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° Abstractions are Great
... if they abstract the right thing
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® Agenda of PRET

Higher-level Model of Computation Code
Generation
C-level programming language
> Compilation
Endow with .. =3 Instruction Set Architecture (ISA)
control over timing
| Execution
Predictable

. —> Hardware Realizations
Execution Platform W zat
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° PRET Machines

Make Timing a Semantic Property of Computers

Precision-Timed (PRET) Machines

JTAG and SWD interface

«—— USB interface

Timing precision with performance: Challenges:

Memory hierarchy (scratchpads?) ek , araphics - NN

. . . . to GPIO pins " wa display B connected to
Deep pipelines (interleaving?) e GPioorPWM
ISAs with timing (deadline instructions?) R et

inputs S8 — GPIO connectors

Predictable memory management (Metronome?)
Languages with timing (discrete events? Giotto?) o
Predictable concurrency (synchronous languages?) e — S B S CAN bus interface
Composable timed components (actor-oriented?) ot "N\ Ethernet nterface
Precision networks (TTA? Time synchronization?)

& o < PWM outputs

See our posters!
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® Agenda of this Talk

Higher-level Model of Computation

Code
Generation
C.OI.’reSpondlng —> C-level programming language
timing constructs 9 o
Compilation
Endow with . . = Instruction Set Architecture (ISA)
control over timing
Execution
Hardware Realizations
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Adding Control over Timing to the ISA

Variant 1: “"delay until”

Some possible capabilities in an ISA:

o [V1] Execute a block of code taking at least a
specified time [lp & Edwards, 20006]

delay_
until

!

1 second time
- -
- g
1 second ime
~ =

Where could this be useful?
- Finishing early is not always better:
- Scheduling Anomalies (Graham’s anomalies)
- Communication protocols may expect periodic behavior
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Adding Control over Timing to the ISA

Variants 2+3: “late” and “immediate miss detection”

o [V2] Do [V1], and then conditionally branch if the
specified time was exceeded.

branch_expired

>
1 second ime
< -

o [V3] Do [V1], but if the specified time is exceeded
during execution of the block, branch immediately
to an exception handler.

exception_on_expire

I

1 second time
- o
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Applications of Variants 2+3
“late” and “immediate miss detection”

o [V3] “immediate miss detection”:

Runtime detection of missed deadlines to initiate
error handling mechanisms

Anytime algorithms
However: unknown state after exception is taken

o [V2] “late miss detection™:
No problems with unknown state of system

Change parameters of algorithm to meet future
deadlines
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PRET Assembly Instructions
Supporting these Four Capabilities

set_time %r, <val>

— loads current time + <val> into %r
delay_until %r

— stall until current time >= %r
branch_expired %r, <target>

— branch to target if current time > %r
exception_on_expire %r, <id>

— arm processor to throw exception <id> when current time > %r
deactivate exception <id>

— disarm the processor for exception <id>
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Controlled Timing in
Assembly Code

V1] Delay until:
[Vi] Y [V2] Late miss detection
set _timer1, 1s

// Code block
delay _until r1

set timeri, 1s

// Code block
branch_expired r1, <target>
delay _until r1

[V3] Immediate miss detection

set_tlm.e r1, 1s _ [V2] + [V3] could all have a variant that
exception_on_expire r1, 1 does not control the minimum
// Code block execution time of the block of code, but

deactivate exception 1 only controls the maximum.
delay until r1
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® Application: Timed Loops
Lower bound for

Fixed Period each iteration
set timer1, 1s set timeri, 1s
loop: loop:

// Code block // Code block
delay_until r1 delay_until r1
r1=r1+1s . .set timeri, 1s
b loop b loop

The two loops above have different semantics:

| 1 second | 1 second | 1 second | time

| 1 second [ 1 second | 1 second | time
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Timed Loop with Exception Handling

Exact execution time

(no jitter) This code takes exactly 1
set_timer1, 1s second to execute each
exception_on_expire r1, 0 iteration. If an iteration takes
loop: more than 1 second, then as
// Code block

soon as its time expires, the
iteration is aborted and an
exception handler is
activated.

deactivate exception 0
delay _until r1

r1=r1+1s
exception_on_expire r1, 0
b loop
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Exporting the Timed Semantics to a
Low-Level Language (like C)

tryin (600ms) {

// Code block set_time r1, 500ms
} expired { // Code block

patchup(); branch_expired r1, patchup
}

7

This realizes variant 2, “late miss detection.’

The code block will execute to completion.
If 500ms have passed, then the patchup procedure will run.
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tryin (600ms) {
// Code block

} catch {
panic();

/

Exporting the Timed Semantics to a
Low-Level Language (like C)

jmp_buf buf;

if (Isetimp(buf) ){
set time r1, 500ms
exception_on_expire r1, 0
// Code block

deactivate _exception 0
}else {

panic();
/

exception _handler 0 () {
longjmp(buf)
/

This pseudo-code is neither C-level
nor assembly, but is meant to explain
an assembly-level implementation.
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tryfor

tryfor (600ms) {
// Code block
} catch {

panic();
}

This is the same, except for the
added delay until

Variant with Exact Execution Times:

jmp_buf buf;

if ( Isetimp(buf) ){

}
}

set time r1, 500ms
exception_on_expire r1, 0
// Code block
deactivate_exception 0

delay until r1
else {

panic();

exception_handler O () {

}

longimp(buf)
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MTFD — Meet the F(inal) Deadline

o Variant [V 1] ensure that a block of code
takes at least a given time.

o Variants [V2, V3] allow to act upon
deadline misses.

o [V4] "MTFD”": Execute a block of code
taking at most the specified time.

. o [V4] Exact execution:
Being arbitrarily “slow” is

always possible and “easy”. set_timer1, 1s
// Code block
But what about being “fast”? MTFD r1

delay _until r1
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Current Timing Verification Process
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The Future (?) Timing Verification Process

B) | Compiler E> ) | Architecture | [}

Timing =

Constraints

Check
= o Timing is property of ISA

\{Z % o Compiler can check

/ X constraints once and for all

o Downside: little flexibility in
architecture development
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More Realistic?

C .
IZ> Compiler

Architecture
Constraint
Generator
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o ISA leaves more freedom to

Implementations

o Compiler generates constraints on
architecture to meet timing constraints

The Future (?) Timing Verification Process:

Architecture
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Conclusions

o Abstractions are great, if they are the right abstractions

o Real-time computing needs different abstractions

Raffaello SanZIo daUrb/no The Athens School




