
The Dataflow Interchange Format: Towards
Co-design of DSP-oriented Dataflow

Models and Transformations

Shuvra S. Bhattacharyya

Maryland DSPCAD Research Group
http://www.ece.umd.edu/DSPCAD/home/dspcad.htm

Department of Electrical and Computer Engineering, and

Institute for Advanced Computer Studies
University of Maryland, College Park, 20742, USA.

Ptolemy Miniconference, University of California, Berkeley,
Feb. 16, 2011 [Version: Feb. 13, 2011]

•  à Introduction to the dataflow interchange
format (DIF) project, dataflow
transformations, and DICE

•  Application case study: high energy physics
•  Wrapup

Outline

D
IF bridges the

im
plem

entation gap

Abstract, formal
application
description

High-performance
implementation

The Dataflow Interchange Format (DIF)

•  Other benefits to
beginning with a
formal description:

–  Bounded memory and
deadlock detection

–  Buffer and communication
minimization:

–  Parallel, Multirate loop, or
Quasi-static scheduling

–  Heterogeneous task
mapping and co-synthesis

–  Probabilistic design, Data
partitioning, Vectorization,

Dataflow Models DSP Designs

The DIF Package
 (TDP)

DSP
Libraries

 Dataflow-
based DSP
Design Tools

Embedded
Processing
Platforms

The DIF Language
(TDL) DIF Specification

Signal Proc

Image/Video

Comm Sys

Meta-Modeling
PDF BLDF

Dynamic
CFDF BDF

DIF-to-C
Algorithms Front-end

DIF Representation AIF / Porting

Static
SDF MDSDF

HSDF CSDF

C

DSP

Other
Embedded
Platforms

Other Tools

Other Ex/Im

VSIPL

TI Other

Autocoding
Toolset Ptolemy II

DIF-A T Ex/Im Ptolemy Ex/Im

Java

Java VM

Ada

VDM

•  DIF captures coarse grain dataflow applications formally [4]
•  To formally describe applications, the DIF Language (TDL) is

–  Designed to capture a variety of dataflow models
–  Can be used in conjunction with functionally simulatable actor descriptions

•  To facilitate design, the DIF Package (TDP) provides:
–  Scheduler, simulator, analyzers

The DIF Language: Sketch
[dataflowModel] graphID {
 basedon {
 graphID;
 }

 [topology] {
 nodes = ndID, ...;

 edges = edgeID(srcNdID, snkNdID), ...;
 }

 [builtInAttr] {

 elementID = value;
 elementID = id;
 elementID = id1, id2, ...;

 }

 [attribute] usrDefAttr {
 elementID = value;

 elementID = id;
 elementID = id1, id2, ...;
 }

 [refinement] {

 ...
 }

}

4

Evolution of Dataflow Models of
Computation for DSP: Examples

•  Computation Graphs and Marked Graphs [Karp 1966,
Reiter 1968]

•  Kahn process networks [Kahn 1974]
•  Synchronous dataflow, [Lee 1987]

–  Static multirate behavior
–  SPW (Cadence) , National Instruments LabVIEW, and

others.
•  Well behaved stream flow graphs [1992]

–  Schemas for bounded dynamics
•  Boolean/integer dataflow [Buck 1994]

–  Turing complete models
•  Multidimensional synchronous dataflow [Lee 1992]

–  Image and video processing
•  Scalable synchronous dataflow [Ritz 1993]

–  Block processing
–  COSSAP (Synopsys)

•  CAL [Eker 2003]
–  Actor-based dataflow language

•  Cyclo-static dataflow [Bilsen 1996]
–  Phased behavior
–  Eonic Virtuoso Synchro, Synopsys El Greco and

Cocentric,
 Angeles System Canvas

•  Bounded dynamic dataflow
–  Bounded dynamic data transfer

[Pankert 1994]
•  The processing graph method [Stevens,

1997]
–  Reconfigurable dynamic dataflow
–  U. S. Naval Research Lab, MCCI

Autocoding Toolset
•  Stream-based functions [Kienhuis 2001]
•  Parameterized dataflow [Bhattacharya 2001]

–  Reconfigurable static dataflow
–  Meta-modeling for more general

dataflow graph reconfiguration
•  Reactive process networks [Geilen 2004]
•  Blocked dataflow [Ko 2005]

–  Image and video through
parameterized processing

•  Windowed synchronous dataflow [Keinert
2006]

•  Parameterized stream-based functions
[Nikolov 2008]

•  Enable-invoke dataflow [Plishker 2008]
•  Variable rate dataflow [Wiggers 2008]

DIF Project Components
•  Core components

–  The DIF language (TDL)
–  The DIF package (TDP)
–  Enable-invoke dataflow (EIDF) and functional DIF
– DIFML: XML dialect

•  Plug-ins
– DIF-to-C: Software synthesis for SDF
–  TDIF and TDIFSyn
–  The dataflow schedule graph (DSG)

•  Interfaces to ADS, OpenDF, LabVIEW, Ptolemy II, …

High Level Dataflow Transformations
•  A well designed dataflow representation exposes opportunities for

high level algorithm and architecture transformations.
•  High level of abstraction à high implementation impact
•  Dataflow representation is suitable both for behavior-level modeling,

structural modeling, and mixed behavior-structure modeling
–  Transformations can be applied to all three types of

representations to focus subsequent steps of the design flow on
more favorable solutions

•  Complementary to advances in
–  C compiler technology (intra-actor functionality)
–  Object oriented methods (library management, application

service management)
–  HDL synthesis (intra-actor functionality)

Representative Dataflow Analyses and
Optimizations

•  Bounded memory and deadlock detection: consistency
•  Buffer minimization: minimize communication cost
•  Multirate loop scheduling: optimize code/data trade-off
•  Parallel scheduling and pipeline configuration
•  Heterogeneous task mapping and co-synthesis
•  Quasi-static scheduling: minimize run-time overhead
•  Probabilistic design: adapt system resources and exploit slack
•  Data partitioning: exploit parallel data memories
•  Vectorization: improve context switching, pipelining
•  Synchronization optimization: self-timed implementation
•  Clustering of actors into atomic scheduling units

Formal Model Detection
(Core Functional Dataflow [3])
•  Divide actors into a set of modes

–  Each mode has a fixed consumption and production behavior

•  Write the enabling conditions for each mode
•  Write the computation associated with each mode

–  Including next mode to enable and then invoke

•  For example, consider a standard Switch:
Production & consumption
behavior of switch modes

Mode Consumes Produces
Control Data True False

Control 1 0 0 0
True 0 1 1 0
False 0 1 0 1

Switch Actor

Switch

1

1

[1,0]

[0,1] False
Output

True
Output

Control

Data

Mode transition diagram
between switch modes

Control
Mode

True
Mode

False
Mode

Practical Model Detection on Units
•  Deterministic – Does the output repeat?

•  Statefulness – Does the output just reorder?

•  Dataflow model – Does input & output behavior repeat?

Actor
1101101000 00101110

Actor
00101110 1101101000 1101101000 00101110
Input Sequence 1 Input Sequence 2 Output Sequence 1 Output Sequence 2

Actor
1101101000 1100001101 00101110 00101011 1101101000

Input Sequence 1 Input Sequence 2 Output Sequence 1 Output Sequence 2

DICE: DSPCAD Integrative Command-
Line Environment [2]

 What it is…
•  a framework for managing

cross-platform testing
•  language independent
•  an open source resource

What it does not do

•  provide code synthesis or
debugging tools

•  provide simulation capabilities
•  transcode between platforms

or languages

6

•  Introduction to the dataflow interchange
format (DIF) project, dataflow
transformations, and DICE

•  à Application case study: high energy
physics

•  Wrapup

Outline

Case Study: Compact Muon Solenoid Trigger

•  Complex:
–  9300 magnets
–  Protons travel at 99.99% times the

speed of light
–  7 TeV beam collisions

•  Performance Oriented:
–  6 collision detectors
–  600 million proton collisions per

second

•  International Collaboration:
–  2000 Scientists
–  155 Institutes
–  37 Countries

CMS Trigger Background
•  Large Hadron Collider (LHC)

–  CERN: Switzlerland/France
–  Event rate of 1GHz
–  Trigger Selectivity: ratio of trigger rate to event rate

(e.g., 10-11)
•  Compact Muon Solenoid

–  General purpose particle physics detector for the LHC
–  CMS Trigger: Multi-Level Filtering: Level 1 (FPGA) à

High Level Trigger (software) à Tape storage
Source: http://en.wikipedia.org/wiki/Trigger_%28particle_physics%29, and
http://en.wikipedia.org/wiki/
Compact_Muon_Solenoid#Layer_2_.E2.80.93_The_Electromagnetic_Calorimeter,
Dec. 1, 2010.

Goals: Efficient, Agile Design
•  The upgraded Calorimeter Trigger will require

new algorithms
•  Modern field programmable gate arrays

(FPGAs) provide efficient platforms
•  Implement Calorimeter Trigger using

–  A unified design platform
– Unified design and test methodologies
–  Techniques that facilitate future upgrades

•  Start by implementing a baseline design for
the new algorithms

Solution: Novel Implementations and a Unified
Cross-Platform Management System
•  Collaboration with University of Wisconsin [1]
•  Novel FPGA designs

–  Reexamination of physics algorithms for FPGAs
–  Structured analysis of resource usage

•  Cross-platform design
management
–  Novel, light weight development

framework
–  Cross-platform unit testing
–  Dataflow model detection
–  Enhanced auto-documentation

Automatically generated
application graph

Impact: Performance and Cost
•  Novel FPGA implementations for over a

dozen modules in the CMS detector
–  Improve performance
– Cut implementation costs by reducing the

number of FPGAs required for the upgrade
•  New design process

–  Bugs found earlier in design process saves time
and money

–  Automated documentation facilitates fast
collaborative design process

Processing Detectors
•  56x72 sized grids
•  With millions of events a

second, storing all of the
data would result in
GigaBytes per second

•  Instead, store only
events that trigger
certain conditions

•  L1 trigger finds image
features that represent
certain particles from a
series of:

–  Thresholding
–  Filtering
–  Sorting

•  Must complete in
nanoseconds to process
every sample period

Triggering Application Graph

Triggering Application Graph

Written by application designers and then re-implemented by
hardware engineers à Cross-platform verification is a
problem

Test directory structure

top level
DICE

test

Util
common
input files
correct-
output

testdif
makeme
runme

testcc
makeme
runme

testv
makeme
runme

src

Java C++ Verilog

21

38b output

ECAL 1-4 FG 1-4 HCAL 1-4

Model based testbench creation

File
reader 1

File
reader 2

File
reader 3

File
writer 1

Text files
(sample input
provided by
user)

Expected
38b output

Comparator
from larger

test framework

Cluster
Computation

Actor

Results

(H)SDF = (homogeneous) synchronous dataflow

•  Introduction to the dataflow interchange
format (DIF) project, dataflow
transformations, and DICE

•  Application case study: high energy physics
•  à Wrapup

Outline

•  The dataflow interchange format (DIF) project
–  The DIF Language (TDL)
–  The DIF Package (TDP)
–  Plug-ins for simulation and synthesis

•  The DSPCAD Integrative Command Line Environment
(DICE)

•  Application case study: high-energy physics
•  Other ongoing application thrusts in the DIF project include:

embedded speech processing, software-defined radio,
wireless sensor networks, image registration, radio
astronomy instrumentation

•  Co-design of dataflow-based representations and
transformations

Summary

•  Portions of the work presented here have
been sponsored by DARPA (through MCCI),
and NSF (ECCS0823989 and CNS0720596).

•  For more details on these projects, and
associated publications:
http://www.ece.umd.edu/DSPCAD/home/
dspcad.htm.

Acknowledgements

To Probe Further …

•  [1] W. Plishker, C. Shen, S. S. Bhattacharyya, G. Zaki, S. Kedilaya, N. Sane,
K. Sudusinghe, T. Gregerson, J. Liu, and M. Schulte. Model-based DSP
implementation on FPGAs. In Proceedings of the International Symposium on
Rapid System Prototyping, Fairfax, Virginia, June 2010. Invited paper.

•  [2] S. S. Bhattacharyya, S. Kedilaya, W. Plishker, N. Sane, C. Shen, and
G. Zaki. The DSPCAD integrative command line environment: Introduction to
DICE version 1. Technical Report UMIACS-TR-2009-13, Institute for Advanced
Computer Studies, University of Maryland at College Park, August 2009.

•  [3] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya.
Functional DIF for rapid prototyping. In Proceedings of the International
Symposium on Rapid System Prototyping, pages 17-23, Monterey, California,
June 2008.

•  [4] C. Hsu, F. Keceli, M. Ko, S. Shahparnia, and S. S. Bhattacharyya. DIF: An
interchange format for dataflow-based design tools. In Proceedings of the
International Workshop on Systems, Architectures, Modeling, and Simulation,
pages 423-432, Samos, Greece, July 2004.

(Available from: http://www.ece.umd.edu/DSPCAD/papers/contents.html)

