
Synthesis of Reliable Distributed

Real-Time Software

Edward A. Lee

Slobodan Matic

Jia Zou

UC Berkeley

Invited Keynote Talk

Workshop on Software Synthesis

ESWEEK 2010

Scottsdale, AZ, USA, October 29, 2010

Lee, Matic, Zou, Berkeley 2

Focus of this Talk: Distributed CPS

Example – Printing Press

•

•

•

•

•

•

•

Lee, Matic, Zou, Berkeley 3

Approaching the CPS Challenge

Cyberizing the Physical (CtP): to endow physical

subsystems with cyber-like abstractions and interfaces

Physicalizing the cyber (PtC): to endow software and network components

with abstractions and interfaces that represent their physical properties, such

as dynamics in time.

Lee, Matic, Zou, Berkeley 4

For distributed cyber-physical systems,

Timing needs to be a part of the network

semantics, not a side effect of the implementation.

Technologies needed:

Time synchronization

Bounds on latency

Time-aware fault isolation and recovery

Time-aware robustness

Lee, Matic, Zou, Berkeley 5

Background - Domain-Specific

Networks with Timed Semantics

WorldFIP (Factory Instrumentation Protocol)

Created in France, 1980s, used in train systems

CAN: Controller Area Network

Created by Bosch, 1980s/90s, ISO standard

Various ethernet variants

PROFInet, EtherCAT, Powerlink, …

TTP/C: Time-Triggered Protocol

Created around 1990, Univ. of Vienna, supported by TTTech

MOST: Media Oriented Systems Transport

Created by a consortium of automotive & electronics companies

Under active development today

FlexRay: Time triggered bus for automotive applications

Created by a consortium of automotive & electronics companies

Under active development today

Lee, Matic, Zou, Berkeley 6

Services in Time-Aware Networks

Frequency locking

E.g., synchronous ethernet:

ITU-T G.8261, May 2006

Enables integrating circuit-

switched services on packet-

switched networks

Can deliver performance

independent of network loading.

Time synchronization

E.g., IEEE 1588 standard set in 2002.

Synchronized time-of-day across a network.

Lee, Matic, Zou, Berkeley 7

Time Synchronization on Ethernet with

TCP/IP: IEEE 1588 PTP

Clocks on a LAN
agree on the current
time of day to within
8ns, far more precise
than older techniques
like NTP.

Press Release October 1, 2007

Lee, Matic, Zou, Berkeley 8

An Extreme Example:

The Large Hadron Collider
The WhiteRabbit project at CERN is synchronizing the clocks of

computers 10 km apart to within about 80 psec using a

combination of IEEE 1588 PTP and synchronous Ethernet.

Lee, Matic, Zou, Berkeley 9

The question we address:

If you assume that computers on a network

can agree on the current time of day within

some bounded error,

how does this change how we develop

distributed real-time software?

Our answer: It changes everything!

Our approach: Model-based design based

on distributed discrete-event (DE) models

with synthesis of embedded software.

Lee, Matic, Zou, Berkeley 10

The Design

Cycle

HW Platform Software

Component

Library

Ptides Model Code

Generator

PtidyOS

Code

Plant Model

Network Model

HW in the

Loop

Simulator

Causality

Analysis

Program

Analysis

Schedulability

Analysis

Mixed

Simulator

Ptolemy II Ptides domain

Ptolemy II Discrete-event,

Continuous, and

Wireless domains

Luminary

Micro

8962 IEEE 1588 Network

time protocol

Lee, Matic, Zou, Berkeley 11

Our Approach is based on

Discrete Events (DE)

 Concurrent actors

 Exchange time-stamped messages (“events”)

A correct execution is one where every actor

reacts to input events in time-stamp order.

Time stamps are in “model time,” which typically

bears no relationship to “real time” (wall-clock time).

We use superdense time for the time stamps.

Lee, Matic, Zou, Berkeley 12

Building a DE Model (in Ptolemy II)

DE Director specifies that

this will be a DE model

Lee, Matic, Zou, Berkeley 13

Building a DE Model (in Ptolemy II)

Model of regularly spaced

events (e.g., a clock signal).

Lee, Matic, Zou, Berkeley 14

Building a DE Model (in Ptolemy II)

Model of irregularly spaced

events (e.g., a failure event).

Lee, Matic, Zou, Berkeley 15

Building a DE Model (in Ptolemy II)
Model of a subsystem that

changes modes at random

(event-triggered) times

Lee, Matic, Zou, Berkeley 16

Building a DE Model (in Ptolemy II)

Model of an observer

subsystem

Lee, Matic, Zou, Berkeley 17

Building a DE Model (in Ptolemy II)

Events on the two input

streams must be seen in

time stamp order.

Lee, Matic, Zou, Berkeley 18

Aside:

Superdense Time Enables Better Conjunction

of Computation and Physical Processes

Lee, Matic, Zou, Berkeley 19

This is a Component Technology

Model of a subsystem given

as an imperative program.

Lee, Matic, Zou, Berkeley 20

This is a Component Technology

Model of a subsystem given

as a state machine.

Lee, Matic, Zou, Berkeley 21

This is a Component Technology

Model of a subsystem given

as a modal model.

More types of components:

• Modal models

• Functional expressions.

• Submodels in DE

• Submodels in other MoCs

Lee, Matic, Zou, Berkeley 22

Using DE Semantics in Distributed Real-

Time Systems

DE is usually a simulation technology.

Distributing DE is traditionally done for acceleration.

Hardware design languages (e.g. VHDL) use DE where

time stamps are literally interpreted as real time, or

abstractly as ticks of a physical clock.

We are using DE for distributed real-time software,

binding time stamps to real time only where necessary.

PTIDES: Programming Temporally Integrated

Distributed Embedded Systems

Lee, Matic, Zou, Berkeley 23

Distributed execution under discrete-event semantics, with

“model time” and “real time” bound at sensors and actuators.

PTIDES: Programming Temporally

Integrated Distributed Embedded Systems

Input time stamps are

 real time

Input time stamps are

 real time

Output time stamps

are real time

Output time stamps

are real time

Lee, Matic, Zou, Berkeley 24

PTIDES: Programming Temporally

Integrated Distributed Embedded Systems

PTIDES uses static causality analysis to determine when

events can be safely processed (preserving DE semantics).

Assume bounded

network delay d

Assume bounded

clock error

Assume bounded

clock error e

An earliest event with

time stamp t here can

be safely merged when

real time exceeds

t + s + d + e – d2

Assume bounded

clock error e

Assume bounded

sensor delay s

Application

specification of

latency d2

Lee, Matic, Zou, Berkeley 25

PTIDES: Programming Temporally

Integrated Distributed Embedded Systems

Schedulability analysis incorporates computation times to

determine whether we can guarantee that deadlines are met.

Deadline for delivery of

event with time stamp t

here is t – c3 – d2

Deadline for delivery

here is t

Assume bounded

computation time c1

Assume bounded

computation time c3

Assume bounded

computation time c2

Lee, Matic, Zou, Berkeley 26

PTIDES: Programming Temporally

Integrated Distributed Embedded Systems

… and being explicit about time delays means that we can

analyze control system dynamics…

Feedback through the physical world

Actuator may process

the event at the time

received or wait until

real-time matches the

time stamp. The latter

yields determinate

latencies.

Lee, Matic, Zou, Berkeley 27

Code Generation Approach: Run-time Kernel

+ Partial Evaluation + Generator Libraries

 model

(actor-oriented program)
partial evaluator
& code generator

execution context:

data types, buffer sizes,
schedules, parameters,

model structure, etc.

model analysis

highly optimized

target code blocks

c
o
d
e
 g

e
n
e
ra

tio
n

input monolithic and

efficient executable
output

target code execution

: data

: program

Lee, Matic, Zou, Berkeley 28

PtidyOS

The Run-Time Kernel

PtidyOS is a C library that gets linked with

application code. Services:

Synchronized time service (IEEE 1588)

Sorted event queue (EQ)

Scheduler dispatching event from EQ (safe-to-

process analysis + EDF)

Single-stack operation (preemption is strictly

nested, caused by interrupts)

Device driver services (time stamping of

events, delayed actuation, etc.)

Lee, Matic, Zou, Berkeley 29

Partial Evaluation

Type inference in Ptolemy II reduces

polymorphic components to type-specific

components.

Dependencies among parameters reveal

which can be statically evaluated, becoming

constants in the generated code.

Small primitive operations can be inlined rather

than dispatched from the event queue.

Lee, Matic, Zou, Berkeley 30

Application code given by code generators

called Adapters

CodeGenerator
--

+ generateBodyCode()
+ generateInitializeCode()

+ generatePreinitializeCode()
+ generateSharedCode()
+ generateWrapupCode()

 …

CodeGeneratorAdaptor
--

+ generateFireCode()
+ generateInitializeCode()

+ generatePreinitializeCode()
+ generateSharedCode()
+ generateWrapupCode()

 …

1 n

Director

…

AtomicActor

…

TypedCompositeActor

…

Ptolemnizer

…

FFT

…

DEDirector

…

extends

1 n

CCodeGenerator

…

ProgramGenerator

…

Lee, Matic, Zou, Berkeley 31

Adapters are discovered

Ptides Model Target

Search for target-specific adapter

If none found, search for language-specific adapter

If none found, search for generic adapter (e.g. to

generate documentation)

Do this first for Directors, then for Actors

Lee, Matic, Zou, Berkeley 32

Adapter Library Hierarchy

generic

program

procedural

C Java

VHDL

HTML

MPI Posix win32 PRET

…

$PTII/ptolemy/cg/kernel/generic/

$PTII/ptolemy/cg/kernel/generic/program/

Within each library, adapters provide either code generators or

template code to be customized by a generic code generator.

Lee, Matic, Zou, Berkeley 33

Sections of the Generated Content:

Include Files

--

Variable Declarations

--

Procedure Declarations

--

Initialize Code

--

Body Code

--

Wrapup Code

Adapters for directors and actors provide each of these sections either

as a template or as a code generator.

Lee, Matic, Zou, Berkeley 34

Example of a Template-Based Adapter

Templates allow actor functionality to be designed in low-level,

target-specific code. This facilitates using PTIDES as component

architecture rather than a programming language.

/***fireBlock***/

 drive($ref(velocity), $ref(radius));

 $ref(done) = true;

/**/

Lee, Matic, Zou, Berkeley 35

First Test Case

• Tunneling Ball Device

– sense ball

– track disk

– adjust trajectory

This device was designed by Jeff Jensen,

now at National Instruments.

Lee, Matic, Zou, Berkeley 36

Tunneling Ball Device in Action

Lee, Matic, Zou, Berkeley 37

Tunneling Ball Device – 10 rps

Lee, Matic, Zou, Berkeley 38

Tunneling Ball Device

Mixed event

sequences
Periodic Events

Quasi Periodic Events

Sporadic Events

Lee, Matic, Zou, Berkeley 39

Second Test Case: Distributed

Synchrophasor Measurement & Control

Power swing and

Unstability detection

Thanks to

Vaselin Skendzic,

Schweitzer Engineering

Lee, Matic, Zou, Berkeley 40

Experiment

Diagram

Grid emulator built with

National Instruments PXI

‘Primary Measurement

Unit (PMU) built with

Renesas demo boards

with DP83640

Ethernet bridge or 1588

boundary/transparent clock

Synchrophasor Vector

Processing unit (SVP) built

with Renesas demo board with

DP83640

Thanks to Vaselin Skendzic, Schweitzer Engineering

Lee, Matic, Zou, Berkeley 41

Basic PTIDES

Timing Testing

Vary phasor data independently

Freq. and phases w.r.t. global time

Sample voltage and current

Signal processing

Send phasor data

Local control: on/off breaker

Wireshark monitoring of

network events

Detect discrepancies

If unstable region send

on/off command

Thanks to Vaselin Skendzic, Schweitzer Engineering

Lee, Matic, Zou, Berkeley 42

Current Status (as of Oct. 2010)

Prototype of PtidyOS executes on single

Luminary Micro (ARM platform)

Overhead of event processing is still too high

in this prototype. We are working on

optimizations (e.g. dispatching certain events

without putting them on the EQ).

Realizing IEEE 1588 synchronized time

service on Renesas board.

Porting PtidyOS to Renesas board.

Lee, Matic, Zou, Berkeley 43

Summary

Network time synchronization is a potentially

game-changing advance for distributed

embedded systems.

The PTIDES model of computation offers an

attractive possible programming model for

distributed cyber-physical systems.

Synthesis of embedded software from PTIDES

models seems feasible, though performance

improvements are still needed.

Lee, Matic, Zou, Berkeley 44

Future Work

Schedulability analysis to statically determine

whether deadlines at actuators will always be

met (the question is undecidable in general,

but decidable for some cases).

Improving code generator to use more

sophisticated metaprogramming techniques

(such as EMF & openarchitectureware).

