

February 16, 2011 Berkeley, CA

E.XILINX

Automated Fixed-Point Analysis in Ptolemy

Derrick Gibelyou Michael Wirthlin

Ptolemy Miniconference

Motivation

- Using a uniform bit-width for FPGAs is inefficient
- Uniform bit-width selection is useful for DSP and other fixed-width systems
- Doesn't take advantage of the flexibility
- of FPGAs Finding the optimal bit-width reduces area and increases clock rate while maintaining the quality of the answer
- Finding the optimal bit-width is difficult
- Many techniques exist for finding near-optimal bit-widths:
- Statistical Simulation
- Feed-forward Heuristics
- SAT / ILP solver
- Ptolemy provides a good infrastructure on which to implement these algorithms

New Ptolemy Director

- **Based on SDF director**
- Ends when all strategies are finished
- Strategies are like sub-directors
- Director runs strategies to find range, then runs strategies to find precision
- Prints a report when all strategies have completed

New Tokens

- Implemented new Range Tokens and **Simulation Tokens**
- Range Tokens inherit from ScalarToken · Allows math with ranges and constants
- Although represented by more than one
- number, a range token should be treated as a scalar

Results

Several simple test benches have been created:

Results for BPSK timing loop closely match those of

Error Tokens

FIR and IIR filters

BPSK timing loop

RGB to YUV converter

human selected values:

Holds two range tokens: Dynamic range

BYU

- **Range of Quantization Error**
- Still represents a scalar entity

Range Algorithms

- Interval Arithmetic
- Simple method for calculating range:
- X=[-1,1], Y=[-2,2]; X + Y= [-3,3]
- Cannot be used in feedback systems

Affine Arithmetic:

Accounts for correlations between the inputs, e.g

Salariad Deferance

ore. Interval analysis. Englewood Cliffs. 1966.

on Computer-aided desirn, page 3

Jectron. Syst., 11(1):26-43, 2006 C. F. Fang, R. A. Rutenbar, and T. Chen. Fast, accurate static analysis for Fixed-Point Finite-Prec

edines of the 2003 IEEE/ACM international conf

- $X \in [0..1]$
- Interval Arithmetic $X X \in [-1,.1]$
- Affine Arithmetic $X X \in [0]$

Can be used to solve for the range of IIR filters (feedback systems)

- competitions to find a near optimal bit-width Competition: Once the range is found, the system error can be
- calculated
- The winning operator in each iteration is the one that that both.
- increases the error the least
- decreases the area the most
- Competition continues until user constraint can no longer be met

Competitions can One operator is begin by finding a reduced, and the uniform bit width error measured

tization Error

While (system error constraint is met) foreach (operator)

- reduce operator width by 1 bit measure system error
- score = error * cost function (operator) Save score
- restore operator width (Operator with min score) .width = width-1
- Another operator Another operator The operator is reduced, and is reduced, and introducing the the error lowest error is the error measured measured

Quantization Error

1 5x10-6

DCT

a, and P. Lavoic, A

002. ISCAS 2002. IEEE International volume 2, pages II-612-II-615 vol.2, 200

Multi da, consult, e.g., nstantinides, P. Cheung, and W. Luk. The multiple night paradigm. In Field-Programmable Custom uting Machines, 2001. FCCM '01. The 9th Annual IEEI

im on, pages 51–60, 2001. rne, R. Cheung, J. Coutinho, W. Luk, and O. Mer

Quantization Error

Competition Continues until user

error constraint cannot be met

2x10-