
http://chess.eecs.berkeley.edu/

February 16,17, 2011 Center for Hybrid and Embedded Software Systems

Precision Timed Machines (PRET)

Isaac Liu

Jan Reineke

Sungjun Kim

Hiren Patel

Edward A. Lee

Mission

The traditional computing abstractions only concern
themselves with the “functional” aspects of a program and
not its timing properties. This allows the use of techniques
like speculative execution, caches, interrupts, and dynamic
compilation that offer improved average-case performance
at the expense of predictable execution times. The PRET
project aims to improve the timing predictability at all
layers of abstraction by carefully reexamining and
reworking various architectural and compiler
advancements with an eye toward their effects on timing
behavior and worst-case bounds.

+1

PC
1

PC
1

PC
1

PC
1

IR GPR1 GPR1 GPR1 GPR1
X

Y D$

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M W D D D

F D X M W D D D F F F

F D D D D F F F

t9 t10 t11 t12 t13 t14

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

F D X M W

F D X M W

F D X M W

F D X M W

Remove
Data
Dependencie
s!!

Interleaved

multithreading
By using interleaving threads through
our piprline, we are able to remove the
data hazard and dependencies in the
pipeline, creating a timing predictable
pipeline.

Acknowledgement

This work was supported in part by the Center for Hybrid
and Embedded Software Systems (CHESS) at UC

Berkeley, which receives support from the National
Science Foundation (NSF awards #0720882 (CSR-

EHS:PRET) and #0720841 (CSR-CPS)), the U. S. Army

Research Office (ARO#W911NF-07-2-0019), the U. S.
Air Force Office of Scientific Research (MURI

#FA9550-06-0312), the Air Force Research Lab (AFRL),
the State of California Micro Program, and the following

companies: Agilent, Bosch, HSBC, Lockheed-Martin,

National Instruments, and Toyota.

Computer Architecture
In our research, we have pursued a bottom-up approach.
Starting with the underlying pipeline, we have modified
and added constructs to improve the timing predictability
at the architectural and instruction-set-architecture level

Memory Hierarchy
Conventional memory systems uses a hierarchy of memory
units to bridge the latency. CPUs use registers for fast data
processing operations. However, the memory hierarchy is
designed as “best effort” latency and bandwidth
requirements. Our goal is to look at modern memory
hiearchies and design a predictable memory system.

Predictable DRAM Access
DDR2 DRAM devices utilizes bank parallelism to
achieve better performance. It’s difficult to predict
DRAM access time because accesses to the same bank
need to wait for the previous access to finish, while
accessing a different bank can be done concurrently. Our
DRAM controller exposes groups of banks as
independent resources that are accessed sequentially
which hides the latency of accessing a single bank. A
TDMA scheduler provides predictable access latencies.

Scratchpad Memories
Caches can use different hardware replacement policies in
attempt to prefetch the data needed from main memory.
However, when the software issues a load or store
instruction, it does not know the state of the cache, or
what data has been prefetched in it. Scratchpad memories
are another form of fast access memory which is managed
in software, much like registers that use explicit load/
store instructions to manipulate contents for fast data
processing. With software management, better real time
guarantees can be provided.

Above shows one possible memory hierarchy for
PRET. The memory system is a major source of
headache for analyzing or predicting execution, as it
causes a wide range of execution time for even the
same programming running on the same system. Our
goal is to design a predictable memory system that
provide systems with predictable memory access
times.

Provides four
independent and

predictable
resources

A DRAM device
consists of

several banks
along with

controller logic to
decode
addresses.

Concurrent
accesses to

banks are
possible, but I/O
pins are shared.

