i To Meet or Not to Meet the Deadline

Gage Eads UC Berkeley

Stephen A. Edwards Columbia University
Sungjun Kim Columbia University
Edward A. Lee UC Berkeley

Ben Lickly UC Berkeley

Isaac Liu UC Berkeley

Hiren D. Patel University of Waterloo

Jan Reineke <speaker> UC Berkeley

Ninth Biennial Ptolemy Miniconference
Berkeley, CA, February 16, 2011

: ’ s
- ” - 3
. !
.&-JLMHBJJM-MOGH . e

.:,_
v’ga?f‘“—'..- 1} b

° Abstractions are Great
... if they abstract the right thing

Code
Generation

Higher-level Model of Computation ?

C-level programming language

3 Compilation
Abstra(_:ts f'jom —> Instruction Set Architecture (ISA)
execution time

) Execution
Hardware Realizations

Reineke et. al, Berkeley 2

C .
E> Compiler

= { o

Current Timing Verification Process

Architecture

Y ¢

WCET
Analysis

Z%

v

X

Reineke et. al, Berkeley 3

® Current Timing Verification Process

-
-
=) | Compiler é) | Architecture ||

y4
o New Architecture =» & l
Recertification WCET [
o Extremely time-consuming Analysis
and costly - X
Airbus: X
40 years
supply of

Reineke et. al, Berkeley 4

® Agenda of PRET

Higher-level Model of Computation Code
Generation
C-level programming language
> Compilation
Endow with .. =3 Instruction Set Architecture (ISA)
control over timing
| Execution
Predictable

. —> Hardware Realizations
Execution Platform W zat

Reineke et. al, Berkeley 5

° PRET Machines

Make Timing a Semantic Property of Computers

Precision-Timed (PRET) Machines

JTAG and SWD interface

«—— USB interface

Timing precision with performance: Challenges:

Memory hierarchy (scratchpads?) ek , araphics - NN

. . . . to GPIO pins " wa display B connected to
Deep pipelines (interleaving?) e GPioorPWM
ISAs with timing (deadline instructions?) R et

inputs S8 — GPIO connectors

Predictable memory management (Metronome?)
Languages with timing (discrete events? Giotto?) o
Predictable concurrency (synchronous languages?) e — S B S CAN bus interface
Composable timed components (actor-oriented?) ot "N\ Ethernet nterface
Precision networks (TTA? Time synchronization?)

& o < PWM outputs

See our posters!

Reineke et. al, Berkeley 6

® Agenda of this Talk

Higher-level Model of Computation

Code
Generation
C.OI.’reSpondlng —> C-level programming language
timing constructs 9 o
Compilation
Endow with . . = Instruction Set Architecture (ISA)
control over timing
Execution
Hardware Realizations

Reineke et. al, Berkeley 7

Adding Control over Timing to the ISA

Variant 1: “"delay until”

Some possible capabilities in an ISA:

o [V1] Execute a block of code taking at least a
specified time [lp & Edwards, 20006]

delay_
until

!

1 second time
- -
- g
1 second ime
~ =

Where could this be useful?
- Finishing early is not always better:
- Scheduling Anomalies (Graham’s anomalies)
- Communication protocols may expect periodic behavior

Reineke et. al, Berkeley 8

Adding Control over Timing to the ISA

Variants 2+3: “late” and “immediate miss detection”

o [V2] Do [V1], and then conditionally branch if the
specified time was exceeded.

branch_expired

>
1 second ime
< -

o [V3] Do [V1], but if the specified time is exceeded
during execution of the block, branch immediately
to an exception handler.

exception_on_expire

I

1 second time
- o

Reineke et. al, Berkeley 9

Applications of Variants 2+3
“late” and “immediate miss detection”

o [V3] “immediate miss detection”:

Runtime detection of missed deadlines to initiate
error handling mechanisms

Anytime algorithms
However: unknown state after exception is taken

o [V2] “late miss detection™:
No problems with unknown state of system

Change parameters of algorithm to meet future
deadlines

Reineke et. al, Berkeley 10

PRET Assembly Instructions
Supporting these Four Capabilities

set_time %r, <val>

— loads current time + <val> into %r
delay_until %r

— stall until current time >= %r
branch_expired %r, <target>

— branch to target if current time > %r
exception_on_expire %r, <id>

— arm processor to throw exception <id> when current time > %r
deactivate exception <id>

— disarm the processor for exception <id>

Reineke et. al, Berkeley 11

Controlled Timing in
Assembly Code

V1] Delay until:
[Vi] Y [V2] Late miss detection
set _timer1, 1s

// Code block
delay _until r1

set timeri, 1s

// Code block
branch_expired r1, <target>
delay _until r1

[V3] Immediate miss detection

set_tlm.e r1, 1s _ [V2] + [V3] could all have a variant that
exception_on_expire r1, 1 does not control the minimum
// Code block execution time of the block of code, but

deactivate exception 1 only controls the maximum.
delay until r1

Reineke et. al, Berkeley 12

® Application: Timed Loops
Lower bound for

Fixed Period each iteration
set timer1, 1s set timeri, 1s
loop: loop:

// Code block // Code block
delay_until r1 delay_until r1
r1=r1+1s . .set timeri, 1s
b loop b loop

The two loops above have different semantics:

| 1 second | 1 second | 1 second | time

| 1 second [1 second | 1 second | time

Reineke et. al, Berkeley 13

Timed Loop with Exception Handling

Exact execution time

(no jitter) This code takes exactly 1
set_timer1, 1s second to execute each
exception_on_expire r1, 0 iteration. If an iteration takes
loop: more than 1 second, then as
// Code block

soon as its time expires, the
iteration is aborted and an
exception handler is
activated.

deactivate exception 0
delay _until r1

r1=r1+1s
exception_on_expire r1, 0
b loop

Reineke et. al, Berkeley 14

Exporting the Timed Semantics to a
Low-Level Language (like C)

tryin (600ms) {

// Code block set_time r1, 500ms
} expired { // Code block

patchup(); branch_expired r1, patchup
}

7

This realizes variant 2, “late miss detection.’

The code block will execute to completion.
If 500ms have passed, then the patchup procedure will run.

Reineke et. al, Berkeley 15

tryin (600ms) {
// Code block

} catch {
panic();

/

Exporting the Timed Semantics to a
Low-Level Language (like C)

jmp_buf buf;

if (Isetimp(buf)){
set time r1, 500ms
exception_on_expire r1, 0
// Code block

deactivate _exception 0
}else {

panic();
/

exception _handler 0 () {
longjmp(buf)
/

This pseudo-code is neither C-level
nor assembly, but is meant to explain
an assembly-level implementation.

Reineke et. al, Berkeley 16

tryfor

tryfor (600ms) {
// Code block
} catch {

panic();
}

This is the same, except for the
added delay until

Variant with Exact Execution Times:

jmp_buf buf;

if (Isetimp(buf)){

}
}

set time r1, 500ms
exception_on_expire r1, 0
// Code block
deactivate_exception 0

delay until r1
else {

panic();

exception_handler O () {

}

longimp(buf)

Reineke et. al, Berkeley 17

MTFD — Meet the F(inal) Deadline

o Variant [V 1] ensure that a block of code
takes at least a given time.

o Variants [V2, V3] allow to act upon
deadline misses.

o [V4] "MTFD”": Execute a block of code
taking at most the specified time.

. o [V4] Exact execution:
Being arbitrarily “slow” is

always possible and “easy”. set_timer1, 1s
// Code block
But what about being “fast”? MTFD r1

delay _until r1

Reineke et. al, Berkeley 18

Crnen)

Compiler

= { o

Current Timing Verification Process

Architecture

Y ¢

WCET
Analysis

Z9%

v/

X

Reineke et. al, Berkeley 19

Current Timing Verification Process

m) | Compiler E> =) | Architecture ||
1
Y &

o New Architecture =» WCET [t
Recertification Analysis

o Extremely time-consuming W
and costly /

Reineke et. al, Berkeley 20

-

The Future (?) Timing Verification Process

B) | Compiler E>) | Architecture | [}

Timing =

Constraints

Check
= o Timing is property of ISA

\{Z % o Compiler can check

/ X constraints once and for all

o Downside: little flexibility in
architecture development

Reineke et. al, Berkeley 21

More Realistic?

C .
IZ> Compiler

Architecture
Constraint
Generator

:>:>

o ISA leaves more freedom to

Implementations

o Compiler generates constraints on
architecture to meet timing constraints

The Future (?) Timing Verification Process:

Architecture

1

e —

Z%
X

Reineke et. al, Berkeley 22

Conclusions

o Abstractions are great, if they are the right abstractions

o Real-time computing needs different abstractions

Raffaello SanZIo daUrb/no The Athens School

