
Computing Needs Time

Edward A. Lee
Robert S. Pepper Distinguished Professor

UC Berkeley

Invited Talk:

Distinguished Lecture Series on

Cyber-Physical Systems

Washington University

St. Louis, MO, November 12, 2010

Thanks to:

• Danica Chang

• David Culler

• Gage Eads

• Stephen Edwards

• John Eidson

• Jeff Jensen

• Sungjun Kim

• Isaac Liu

• Slobodan Matic

• Hiren Patel

• Jan Reineke

• Jia Zou

Lee, Berkeley 2

Abstract

Cyber-Physical Systems (CPS) are integrations of computation and physical

processes. Embedded computers and networks monitor and control the

physical processes, usually with feedback loops where physical processes

affect computations and vice versa. The prevailing abstractions used in

computing, however, do not mesh well with the physical world. Most critically,

software systems speak about the passage of time only very indirectly and in

non-compositional ways. This talk examines the obstacles in software

technologies that are impeding progress, and in particular raises the question of

whether today's computing and networking technologies provide an adequate

foundation for CPS. It argues that it will not be sufficient to improve design

processes, raise the level of abstraction, or verify (formally or otherwise)

designs that are built on today's abstractions. To realize the full potential of

CPS, we will have to rebuild software abstractions. These abstractions will have

to embrace physical dynamics and computation in a unified way. This talk will

discuss research challenges and potential solutions, with particular focus on two

projects at Berkeley, PRET (which is developing computer architectures with

temporal semantics) and PTIDES (which provides a programming model for

distributed real-time systems).

Lee, Berkeley 3 Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS):
Orchestrating networked computational

resources with physical systems

Power

generation and

distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation

(Air traffic

control at
SFO)

Avionics

Telecommunications

Factory automation

Instrumentation

(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

Lee, Berkeley 4

CPS Example – Printing Press

•

•

•

•

•

•

•

•

•

•

Lee, Berkeley 5

Where CPS Differs from

the traditional embedded software problem:

The traditional embedded software problem:

 Embedded software is software on small

computers. The technical problem is one of

optimization (coping with limited resources).

The CPS problem:

 Computation and networking integrated with

physical processes. The technical problem is

managing dynamics, time, and concurrency in
networked computational + physical systems.

Lee, Berkeley 6

Approaching the CPS Challenge

Cyberizing the Physical (CtP): to endow physical

subsystems with cyber-like abstractions and interfaces

Physicalizing the cyber (PtC): to endow software and network components with abstractions

and interfaces that represent their physical properties, such as dynamics in time.

Lee, Berkeley 7

A “Success” Story

The Boeing 777 was Boeing’s first fly-by-wire aircraft. It is

deployed, appears to be reliable, and is succeeding in the

marketplace. Therefore, it must be a success. However…

Lee, Berkeley 8

A “Success” Story

In “fly by wire” aircraft, certification of the software is

extremely expensive. Regrettably, it is not the software

that is certified but the entire system. If a manufacturer

expects to produce a plane for 50 years, it needs a 50-

year stockpile of fly-by-wire components that are all made

from the same mask set on the same production line.

Even a slight change or “improvement” might affect

behavior and require the software to be re-certified.

Lee, Berkeley 9

A “Success” Story

Apparently, the software does not specify the behavior

that was certified.

Fly-by-wire is about controlling the dynamics of a physical

system. It is not about the transformation of data, which is

what Turing/Church “computation” does.

Lee, Berkeley 10

A Key Challenge:

Timing is not Part of Software Semantics

Correct execution of a program in C, C#, Java,

Haskell, etc. has nothing to do with how long it

takes to do anything. All our computation and

networking abstractions are built on this premise.

Programmers have to step outside the

programming abstractions to specify

timing behavior.

Lee, Berkeley 11

Techniques that Exploit this Fact

Programming languages

Virtual memory

Caches

Dynamic dispatch
Speculative execution

Power management (voltage scaling)

Memory management (garbage collection)

Just-in-time (JIT) compilation

Multitasking (threads and processes)
Component technologies (OO design)

Networking (TCP)

…

i.e., many of the

innovations in

CS over the last
40 years.

Lee, Berkeley 12

The software does not specify the behavior.

Consequences:

Stockpiling for a product run

Some systems vendors have to purchase up front the entire expected part
requirements for an entire product run.

Frozen designs

Once certified, errors cannot be fixed and improvements cannot be made.

Product families

Difficult to maintain and evolve families of products together.

It is difficult to adapt existing designs because small changes have big
consequences

Forced redesign

A part becomes unavailable, forcing a redesign of the system.

Lock in

Cannot take advantage of cheaper or better parts.

Risky in-field updates

In the field updates can cause expensive failures.

Lee, Berkeley 13

Abstraction Layers in Common Use

 The purpose of an

abstraction is to

hide details of the

implementation

below and provide a

platform for design

from above.

Lee, Berkeley 14

Abstraction Layers in Common Use

 Every abstraction

layer has failed in

the fly-by-wire

scenario.

 The design is the

implementation.

Lee, Berkeley 15

The Same Problem Arises in Networking

The point of these abstraction

layers is to isolate a system

designer from the details of

the implementation below,

and to provide an abstraction

for other system designers to

build on.

In today’s networks, timing is

a property that emerges from

the details of the

implementation, and is not

included in the abstractions.

Timing is a performance

metric, not a correctness

criterion.

Lee, Berkeley 16

Abstraction Layers

 How about “raising

the level of

abstraction” to solve

these problems?

Lee, Berkeley 17

But these higher abstractions rely on an

increasingly problematic fiction: WCET

Example war story:

Analysis of:

• Motorola ColdFire

• Two coupled pipelines (7-stage)
• Shared instruction & data cache

• Artificial example from Airbus

• Twelve independent tasks

• Simple control structures

• Cache/Pipeline interaction
leads to large integer linear

programming problem

And the result is valid only for that exact

Hardware and software!

Fundamentally, the ISA of the processor
has failed to provide an adequate abstraction.

C. Ferdinand et al., “Reliable and
precise WCET determination for a
real-life processor.” EMSOFT 2001.

Lee, Berkeley 18

The Key Problem

 Electronics technology

delivers highly reliable and

precise timing…

… and the overlaying software

abstractions discard it.

20.000 MHz (± 100 ppm)

// Perform the convolution.

for (int i=0; i<10; i++) {

 x[i] = a[i]*b[j-i];

 // Notify listeners.

 notify(x[i]);

}

Lee, Berkeley 19

The Standard Practice

Today: WCET Analysis

Today, we augment the

model with minute details

of the realization.

(not just application logic, but

ISA, how the ISA is realized,

what memory technology is used,

how much memory of each kind,

what I/O hardware is used, exact

timing of inputs, etc.)

We can do better!

Realization

// Perform the convolution.

for (int i=0; i<10; i++) {

 x[i] = a[i]*b[j-i];

 // Notify listeners.

 notify(x[i]);

}

Model

Lee, Berkeley 20

Projects at Berkeley

Time and concurrency in the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

Lee, Berkeley 21

PRET Machines

PREcision-Timed processors = PRET

Predictable, REpeatable Timing = PRET

Performance with REpeatable Timing = PRET

= PRET +

Computing With time

// Perform the convolution.

for (int i=0; i<10; i++) {

 x[i] = a[i]*b[j-i];

 // Notify listeners.

 notify(x[i]);

}

Lee, Berkeley 22

A Bottom Up Approach:

Make Timing a Semantic Property of Computers

Precision-Timed (PRET) Machines

Just as we expect reliable logic operations, we should expect repeatable timing.

Timing precision with performance: Challenges:

ISAs with timing (deadline instructions?)

Memory hierarchy (scratchpads?)

Deep pipelines (interleaving?)

Predictable memory management (Metronome?)

Languages with timing (discrete events? Giotto?)

Predictable concurrency (synchronous languages?)

Composable timed components (actor-oriented?)

Multicore PRET (conflict free networks on chip?)

Precision networks (TTA? Time synchronization?)

See S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET) Machine," in the

Wild and Crazy Ideas Track of the Design Automation Conference (DAC), June 2007.

Lee, Berkeley 23

Extending an ISA with

Timing Instructions

set_time r1, 1s

// Code block

delay_until r1

set_time r1, 1s
// Code block

branch_expired r1, <target>

delay_until r1

set_time r1, 1s

exception_on_expire r1, 1

// Code block

deactivate_exception 1

delay_until r1

set_time r1, 1s

// Code block

MTFD r1

Lee, Berkeley 24

Other variations

[V2]-[V4] could all have a variant that does not

control the minimum execution time of the block

of code, but only controls the maximum.

set_time r1, 1s

// Code block

branch_expired r1, <target>

delay_until r1

set_time r1, 1s

exception_on_expire r1, 1

// Code block

deactivate_exception 1

delay_until r1

Lee, Berkeley 25

Exporting the Timed Semantics to a

Low-Level Language (like C)
Example:

tryin (500ms) {

 // Code block

} catch {

 panic();

}

jmp_buf buf;

if (!setjmp(buf)){

 set_time r1, 500ms

 exception_on_expire r1, 0

 // Code block

 deactivate_exception 0

} else {

 panic();

}

exception_handler_0 () {

 longjmp(buf)

}

Lee, Berkeley 26

Summary of ISA extensions

[V1] Execute a block of code taking at least a

specified time [Ip & Edwards, 2006]

[V2] Do [V1], and then conditionally branch if the

specified time was exceeded.

[V3] Do [V1], but if the specified time is exceeded

during execution of the block, branch immediately
to an exception handler.

[V4] Execute a block of code taking exactly the

specified time. MTFD

Variants:

•For V2 – V4, may not impose minimum execution time.

•Time may be literal (seconds) or abstract (cycles).

Lee, Berkeley 27

A Bottom Up Approach:

Make Timing a Semantic Property of Computers

Make temporal behavior as important as logical function.

Timing precision with performance: Challenges:

ISAs with timing (repeatable instr. timing? deadline instructions?)

Deep pipelines (interleaving?)

Memory hierarchy (scratchpads? DRAM banks?)

Predictable memory management (Metronome?)

Languages with timing (discrete events? Giotto?)

Predictable concurrency (synchronous languages?)

Composable timed components (actor-oriented?)

Multicore PRET (conflict-free routing?)

Precision networks (TTA? Time synchronization?)

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007.

Lee, Berkeley 28

Pipelining

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Lee, Berkeley 29

Pipeline Hazards

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Lee, Berkeley 30

An Alternative: Pipeline Interleaving

Stall pipeline Dependencies result in complex

timing behaviors

Repeatable

timing
behavior of

instructions

Thread-interleaved pipeline:

Traditional pipeline:

Lee, Berkeley 31

Pipeline Interleaving

An old idea:

1960s:

CDC 6600

Denelcore HEP

...

2000s

Sandbridge Sandblaster

(John Glossner, et al.)

XMOS

(David May, et al.)

There are various detractors. See Ungerer, T., B. Robic and J. Silc (2003). "A survey of

processors with explicit multithreading." Computing Surveys 35(1): 29-63.

Lee and Messerschmitt, Pipeline

Interleaved Programmable DSPs,

ASSP-35(9), 1987.

Lee, Berkeley 32

Projects at Berkeley

Time and concurrency in the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

Lee, Berkeley 33

PTIDES: Distributed execution under discrete-event semantics, with

“model time” and “real time” bound at sensors and actuators.

A Top Down Approach:
Make Timing a Semantic Property of Software Components

Input time stamps are

 real time

Input time stamps are

 real time

Output time stamps

are real time

Output time stamps

are real time

Messages are

processed in time-

stamp order.

Lee, Berkeley 34

First Test Case

• Tunneling Ball Device

– sense ball

– track disk

– adjust trajectory

This device was designed by Jeff Jensen,

now at National Instruments.

Lee, Berkeley 35

Tunneling Ball Device in Action

Lee, Berkeley 36

Tunneling Ball Device – 10 rps

Lee, Berkeley 37

Tunneling Ball Device

Mixed event

sequences
Periodic Events

Quasi Periodic Events

Sporadic Events

Lee, Berkeley 38

Second Test Case: Distributed

Synchrophasor Measurement & Control

Power swing and

Unstability detection

Thanks to

Vaselin Skendzic,

Schweitzer Engineering

Lee, Berkeley 39

Experiment

Diagram

Grid emulator built with

National Instruments PXI

‘Primary Measurement

Unit (PMU) built with

Renesas demo boards

with DP83640

Ethernet bridge or 1588

boundary/transparent clock

Synchrophasor Vector

Processing unit (SVP) built

with Renesas demo board with

DP83640

Thanks to Vaselin Skendzic, Schweitzer Engineering

Lee, Berkeley 40

Distributed PTIDES Relies on Network Time

Synchronization with Bounded Error

This may become
routine!

With this PHY, clocks
on a LAN agree on the
current time of day to
within 8ns, far more
precise than older
techniques like NTP.

A question we are
addressing at
Berkeley: How does
this change how we
develop distributed
CPS software?

Press Release October 1, 2007

Lee, Berkeley 41

An Extreme Example: The Large Hadron Collider

The WhiteRabbit project at CERN is synchronizing the clocks of computers

10 km apart to within about 80 psec using a combination of IEEE 1588 PTP

and synchronous ethernet.

Lee, Berkeley 42

More Generally than PTIDES:

Rethinking Software Components to Admit Time.

Object Oriented vs. Actor Oriented

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

 Output data

What flows through

an object is

evolving data

class name

data

methods

call return

What flows through

an object is

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

Lee, Berkeley 43

Examples of Actor-Oriented Systems

UML 2 and SysML (activity diagrams)

ASCET (time periods, interrupts, priorities, preemption, shared variables)

Autosar (software components w/ sender/receiver interfaces)

Simulink (continuous time, The MathWorks)

LabVIEW (structured dataflow, National Instruments)

SCADE (synchronous, based on Lustre and Esterel)

CORBA event service (distributed push-pull)

ROOM and UML-2 (dataflow, Rational, IBM)

VHDL, Verilog (discrete events, Cadence, Synopsys, ...)

Modelica (continuous time, constraint-based, Linkoping)

OPNET (discrete events, Opnet Technologies)

SDL (process networks)

Occam (rendezvous)

SPW (synchronous dataflow, Cadence, CoWare)

…

The semantics of

these differ
considerably in their

approaches to
concurrency and time.

Some are loose

(ambiguous) and
some rigorous. Some

are strongly actor-
oriented, while some

retain much of the

flavor (and flaws) of
threads.

Lee, Berkeley 44

Ptolemy II: Our Laboratory for Experiments with

Actor-Oriented Design

Director from a library

defines component

interaction semantics

Software component library.

Visual editor for composing components

Modern type

system for

component

interfaces

Programs are specified as actor-oriented models,

and software is synthesized from these models.

Lee, Berkeley 45

Conclusions

Today, timing is a property only of realizations of

computational systems.

Tomorrow, timing will be a semantic property of
computational models.

Raffaello Sanzio da Urbino – The Athens School

Lee, Berkeley 46

The Ptolemy Pteam

John

Eidson

Isaac Liu

Christopher Brooks

Jia Zou

Edward

Lee

Ben

Lickly

Thomas

Huining

Feng

Jackie

Mankit

Leung

Jeff

Jensen

Bert Rodiers Hiren Patel

Yasemin

Demir

Shanna-

Shaye

Forbes

Thomas

Mandl

Elefterios

Matsikoudis

Lee, Berkeley 47

New Text: Lee & Seshia:

Introduction to Embedded

Systems - A Cyber-Physical

Systems Approach

http://LeeSeshia.org/

This book strives to identify
and introduce the durable

intellectual ideas of

embedded systems as a

technology and as a subject

of study. The emphasis is on

modeling, design, and

analysis of cyber-physical

systems, which integrate

computing, networking, and

physical processes.

