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« - Introduction to the dataflow interchange
format (DIF) project, dataflow
transformations, and DICE

* Application case study: high energy physics
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_j\\"‘“‘\"\';-," DEPARTMENT OF
@)/ « ELECTRICAL &
LR COMPUTER ENGINEERING




& = P,_

y © A.JAMES CLARK
TP SCHOOL OF ENGINEERING O

™ The Dataflow Interchange Format (DIF)

» DIF captures coarse grain dataflow applications formally [4]
« To formally describe applications, the DIF Language (TDL) is

— Designed to capture a variety of dataflow models

— Can be used in conjunction with functionally simulatable actor descriptions
« To facilitate design, the DIF Package (TDP) provides:

— Scheduler, simulator, analyzers
(7
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[dataflowModel] graphID ({
basedon {
graphlD;

[topology] {
nodes = ndID, ...;

edgeID (srcNdID, snkNdID), ...;

edges

[builtInAttr] {
elementID = value;
elementID = id;
elementID = idl, id2, ...;

[attribute] usrDefAttr {
elementID = wvalue;
elementID = id;
elementID = idl, id2, ...;

}

[refinement] {

} NERSIT)
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Evolution of Dataflow Models of %
B

Computation for DSP: Examples

Computation Graphs and Marked Graphs [Karp 1966,
Reiter 1968]

Kahn process networks [Kahn 1974]
Synchronous dataflow, [Lee 1987]
— Static multirate behavior

— SPW (Cadence) , National Instruments LabVIEW, and
others.

Well behaved stream flow graphs [1992]
— Schemas for bounded dynamics
Boolean/integer dataflow [Buck 1994]
— Turing complete models
Multidimensional synchronous dataflow [Lee 1992]
— Image and video processing
Scalable synchronous dataflow [Ritz 1993]
— Block processing
— COSSAP (Synopsys)
CAL [Eker 2003]
— Actor-based dataflow language
Cyclo-static dataflow [Bilsen 1996]
— Phased behavior
— Eonic Virtuoso Synchro, Synopsys El Greco and
Cocentric,
Angeles System Canvas

MJIACS

niversity of Maryland Institute for Advanced Computer Studies

Bounded dynamic dataflow

— Bounded dynamic data transfer
[Pankert 1994]

The processing graph method [Stevens,
1997]

— Reconfigurable dynamic dataflow

— U. S. Naval Research Lab, MCCI
Autocoding Toolset

Stream-based functions [Kienhuis 2001]
Parameterized dataflow [Bhattacharya 2001]
— Reconfigurable static dataflow

— Meta-modeling for more general
dataflow graph reconfiguration

Reactive process networks [Geilen 2004]
Blocked dataflow [Ko 2005]

— Image and video through
parameterized processing

Windowed synchronous dataflow [Keinert
2006]

Parameterized stream-based functions
[Nikolov 2008]

Enable-invoke dataflow [Plishker 2008]
Variable rate dataflow [Wiggers 2008]
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DIF Project Components

« Core components
— The DIF language (TDL)
— The DIF package (TDP)
— Enable-invoke dataflow (EIDF) and functional DIF
— DIFML: XML dialect
* Plug-ins
— DIF-to-C: Software synthesis for SDF
— TDIF and TDIFSyn
— The dataflow schedule graph (DSG)

* Interfaces to ADS, OpenDF, LabVIEW, Ptolemy Il, ...
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High Level Dataflow Transformations

* A well designed dataflow representation exposes opportunities for
high level algorithm and architecture transformations.

» High level of abstraction = high implementation impact

« Dataflow representation is suitable both for behavior-level modeling,
structural modeling, and mixed behavior-structure modeling

— Transformations can be applied to all three types of
representations to focus subsequent steps of the design flow on
more favorable solutions

« Complementary to advances in
— C compiler technology (intra-actor functionality)

— Object oriented methods (library management, application
service management)

— HDL synthesis (intra-actor functionality)
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Representative Dataflow Analyses and
Optimizations

Bounded memory and deadlock detection: consistency
Buffer minimization: minimize communication cost
Multirate loop scheduling: optimize code/data trade-off
Parallel scheduling and pipeline configuration
Heterogeneous task mapping and co-synthesis
Quasi-static scheduling: minimize run-time overhead
Probabilistic design: adapt system resources and exploit slack
Data partitioning: exploit parallel data memories
Vectorization: improve context switching, pipelining
Synchronization optimization: self-timed implementation
Clustering of actors into atomic scheduling units
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Formal Model Detection
(Core Functional Dataflow [3])

» Divide actors into a set of modes
— Each mode has a fixed consumption and production behavior

« Write the enabling conditions for each mode
« Write the computation associated with each mode
— Including next mode to enable and then invoke

 For example, consider a standard Switch:
Production & consumption

behavior of switch modes Mode transition diagram

Switch Actor .
between switch modes
1
control  [1,0] Control Data True False J
Output /
Switch Control 1 0 0 0
1 - OZ?F')suet [0.1] True 0 1 1 0 ’ ) p,
False 0 1 0 1
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Practical Model Detection on Units
« Deterministic — Does the output repeat?

00101110 00101110 1101101000 1101101000

Input Sequence 1 Input Sequence 2 Output Sequence 1 Output Sequence 2

« Statefulness — Does the output just reorder?

B8040 [B8HG o1 6101080 [WIBEEE o

Input Sequence 1 Input Sequence 2 Output Sequence 1 Output Sequence 2

« Dataflow model — Does input & output behavior repeat?
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" DICE: DSPCAD Integrative Command
Line Environment [2]

2
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What it is... Top Level Project
- aframework for managing Directory
cross-platform testing | / \\\
« language independent Test_Cluster Test_Overlap_ ‘
- an open source resource / \ o
K
\ Test_Cluster_ Test_Cluster_
What it does not do Computation ] Threshold
e provide code synthesis or = \ - '| ‘ —
debu g gin g tools Test_dif Test_cc ' Test_verilog util

correct-output.txt  correct-outputtxt  correct-cutput.tat common_input1 txt

H . H HHH expected-errortxt  expected-errortxt  expected-errortxt ; L
» provide simulation capabilities - - e common_nputz

common_output.txt

makeme makeme makeme
° tranSCOde between platforms readme.txt readme.txt readme.txt
or languages
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 |Introduction to the dataflow interchange
format (DIF) project, dataflow
transformations, and DICE

* - Application case study: high energy
physics
 Wrapup
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“" Case Study: Compact Muon Solenoid Trlgge‘i"’

« Complex:
— 9300 magnets

— Protons travel at 99.99% times the
speed of light

— 7 TeV beam collisions

 Performance Oriented:
— 6 collision detectors

— 600 million proton collisions per
second

* International Collaboration:
— 2000 Scientists
— 155 Institutes
— 37 Countries
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CMS Trigger Background

« Large Hadron Collider (LHC)
— CERN: Switzlerland/France
— Event rate of 1GHz
— Trigger Selectivity: ratio of trigger rate to event rate
(e.g., 10-11)
« Compact Muon Solenoid
— General purpose particle physics detector for the LHC

— CMS Trigger: Multi-Level Filtering: Level 1 (FPGA) 2>
High Level Trigger (software) - Tape storage

Source: http://en.wikipedia.org/wiki/Trigger %28particle physics%29, and

http://en.wikipedia.org/wiki/
Compact Muon Solenoidfflayer 2 .E2.80.93 The Electromagnetic Calorimeter,

Dec. 1, 2010.
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Goals: Efficient, Agile Design

* The upgraded Calorimeter Trigger will require
new algorithms

Modern field programmable gate arrays
(FPGAS) provide efficient platforms

« Implement Calorimeter Trigger using
— A unified design platform
— Unified design and test methodologies
— Techniques that facilitate future upgrades

« Start by implementing a baseline design for
the new algorithms
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Solution: Novel Implementations and a Unified
Cross-Platform Management System
« Collaboration with University of Wisconsin [1]

* Novel FPGA designs
— Reexamination of physics algorithms for FPGAs
— Structured analysis of resource uspge . ly generated

application graph
* Cross-platform design
management
— Novel, light weight development
framework

nnnnnnnnnnnnnnnnnnnnn

— Cross-platform unit testing
— Dataflow model detection i i
— Enhanced auto-documentation
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Impact: Performance and Cost

* Novel FPGA implementations for over a
dozen modules in the CMS detector

— Improve performance

— Cut implementation costs by reducing the
number of FPGAs required for the upgrade

* New design process

— Bugs found earlier in design process saves time
and money

— Automated documentation facilitates fast
collaborative design process
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Processing Detectors

« 96x72 sized grids
i «  With millions of events a
_: second, storing all of the
data would result in

GigaBytes per second

* Instead, store only
events that trigger
certain conditions

« L1 trigger finds image
features that represent
certain particles from a
series of:

— Thresholding
— Filtering
— Sorting

» Must complete in
nanoseconds to process
every sample period
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Filter E
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Difference >
Encoder
Phi To Sort
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Triggering Application Graph

Finegrain
OR
Electron/Photon ID

Channel »

Buffers Tower Cluster
— Particle Isolation
> I’ (25
Cluster Overlap Filter e/gamma | | Grid sum || €/gamma
Threshold Lookup
o} r{ Quserer }

Compare
¥
s Tim Cluster ET Cluster
Filter [

Tau Grid Sum h
Threshold Lookup

Cluster Weighting

Note: It might be necessary to
put another filter on the output of v
basically just AND the weighting bit

This layout means that clusters witt
Phi
use the weighting for these clusters
It has been suggested that weightir
in MET, but MET algorithm is still in

Note: This is just one possible RBJT path. Portions of
Regionize and Region ET have could be interleaved
with some potentially interesting results. This is
something | plan on investigating

Regionize | | Region
axa ET

Region-based Jet Finder

JetET H Compare '—»

e

External control ¢

Written by application designers and then re-implemented by
hardware engineers - Cross-platform verification is a

problem
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Test directory structure

test
Util
common testdif testcc
input files makeme makeme
correct- runme runme
output

niversity of Maryland Institute for Advanced Computer Studies

top level
DICE

testv
makeme
runme

Java

9
18

Src

C++ Verilog
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Text fles MlOAel based testbench creation

(sample input ECAL 1-4 FG 1-4 HCAL 1-4
provided by

user) R—

reader 1

Cluster
Computation
Actor

;T/ Comparator

from larger
test framework

T Expected
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Results
Determ- Model
Actor | Inputs | Outputs 1nistic Detected | State
Cluster Thresh 12 12 Yes HSDF No
Cluster Compute 12 6 Yes HSDF No
Overlap Filter 8 + Yes SDF No
Jet Reconstruction 1 2 Yes SDF No
(H)SDF = (homogeneous) synchronous dataflow
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 |Introduction to the dataflow interchange
format (DIF) project, dataflow
transformations, and DICE

* Application case study: high energy physics
=2 Wrapup
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« The dataflow interchange format (DIF) project
— The DIF Language (TDL)
— The DIF Package (TDP)
— Plug-ins for simulation and synthesis

« The DSPCAD Integrative Command Line Environment
(DICE)

* Application case study: high-energy physics

« QOther ongoing application thrusts in the DIF project include:
embedded speech processing, software-defined radio,
wireless sensor networks, image registration, radio
astronomy instrumentation

« Co-design of dataflow-based representations and
transformations

:\\\R\J.\"r,/ DEPARTMENT OF
/&), ELECTRICAL &
“l/’}/?\:\f\"‘\\ COMPUTER ENGINEERING




Q54

) BIDNESHASY oo
Acknowledgements

» Portions of the work presented here have
been sponsored by DARPA (through MCCI),

and NSF (ECCS0823989 and CNS0720596).

* For more details on these projects, and

associated publications:
http://www.ece.umd.edu/DSPCAD/home/

dspcad.htm.

\.-\\‘mf\"g/ DEPARTMENT O}
@}, ELECTRICAL &
"/,<,‘I\_~\,\:\$ COMPUTER ENGINEERING




F

; S
f\qiflsl‘r o : Q
& MBS To Probe Further ... o®s

A

ARYLN

(Available from: http: //www.ece.umd.edu/DSPCAD/papers/contents.html)
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