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Abstract 

Cyber-Physical Systems (CPS) are integrations of computation and physical 

processes. Embedded computers and networks monitor and control the 

physical processes, usually with feedback loops where physical processes 

affect computations and vice versa. The prevailing abstractions used in 

computing, however, do not mesh well with the physical world. Most critically, 

software systems speak about the passage of time only very indirectly and in 

non-compositional ways. This talk examines the obstacles in software 

technologies that are impeding progress, and in particular raises the question of 

whether today's computing and networking technologies provide an adequate 

foundation for CPS. It argues that it will not be sufficient to improve design 

processes, raise the level of abstraction, or verify (formally or otherwise) 

designs that are built on today's abstractions. To realize the full potential of 

CPS, we will have to rebuild software abstractions. These abstractions will have 

to embrace physical dynamics and computation in a unified way. This talk will 

discuss research challenges and potential solutions, with particular focus on two 

projects at Berkeley, PRET (which is developing computer architectures with 

temporal semantics) and PTIDES (which provides a programming model for 

distributed real-time systems). 
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Cyber-Physical Systems (CPS): 
Orchestrating networked computational  

resources with physical systems 

Power 

generation and 

distribution 

Courtesy of  
General Electric 

Military systems: 

E-Corner, Siemens 

Transportation 

(Air traffic 

control at 
SFO) 

Avionics 

Telecommunications 

Factory automation 

Instrumentation 

(Soleil Synchrotron) 

Daimler-Chrysler 

Automotive 

Building Systems 
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CPS Example – Printing Press  
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Where CPS Differs from 

the traditional embedded software problem: 

The traditional embedded software problem: 

 Embedded software is software on small 

computers. The technical problem is one of 

optimization (coping with limited resources). 

The CPS problem: 

 Computation and networking integrated with 

physical processes. The technical problem is 

managing dynamics, time, and concurrency in 
networked computational + physical systems. 
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Approaching the CPS Challenge 

Cyberizing the Physical (CtP): to endow physical 

subsystems with cyber-like abstractions and interfaces 

Physicalizing the cyber (PtC): to endow software and network components with abstractions 

and interfaces that represent their physical properties, such  as dynamics in time.  
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A “Success” Story 

The Boeing 777 was Boeing’s first fly-by-wire aircraft. It is 

deployed, appears to be reliable, and is succeeding in the 

marketplace. Therefore, it must be a success. However… 
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A “Success” Story 

In “fly by wire” aircraft, certification of the software is 

extremely expensive. Regrettably, it is not the software 

that is certified but the entire system. If a manufacturer 

expects to produce a plane for 50 years, it needs a 50-

year stockpile of fly-by-wire components that are all made 

from the same mask set on the same production line. 

Even a slight change or “improvement” might affect 

behavior and require the software to be re-certified. 
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A “Success” Story 

Apparently, the software does not specify the behavior 

that was certified. 

Fly-by-wire is about controlling the dynamics of a physical 

system. It is not about the transformation of data, which is 

what Turing/Church “computation” does. 
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A Key Challenge: 

Timing is not Part of Software Semantics 

Correct execution of a program in C, C#, Java, 

Haskell, etc. has nothing to do with how long it 

takes to do anything. All our computation and 

networking abstractions are built on this premise. 

Programmers have to step outside the 

programming abstractions to specify 

timing behavior. 
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Techniques that Exploit this Fact 

Programming languages 

Virtual memory 

Caches 

Dynamic dispatch 
Speculative execution 

Power management (voltage scaling) 

Memory management (garbage collection) 

Just-in-time (JIT) compilation 

Multitasking (threads and processes) 
Component technologies (OO design) 

Networking (TCP) 

… 

i.e., many of the 

innovations in 

CS over the last 
40 years. 
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The software does not specify the behavior. 

Consequences: 

Stockpiling for a product run 

Some systems vendors have to purchase up front the entire expected part 
requirements for an entire product run. 

Frozen designs 

Once certified, errors cannot be fixed and improvements cannot be made. 

Product families 

Difficult to maintain and evolve families of products together. 

It is difficult to adapt existing designs because small changes have big 
consequences 

Forced redesign 

A part becomes unavailable, forcing a redesign of the system. 

Lock in 

Cannot take advantage of cheaper or better parts. 

Risky in-field updates 

In the field updates can cause expensive failures. 
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Abstraction Layers in Common Use 

 The purpose of an 

abstraction is to 

hide details of the 

implementation 

below and provide a 

platform for design 

from above. 
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Abstraction Layers in Common Use 

 Every abstraction 

layer has failed in 

the fly-by-wire 

scenario. 

 The design is the 

implementation. 
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The Same Problem Arises in Networking 

The point of these abstraction 

layers is to isolate a system 

designer from the details of 

the implementation below, 

and to provide an abstraction 

for other system designers to 

build on. 

In today’s networks, timing is 

a property that emerges from 

the details of the 

implementation, and is not 

included in the abstractions. 

Timing is a performance 

metric, not a correctness 

criterion. 
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Abstraction Layers 

 How about “raising 

the level of 

abstraction” to solve 

these problems? 
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But these higher abstractions rely on an 

increasingly problematic fiction: WCET 

Example war story: 

Analysis of: 

• Motorola ColdFire 

• Two coupled pipelines (7-stage) 
• Shared instruction & data cache 

• Artificial example from Airbus 

• Twelve independent tasks 

• Simple control structures 

• Cache/Pipeline interaction 
leads to large integer linear  

programming problem 

And the result is valid only for that exact 

Hardware and software! 

Fundamentally, the ISA of the processor  
has failed to provide an adequate abstraction. 

C. Ferdinand et al., “Reliable and 
precise WCET determination for a 
real-life processor.” EMSOFT 2001. 
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The Key Problem 

 Electronics technology 

delivers highly reliable and 

precise timing… 

… and the overlaying software 

abstractions discard it. 

20.000 MHz (± 100 ppm) 

// Perform the convolution. 

for (int i=0; i<10; i++) { 

  x[i] = a[i]*b[j-i]; 

  // Notify listeners. 

  notify(x[i]); 

} 
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The Standard Practice  

Today: WCET Analysis 

Today, we augment the 

model with minute details 

of the realization. 

(not just application logic, but 

ISA, how the ISA is realized, 

what memory technology is used, 

how much memory of each kind, 

what I/O hardware is used, exact 

timing of inputs, etc.) 

We can do better! 

Realization 

// Perform the convolution. 

for (int i=0; i<10; i++) { 

  x[i] = a[i]*b[j-i]; 

  // Notify listeners. 

  notify(x[i]); 

} 

Model 
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Projects at Berkeley 

Time and concurrency in the core abstractions: 

Foundations: Timed computational semantics. 

Bottom up: Make timing repeatable. 

Top down: Timed, concurrent components. 

Holistic: Model engineering. 
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PRET Machines 

PREcision-Timed processors = PRET 

Predictable, REpeatable Timing = PRET 

Performance with REpeatable Timing = PRET 

= PRET + 

Computing With time 

// Perform the convolution. 

for (int i=0; i<10; i++) { 

  x[i] = a[i]*b[j-i]; 

  // Notify listeners. 

  notify(x[i]); 

} 
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A Bottom Up Approach:  

Make Timing a Semantic Property of Computers 

Precision-Timed (PRET) Machines 

Just as we expect reliable logic operations, we should expect repeatable timing.  

Timing precision with performance: Challenges: 

ISAs with timing (deadline instructions?) 

Memory hierarchy (scratchpads?) 

Deep pipelines (interleaving?) 

Predictable memory management (Metronome?) 

Languages with timing (discrete events? Giotto?) 

Predictable concurrency (synchronous languages?) 

Composable timed components (actor-oriented?) 

Multicore PRET (conflict free networks on chip?) 

Precision networks (TTA? Time synchronization?) 

See S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET) Machine," in the 

Wild and Crazy Ideas Track of the Design Automation Conference (DAC), June 2007. 
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Extending an ISA with  

Timing Instructions 

set_time r1, 1s 

// Code block 

delay_until r1   

set_time r1, 1s       
// Code block 

branch_expired r1, <target> 

delay_until r1 

set_time r1, 1s 

exception_on_expire r1, 1 

// Code block 

deactivate_exception 1 

delay_until r1 

set_time r1, 1s 

// Code block 

MTFD r1   
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Other variations 

[V2]-[V4] could all have a variant that does not 

control the minimum execution time of the block 

of code, but only controls the maximum. 

set_time r1, 1s 

// Code block 

branch_expired r1, <target> 

delay_until r1 

set_time r1, 1s 

exception_on_expire r1, 1 

// Code block 

deactivate_exception 1 

delay_until r1 
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Exporting the Timed Semantics to a  

Low-Level Language (like C)  
Example: 

tryin (500ms) { 

   // Code block 

} catch { 

    panic(); 

} 

jmp_buf  buf; 

if ( !setjmp(buf) ){ 

  set_time r1, 500ms 

  exception_on_expire r1, 0  

  // Code block 

  deactivate_exception 0     

} else { 

    panic(); 

} 

exception_handler_0 () { 

     longjmp(buf) 

} 
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Summary of ISA extensions 

[V1] Execute a block of code taking at least a 

specified time [Ip & Edwards, 2006] 

[V2] Do [V1], and then conditionally branch if the 

specified time was exceeded. 

[V3] Do [V1], but if the specified time is exceeded 

during execution of the block, branch immediately 
to an exception handler. 

[V4] Execute a block of code taking exactly the 

specified time. MTFD 

Variants: 

•For V2 – V4, may not impose minimum execution time. 

•Time may be literal (seconds) or abstract (cycles). 
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A Bottom Up Approach:  

Make Timing a Semantic Property of Computers 

Make temporal behavior as important as logical function.  

Timing precision with performance: Challenges: 

ISAs with timing (repeatable instr. timing? deadline instructions?) 

Deep pipelines (interleaving?) 

Memory hierarchy (scratchpads? DRAM banks?) 

Predictable memory management (Metronome?) 

Languages with timing (discrete events? Giotto?) 

Predictable concurrency (synchronous languages?) 

Composable timed components (actor-oriented?) 

Multicore PRET (conflict-free routing?) 

Precision networks (TTA? Time synchronization?) 

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”  

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007. 
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Pipelining 

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007. 
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Pipeline Hazards 

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007. 
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An Alternative: Pipeline Interleaving 

Stall pipeline Dependencies result in complex 

timing behaviors 

Repeatable 

timing 
behavior of 

instructions 

Thread-interleaved pipeline: 

Traditional pipeline: 
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Pipeline Interleaving 

An old idea: 

1960s: 

CDC 6600 

Denelcore HEP 

... 

2000s 

Sandbridge Sandblaster 

(John Glossner, et al.) 

XMOS 

(David May, et al.) 

There are various detractors. See Ungerer, T., B. Robic and J. Silc (2003). "A survey of 

processors with explicit multithreading." Computing Surveys 35(1): 29-63. 

Lee and Messerschmitt, Pipeline 

Interleaved Programmable DSPs, 

ASSP-35(9), 1987. 



Lee, Berkeley 32 

Projects at Berkeley 

Time and concurrency in the core abstractions: 

Foundations: Timed computational semantics. 

Bottom up: Make timing repeatable. 

Top down: Timed, concurrent components. 

Holistic: Model engineering. 
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PTIDES: Distributed execution under discrete-event semantics, with 

“model time” and “real time” bound at sensors and actuators. 

A Top Down Approach:  
Make Timing a Semantic Property of Software Components 

Input time stamps are 

 real time 

Input time stamps are 

 real time 

Output time stamps 

are  real time 

Output time stamps 

are  real time 

Messages are 

processed in time-

stamp order. 
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First Test Case 

• Tunneling Ball Device 

– sense ball 

– track disk 

– adjust trajectory  

This device was designed by Jeff Jensen, 

now at National Instruments. 
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Tunneling Ball Device in Action 
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Tunneling Ball Device – 10 rps 
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Tunneling Ball Device 

Mixed event 

sequences 
Periodic Events 

Quasi Periodic Events 

Sporadic Events 
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Second Test Case: Distributed 

Synchrophasor Measurement & Control 

Power swing and 

Unstability detection 

Thanks to 

Vaselin Skendzic, 

Schweitzer Engineering 



Lee, Berkeley 39 

Experiment 

Diagram 

Grid emulator built with 

National Instruments PXI  

‘Primary Measurement 

Unit (PMU) built with 

Renesas demo boards 

with DP83640  

Ethernet bridge or 1588 

boundary/transparent clock  

Synchrophasor Vector 

Processing unit (SVP) built 

with Renesas demo board with 

DP83640  

Thanks to Vaselin Skendzic, Schweitzer Engineering 
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Distributed PTIDES Relies on Network Time 

Synchronization with Bounded Error 

This may become 
routine! 

With this PHY, clocks 
on a LAN agree on the 
current time of day to 
within 8ns, far more 
precise than older 
techniques like NTP. 

A question we are 
addressing at 
Berkeley: How does 
this change how we 
develop distributed 
CPS software? 

Press Release October 1, 2007 
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An Extreme Example: The Large Hadron Collider 

The WhiteRabbit project at CERN is synchronizing the clocks of computers 

10 km apart to within about 80 psec using a combination of IEEE 1588 PTP 

and synchronous ethernet. 
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More Generally than PTIDES: 

Rethinking Software Components to Admit Time. 

Object Oriented vs. Actor Oriented 

The alternative: Actor oriented: 

actor name 

data (state) 

ports 

Input data 

parameters 

         Output data 

What flows through 

an object is 

evolving data 

class name 

data 

methods 

call return 

What flows through 

an object is 

sequential control 

The established: Object-oriented: 

Things happen to objects 

Actors make things happen 
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Examples of Actor-Oriented Systems 

UML 2 and SysML (activity diagrams) 

ASCET (time periods, interrupts, priorities, preemption, shared variables ) 

Autosar (software components w/ sender/receiver interfaces) 

Simulink (continuous time, The MathWorks) 

LabVIEW (structured dataflow, National Instruments) 

SCADE (synchronous, based on Lustre and Esterel) 

CORBA event service (distributed push-pull) 

ROOM and UML-2 (dataflow, Rational, IBM) 

VHDL, Verilog (discrete events, Cadence, Synopsys, ...) 

Modelica (continuous time, constraint-based, Linkoping) 

OPNET (discrete events, Opnet Technologies) 

SDL (process networks) 

Occam (rendezvous) 

SPW (synchronous dataflow, Cadence, CoWare) 

… 

The semantics of 

these differ 
considerably in their 

approaches to 
concurrency and time. 

Some are loose 

(ambiguous) and 
some rigorous. Some 

are strongly actor-
oriented, while some 

retain much of the 

flavor (and flaws) of 
threads. 
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Ptolemy II: Our Laboratory for Experiments with  

Actor-Oriented Design 

Director from a library 

defines component 

interaction semantics 

Software component library. 

Visual editor for composing components 

Modern type 

system for 

component 

interfaces 

Programs are specified as actor-oriented models, 

and software is synthesized from these models. 
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Conclusions 

Today, timing is a property only of realizations of 

computational systems. 

Tomorrow, timing will be a semantic property of  
computational models. 

Raffaello Sanzio da Urbino – The Athens School 
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New Text: Lee & Seshia: 

Introduction to Embedded 

Systems - A Cyber-Physical 

Systems Approach 

http://LeeSeshia.org/ 

This book strives to identify 
and introduce the durable 

intellectual ideas of 

embedded systems as a 

technology and as a subject 

of study. The emphasis is on 

modeling, design, and 

analysis of cyber-physical 

systems, which integrate 

computing, networking, and 

physical processes. 


