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Focus of this Talk: Distributed CPS 
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Approaching the CPS Challenge 

Cyberizing the Physical (CtP): to endow physical 

subsystems with cyber-like abstractions and interfaces 

Physicalizing the cyber (PtC): to endow software and network components 

with abstractions and interfaces that represent their physical properties, such  

as dynamics in time.  
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For distributed cyber-physical systems, 

Timing needs to be a part of the network 

semantics, not a side effect of the implementation. 

Technologies needed: 

Time synchronization 

Bounds on latency 

Time-aware fault isolation and recovery 

Time-aware robustness 
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Background - Domain-Specific 

Networks with Timed Semantics  

WorldFIP (Factory Instrumentation Protocol) 

Created in France, 1980s, used in train systems 

CAN: Controller Area Network 

Created by Bosch, 1980s/90s, ISO standard 

Various ethernet variants 

PROFInet, EtherCAT, Powerlink, … 

TTP/C: Time-Triggered Protocol 

Created around 1990, Univ. of Vienna, supported by TTTech 

MOST: Media Oriented Systems Transport 

Created by a consortium of automotive & electronics companies  

Under active development today 

FlexRay: Time triggered bus for automotive applications 

Created by a consortium of automotive & electronics companies  

Under active development today 
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Services in Time-Aware Networks 

Frequency locking 

E.g., synchronous ethernet: 

ITU-T G.8261, May 2006 

Enables integrating circuit- 

switched services on packet- 

switched networks 

Can deliver performance 

independent of network loading. 

Time synchronization 

E.g., IEEE 1588 standard set in 2002. 

Synchronized time-of-day across a network. 
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Time Synchronization on Ethernet with 

TCP/IP: IEEE 1588 PTP 

Clocks on a LAN 
agree on the current 
time of day to within 
8ns, far more precise 
than older techniques 
like NTP. 

Press Release October 1, 2007 
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An Extreme Example:  

The Large Hadron Collider 
The WhiteRabbit project at CERN is synchronizing the clocks of 

computers 10 km apart to within about 80 psec using a 

combination of IEEE 1588 PTP and synchronous Ethernet. 
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The question we address: 

If you assume that computers on a network 

can agree on the current time of day within 

some bounded error, 

how does this change how we develop 

distributed real-time software? 

Our answer: It changes everything! 

Our approach: Model-based design based 

on distributed discrete-event (DE) models 

with synthesis of embedded software. 
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The Design  
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Our Approach is based on 

Discrete Events (DE) 

  Concurrent actors 

  Exchange time-stamped messages (“events”) 

A correct execution is one where every actor 

reacts to input events in time-stamp order. 

Time stamps are in “model time,” which typically 

bears no relationship to “real time” (wall-clock time). 

We use superdense time for the time stamps. 
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Building a DE Model (in Ptolemy II) 

DE Director specifies that 

this will be a DE model 



Lee, Matic, Zou, Berkeley 13 

Building a DE Model (in Ptolemy II) 

Model of regularly spaced 

events (e.g., a clock signal). 
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Building a DE Model (in Ptolemy II) 

Model of irregularly spaced 

events (e.g., a failure event). 
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Building a DE Model (in Ptolemy II) 
Model of a subsystem that 

changes modes at random 

(event-triggered) times 
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Building a DE Model (in Ptolemy II) 

Model of an observer 

subsystem 
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Building a DE Model (in Ptolemy II) 

Events on the two input 

streams must be seen in 

time stamp order. 
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Aside: 

Superdense Time Enables Better Conjunction 

of Computation and Physical Processes 
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This is a Component Technology 

Model of a subsystem given 

as an imperative program. 
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This is a Component Technology 

Model of a subsystem given 

as a state machine. 
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This is a Component Technology 

Model of a subsystem given 

as a modal model. 

More types of components: 

• Modal models 

• Functional expressions. 

• Submodels in DE 

• Submodels in other MoCs 
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Using DE Semantics in Distributed Real-

Time Systems 

DE is usually a simulation technology. 

Distributing DE is traditionally done for acceleration. 

Hardware design languages (e.g. VHDL) use DE where 

time stamps are literally interpreted as real time, or 

abstractly as ticks of a physical clock. 

We are using DE for distributed real-time software, 

binding time stamps to real time only where necessary. 

PTIDES: Programming Temporally Integrated 

Distributed Embedded Systems 
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Distributed execution under discrete-event semantics, with 

“model time” and “real time” bound at sensors and actuators. 

PTIDES: Programming Temporally 

Integrated Distributed Embedded Systems 

Input time stamps are 

 real time 

Input time stamps are 

 real time 

Output time stamps 

are  real time 

Output time stamps 

are  real time 
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PTIDES: Programming Temporally 

Integrated Distributed Embedded Systems 

PTIDES uses static causality analysis to determine when 

events can be safely processed (preserving DE semantics). 

Assume bounded 

network delay d 

Assume bounded 

clock error 

Assume bounded 

clock error e 

An earliest event with 

time stamp t here can 

be safely merged when 

real time exceeds  

t + s + d + e – d2 

Assume bounded 

clock error e 

Assume bounded 

sensor delay s 

Application 

specification of 

latency d2 
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PTIDES: Programming Temporally 

Integrated Distributed Embedded Systems 

Schedulability analysis incorporates computation times to 

determine whether we can guarantee that deadlines are met. 

Deadline for delivery of 

event with time stamp t 

here is t – c3 – d2 

Deadline for delivery 

here is t 

Assume bounded 

computation time c1 

Assume bounded 

computation time c3 

Assume bounded 

computation time c2 
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PTIDES: Programming Temporally 

Integrated Distributed Embedded Systems 

… and being explicit about time delays means that we can 

analyze control system dynamics… 

Feedback through the physical world 

Actuator may process 

the event at the time 

received or wait until 

real-time matches the 

time stamp. The latter 

yields determinate 

latencies. 
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Code Generation Approach: Run-time Kernel 

+ Partial Evaluation + Generator Libraries 

               model  

(actor-oriented program) 
partial evaluator 
& code generator 

execution context: 

data types, buffer sizes, 
schedules, parameters,  

model structure, etc. 

model analysis 

highly optimized 

target code blocks 

c
o
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e
  g
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n
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ra
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n
   

input monolithic and  

efficient executable 
output 

target code execution 

:  data 

:  program 



Lee, Matic, Zou, Berkeley 28 

PtidyOS 

The Run-Time Kernel 

PtidyOS is a C library that gets linked with 

application code. Services: 

Synchronized time service (IEEE 1588) 

Sorted event queue (EQ) 

Scheduler dispatching event from EQ (safe-to-

process analysis + EDF) 

Single-stack operation (preemption is strictly 

nested, caused by interrupts) 

Device driver services (time stamping of 

events, delayed actuation, etc.) 
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Partial Evaluation 

Type inference in Ptolemy II reduces 

polymorphic components to type-specific 

components. 

Dependencies among parameters reveal 

which can be statically evaluated, becoming 

constants in the generated code. 

Small primitive operations can be inlined rather 

than dispatched from the event queue. 
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Application code given by code generators 

called Adapters 

CodeGenerator 
------------------------------------------ 

+ generateBodyCode() 
+ generateInitializeCode() 

+ generatePreinitializeCode() 
+ generateSharedCode() 
+ generateWrapupCode() 

 … 

CodeGeneratorAdaptor 
------------------------------------------ 

+ generateFireCode() 
+ generateInitializeCode() 

+ generatePreinitializeCode() 
+ generateSharedCode() 
+ generateWrapupCode() 

 … 

1 n 

Director 
--------------- 

… 

AtomicActor 
------------------ 

… 

TypedCompositeActor 
-------------------------------- 

… 

Ptolemnizer 
------------ 

… 

FFT 
------------------ 

… 

DEDirector 
------------------ 

… 

extends 

1 n 

CCodeGenerator 
------------------------ 

… 

ProgramGenerator 
-------------------------- 

… 
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Adapters are discovered 

Ptides Model Target 

Search for target-specific adapter 

If none found, search for language-specific adapter 

If none found, search for generic adapter (e.g. to 

generate documentation) 

Do this first for Directors, then for Actors 
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Adapter Library Hierarchy 

generic 

program 

procedural 

C Java 

VHDL 

HTML 

MPI Posix win32 PRET 

… 

$PTII/ptolemy/cg/kernel/generic/ 

$PTII/ptolemy/cg/kernel/generic/program/ 

Within each library, adapters provide either code generators or 

template code to be customized by a generic code generator. 
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Sections of the Generated Content:  

Include Files 

------------------------------------------ 

Variable Declarations 

------------------------------------------ 

Procedure Declarations 

------------------------------------------ 

Initialize Code 

------------------------------------------ 

Body Code                                       

------------------------------------------ 

Wrapup Code 

Adapters for directors and actors provide each of these sections either 

as a template or as a code generator. 
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Example of a Template-Based Adapter 

Templates allow actor functionality to be designed in low-level, 

target-specific code. This facilitates using PTIDES as component 

architecture rather than a programming language. 

/***fireBlock***/ 

  drive($ref(velocity), $ref(radius)); 

  $ref(done) = true; 

/**/ 
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First Test Case 

• Tunneling Ball Device 

– sense ball 

– track disk 

– adjust trajectory  

This device was designed by Jeff Jensen, 

now at National Instruments. 
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Tunneling Ball Device in Action 
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Tunneling Ball Device – 10 rps 
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Tunneling Ball Device 

Mixed event 

sequences 
Periodic Events 

Quasi Periodic Events 

Sporadic Events 
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Second Test Case: Distributed 

Synchrophasor Measurement & Control 

Power swing and 

Unstability detection 

Thanks to 

Vaselin Skendzic, 

Schweitzer Engineering 



Lee, Matic, Zou, Berkeley 40 

Experiment 

Diagram 

Grid emulator built with 

National Instruments PXI  

‘Primary Measurement 

Unit (PMU) built with 

Renesas demo boards 

with DP83640  

Ethernet bridge or 1588 

boundary/transparent clock  

Synchrophasor Vector 

Processing unit (SVP) built 

with Renesas demo board with 

DP83640  

Thanks to Vaselin Skendzic, Schweitzer Engineering 
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Basic PTIDES 

Timing Testing 

Vary phasor data independently 

Freq. and phases  w.r.t. global time 

Sample voltage and current 

Signal processing 

Send phasor data 

Local control: on/off breaker 

Wireshark monitoring of 

network events 

Detect discrepancies 

If unstable region send 

on/off command 

Thanks to Vaselin Skendzic, Schweitzer Engineering 
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Current Status (as of Oct. 2010) 

Prototype of PtidyOS executes on single 

Luminary Micro (ARM platform) 

Overhead of event processing is still too high 

in this prototype. We are working on 

optimizations (e.g. dispatching certain events 

without putting them on the EQ). 

Realizing IEEE 1588 synchronized time 

service on Renesas board. 

Porting PtidyOS to Renesas board. 
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Summary 

Network time synchronization is a potentially 

game-changing advance for distributed 

embedded systems. 

The PTIDES model of computation offers an 

attractive possible programming model for 

distributed cyber-physical systems. 

Synthesis of embedded software from PTIDES 

models seems feasible, though performance 

improvements are still needed. 
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Future Work 

Schedulability analysis to statically determine 

whether deadlines at actuators will always be 

met (the question is undecidable in general, 

but decidable for some cases). 

Improving code generator to use more 

sophisticated metaprogramming techniques 

(such as EMF & openarchitectureware). 


