
http://chess.eecs.berkeley.edu/

Shanna-Shaye Forbes

Edward A. Lee Error Handling in Model-Based design for

Real-Time Systems

[1] ARIANE 5: Flight 501 Failure.

http://sspg1.bnsc.rl.ac.uk/SEG/Ariane%205%20Explosion%20Report.htm

[2] Mars Spirit Wiki. Mars Spirit Software Problem.

http://c2.com/cgi/wiki?MarsSpiritSoftwareProblem.

[3]C. J. Murray. Automakers opting for model-based design. Design News: http://

www.designnews.com/article/511392-

Automakers_Opting_for_Model_Based_Design.php, November 5 2010.

[4] Edward A. Lee, Stavros Tripakis. "Modal Models in Ptolemy". Proceedings of

3rd International Workshop on Equation-Based Object-Oriented Modeling

Languages and Tools (EOOLT 2010), 1-11, October, 2010.

{sssf, eal}@eecs.berkeley.edu

Center for Hybrid and Embedded Software Systems February 16-17, 2010

Designing effective error handling in an embedded software systems
is essential for acceptable and reliable functionality in cases of errors
and for the recovery from faults.

 Errors in the error handling system can cause catastrophic failures of
the software and can endanger human life. We take a principled
approach of extending a model of computation (MOC) with timing
semantics for embedded systems by an error handling mechanism for

timing errors in model-based design.

Model of
Computatio

n with
Timing

Semantics

Ti
mi

ng
Ma

na
ger

Executable

Model

Modeling

Environment

Are there any

unhandled violations?
No/ Yes, and

where.

De

sig
n

As
sis

tan

t

Image Source: http://en.wikipedia.org/wiki/
File:NASA_Mars_Rover.jpg

More recently, the SPIRIT Mars rover
encountered a “reboot loop” shortly after
landing, where a fault during the booting

process caused the system to reboot
again Luckily, a software patch solved the
problem and the mission continued
successfully[2].

In 1996 the European Space Agency’s
Ariane 5 rocket self-destructed 40
seconds after launch. The underlying

cause of the self-destruct sequence was
a 64-bit floating point to 16-bit integer
conversion exception. This occurred
because of reuse of code designed for
the much smaller Ariane IV [1] .

In an effort to avoid possible similar mistakes with newly designed
systems and to provide a more systematic means of dealing with
timing errors, we present preliminary work that extends a model of

computation (MOC) for embedded systems which features timing
semantics.

Image Source:
http://

www.josefdobler.de
/Neuer%20Ordner/

launch-site/
aml33h.jpg

Image Source: http://
sspg1.bnsc.rl.ac.uk/SEG/

Ariane%205%20Explosion
%20Report.htm

Image Source: http://upload.wikimedia.org/wikipedia/commons/d/dc/
Typhoon_f2_zj910_arp.jpg

A Royal Airforce pilot accidentally
dropped a practice bomb on the flight
deck of the Royal Navy’s aircraft

carrier. It missed it’s intended target
and several sailors were injured. The
cause was attributed to a timing delay
in the software.

 The focus of this work is on timing errors.
A timing error occurs when the
specification says one thing and

the implementation does
something else. Often times, this
is caused by execution at a time
that violates a specification.

Expect

ed

Start

Expect

ed End Expected

Duration

Actual

Start

Actual

Start

Actual

End

Actual

End

time

Timing Manager

1. Notes desire to incorporate physical time into the model

2. Annotates actors with a execution time estimate parameter. Values are expected to be

provided by the designer or by an external execution time analysis tool

3. Simulates execution time of actors as a probabilistic variant of annotated execution time

estimate parameter value

4. If a timing error is detected the timing manager passes the error up the model hierarchy. If

the specification is included in a modal model the timing manager enables the first
applicable error transition. If not it moves further up the hierarchy and attempts to enable
an error transition

5. If there is not error transition to catch the error in the hierarchy an exception the simulation
of the model is stopped and the user is informed of the unhandled error

Objective

 Add meaning to what is done in the

event of a timing error. We
achieve this by :

1) Extend concepts from real-time

programming languages to
model-based design.

 * Exception handling

2) Adding concepts to hierarchical state

machines

 * Error Transitions

This work was supported in part by the Center for Hybrid and Embedded

Software Systems (CHESS) at UC Berkeley, which receives support from the

National Science Foundation (NSF awards #0720882 (CSR-EHS:PRET) and

#0720841 (CSR-CPS)), the U. S. Army Research Office (ARO#W911NF-07-2-0019),

the U. S. Air Force Office of Scientific Research (MURI #FA9550-06-0312), the Air

Force Research Lab (AFRL), the State of California Micro Program, and the

following companies: Agilent, Bosch, HSBC, Lockheed-Martin, National

Instruments, and Toyota.

 This work was also supported by the Jenkins Pre-doctoral Fellowship program

as well as a Jenkins Pre-doctoral Fellowship Program Mini Grant

Work In Progress

Error Handling in Model-Based design for Real-Time Systems is still a work in

progress. Preliminary results indicate that the current mechanism is able to

detect and appropriately transition after simulating a timing overrun.

Features Added to Ptolemy II

1. Error Transition for timing errors into modal models[3].

2. Timing manager to introduce a secondary notion of time and handle errors

hierarchically.

3. Design Assistant to aid the user

4. Preliminary code generation support for the timing manager.

Future Work

2) incorporating representative probabilistic distributions into the timing

3) expanding the preliminary work in C and Java code generation

Allowing the user to specify a recovery

transition

Adding in other types of timing error

transitions

Code generation support for all features of the timing manager.

Timing manager extensions to provide suggestions for the scheduling

strategy used with the MOC.

Model-based design, simulation, and synthesis is being used more than before in lieu
of hand writing code and testing it [4].

There is also a resurgence in Cyber Physical System design due to renewed interest in
the area

If these trends continue, we will see:
1.More use of model-based design with timing specifications in the design of Cyber

Physical Systems;
2.The desire to include error handling explicitly in a model instead of in an ad hoc

manner.

It is extremely important that one identifies and is capable of handling
error cases before deploying embedded software.

One ineffective solution that has been used in the past is to have the
system reset itself for every error encountered. If a system resets itself
too often this can lead to significant loss of productivity, possible loss of
data, and in extreme cases, possible loss of life.

 Examples of the importance of error handling:

