET (time periods, interrupts, priorities, preemption, shared variables)

o Autosar (software components w/ sender/receiver interfaces)

o Simulink (continuous time, The Math\Works) The semantics of

o LabVIEW (structured dataflow, National Instruments) these differ

o SCADE (synchronous, based on Lustre and Esterel) considerably in their
o CORBA event service (distributed push-pull) approaches to _

o ROOM and UML-2 (dataflow, Rational, IBM) g%’;:gr ; fgigoi’;d time.
o VHDL, Verilog (discrete events, Cadence, Synopsys, ...) (ambiguous) and

o Modelica (continuous time, constraint-based, Linkoping) | some rigorous. Some
o OPNET (discrete events, Opnet Technologies) are strongly actor-

o SDL (process networks) oriented, while some
o

o

o

Lee, Berkeley 43

Ptolemy Il: Our Laboratory for Experiments with
Actor-Oriented Design

Programs are specified as actor-oriented models,
and software is synthesized from these models.

Director from a library

ae K Q [b @ = = o= ¢> o= f;{h * defines component

") Diectors interaction semantics
rd Assembler actor composes a

Act
grces a record token, which is then passed through a channel that
has random delay. The tokens arrive possibly in another

. -] GenericSources))
= _~| TlmedSources order. The Record Disassembler actor separates the string

= DE Director

- Clock from the sequence number. The strings are displayed as
= CurrentTime = received (possible out of order), and resequenced by the
----- PaissonClock Sequencer actor, which puts them back in order. This example
""" - [Bo] TimedSinewave demonstrates how types propagate through record composition
- \T;ngg:ecdflolfk and decomposition.
~~~~~~ ariableCloc
Display As Received

@_] 5 ceSources Master Clock String Sequence

[#-__] Sinks L
. _] Array @ﬁb} »
_] Conversion:

Sequence Count

—

Record Assembler
Channel Model

Record Disassemb

Display equenced

—

5 Modern type
The channel is modeled SRR SySte m fo r

s | .F component

~=J | Visual editor for composing components interfaces

Emm T Authors: Edward A. Lee and Yuhong Xiong

) lee, Berkeley 44




Conclusions

Today, timing is a property only of realizations of
computational systems.

Tomorrow, timing will be a semantic property of
computational models.

Raffaello Sanzio d_aUrbino — The Athens chool
% ‘ i O it




The Ptolemy Pteam

Jackie | Elefterios
Mankit Matsikoudis

L .,Hllllé-llﬁllllllrllgl

f:,

x'.'}/

Jeg Shanna- 4
| Shaye ‘
Thomas ~ {eNsel Forbes Yasemin D
Isaac Liu A ' Huining j :

e Demir oy
en G g = ‘ X
g I+ g s Slobodan
] e Matic
P \

Christopher Brooks Bert Rodiers

” A"




j :‘( p,/(i New Text: Lee & Seshia:
' &—{4\» Introduction to Embedded

Systems - A Cyber-Physical
g | Systems Approach

http://LeeSeshia.org/

This book strives to identify
and introduce the durable
' intellectual ideas of
embedded systems as a
f technology and as a subject

J ! of study. The emphasis is on

y modeling, design, and

¢ analysis of cyber-physical
systems, which integrate
computing, networking, and
physical processes.

Lee, Berkeley 47



