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Abstract
Schedulability analysis for hard real-time systems requires bounds on the execution times of its tasks.
To obtain useful bounds in the presence of caches, cache analysis is mandatory.
The subject-matter of this article is the static analysis of the tree-based PLRU cache replacement
policy (pseudo least-recently used), for which the precision of analyses lags behind those of other
policies. We introduce the term subtree distance, which is important for the update behavior of PLRU
and closely linked to the peculiarity of PLRU that allows cache contents to be evicted in “logarithmic
time”. Based on an abstraction of subtree distance, we define a must-analysis that is more precise
than prior ones by excluding spurious logarithmic-time eviction.

1. Introduction

In hard real-time systems, one needs to derive offline guarantees for the timeliness of reactions.
Thereto, one must determine bounds on the worst-case execution time (WCET) of programs [12].
To obtain tight and thus useful bounds on the execution times, timing analyses must take into account
the cache architecture of the employed processors. However, developing cache analyses—analyses
that statically classify memory accesses as cache hits or cache misses—is a challenging problem.

Besides the determination of addresses that are being accessed, cache analysis is concerned with the
analysis of the employed replacement policy. Precise and efficient analyses have been developed early
on for LRU [3, 11] and more recently also for FIFO [4, 5]. However, there is a third major policy,
PLRU (pseudo least-recently used), which is for instance employed in the TRICORE 1798 and several
POWERPC variants (MPC603E, MPC755, MPC7448). Compared to analyses of LRU or FIFO, no
analyses of similar precision exist for PLRU. The best known PLRU analysis was introduced in [6]
for associativity 8 and later categorized as an instance of relative-competitiveness-based analyses [8].
For PLRU, such analyses can at most classify log2(k) + 1 out of k cached memory blocks as hits.

In Section 3, we describe three properties of PLRU that make its analysis challenging and coin terms
for them: non-trivial logical states, logarithmic-time eviction and arbitrary survival. In Section 4,
we address the first one: we adapt knowledge about PLRU [9] and show how to represent the logical
state of PLRU cache sets by abstracting from cache set states that are physically different but exhibit
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the same replacement behavior. Section 5, presents our main contributions. We identify two new
sizes of PLRU that are relevant to logarithmic-time eviction: number of leading zeros and subtree
distance. Subsequently, we define a must-analysis that is based on abstractions of those two sizes and
can exclude spurious logarithmic-time eviction.

In Section 6 we cover closely-related work including relative-competitiveness-based analyses, against
which we compare in Section 7. The introduced analysis is more precise than prior ones and has strong
advantages in the analysis of loops, at the cost of an acceptable loss in analysis performance.

2. Foundations

Memory Blocks, Caches, and Access Sequences Caches store a subset of the main memory’s
contents to bridge the latency gap between CPU and main memory. To reduce management overhead,
main memory is logically partitioned into a set of equally-sized memory blocks B. Blocks are cached
as a whole in cache lines of equal size. To enable an efficient cache look-up of blocks, each block
can only be stored in a small number of cache lines. For this purpose, caches are partitioned into
equally-sized cache setsQPk

. The size of a cache set is called the associativity k of the cache. As the
cache is smaller than the main memory, the number of memory blocks that map to a particular cache
set is greater than the size of the cache set. Upon cache misses, a replacement policy must decide
which memory block to replace. Well-known policies for individual cache sets are least-recently used
(LRU), first-in first-out (FIFO), and pseudo-LRU (PLRU) a cost-efficient variant of LRU. For an
introduction to caches refer to [7]. A cache set can be formalized by:

• Its domain QPk
, where the subscript denotes policy and associativity. E.g., QFIFOk

is the set of
all FIFO-controlled cache sets of associativity k.
• An update function UPk

: QPk
× B → QPk

, which computes the state of a cache set q ∈ QPk

after a memory block b ∈ B has been accessed.

Let S := B∗ be the set of finite access sequences to memory blocks, e.g. s1 := 〈a, b, a, c〉. The update
function UPk

can be lifted from a single access to access sequences in the expected way.

Static Analyis Our work is based on static analysis by abstract interpretation, which abstracts from
the concrete program semantics and its respective concrete domain D. Instead, it represents more
abstract information in an abstract domain A. The relation between D and A can be given by an
abstraction function αA : D → A and a concretization function γA : A → D. For safety properties,
one often abstracts from a collecting semantics. In that case, D is a powerset domain.

A program is analyzed by performing a fixed-point computation on a set of equations induced by
that program. The equations are set up with the help of an abstract transformer, UA : A × I → A,
that describes how abstract values before and after instructions I are correlated. If an instruction has
multiple predecessors, a join function JA : A × A → A combines all incoming values into a single
one. For an introduction to abstract interpretation refer to [2].

Static Cache Analysis The aim of static cache analysis is to classify individual memory accesses as
hits (H) or misses (M). However, for some accesses an analysis might fail to classify them as hits or
misses, i.e. they remain unclassified (>). The classification domain is given by Class := {H,M}>.
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Figure 1. Updates of a PLRU cache set for the access sequence 〈e, a, f〉.

Static cache analysis by abstract interpretation computes may- and must-cache information at pro-
gram points: may- and must-cache information are used to derive upper and lower approximations,
respectively, to the contents of all concrete cache states that might occur whenever program execution
reaches a program point. Must-cache information is used to derive safe information about cache hits.
The more cache hits can be predicted, the better the upper bound on the execution times. May-cache
information is used to safely predict cache misses.

As most cache architectures manage their cache sets independently from each other, cache analyses
can analyze them independently as well. Thus, we limit ourselves to the analysis of a single cache
set. For details on (LRU-)cache analysis refer to [3].

3. PLRU: Semantics and Analysis Challenges

Pseudo-LRU (PLRU) is a tree-based approximation of the LRU policy. It arranges the k cache lines at
the leaves of a tree with k − 1 “tree bits” pointing to the line to be replaced/filled next; a 0 indicating
the left subtree, a 1 indicating the right. After every access, all tree bits on the path from the accessed
line to the root are set to point away from the line. Other tree bits are left untouched.

There are at least two variants of PLRU that differ in their handling of invalid cache lines:

Sequential-fill If there are invalid lines upon a cache miss, the least of them (w.r.t. an ordering) is
filled. Only if all lines are valid the tree-bits determine which line to replace.

Tree-fill Regardless of invalid lines, the line to be filled or replaced is always determined by the
tree-bits.

In the following, we only consider the tree-fill variant. Examine Figure 1: In the initial state, the tree
bits point to the line containing memory block c. We textually represent a PLRU-state by the contents
of its cache lines and the pre-order traversal of its tree bits. The initial state in the example is thus
written [a, b, c, d][110]. A miss to e evicts the memory block c which was pointed to by the tree bits.
To protect e from eviction, all tree bits on the path to the root of the tree are made to point away from
it. Similarly, upon the following hit to a, the bits on the path from a to the root of the tree are made to
point away from a. Note that they are not necessarily flipped. Another access to a would not change
the tree bits at all as they already point away from a. Finally, a miss to f eliminates d from the cache
set. So, one can represent PLRU cache sets as a k-tuple of memory blocks and k − 1 bits:

q ∈ QPLRUk
:= Bk

⊥ × Bk−1 (1)



Non-trivial logical cache states. Caches implemented in hardware have to satisfy several contra-
dictory optimization goals. For instance, they should provide a low hit latency at a lower power
consumption and implementation cost, i.e., area consumption. To satisfy these goals, a cache im-
plementation cannot arbitrarily rearrange the contents of its cache lines upon every access to reflect
an access’s effect on its logical state. Instead, as in the implementation of PLRU described above, a
small number of additional status bits is maintained and updated upon accesses. Due to these status
bits, several physical states of the cache represent the same logical state. For static cache analyses it
would be inconvenient and inefficient to distinguish such states, as they exhibit the same observable
behavior in terms of hits and misses. The first step in the design of a cache analysis should therefore
be to abstract from physical cache states to logical cache states.

For caches employing LRU or FIFO it is easy to abstract from the physical positions of memory blocks
in cache sets. For LRU one can abstract from physical cache set positions by ordering the memory
blocks from most-recently to least-recently used, i.e. by their age [3]. For FIFO one can abstract by
ordering the blocks from last-in to first-in, i.e. according to their distance to the FIFO pointer [4]. In
Section 4, we introduce a sound and complete abstraction from physical cache positions for PLRU,
which is more involved due to its “non-linear” tree structure. This abstraction is a coarsest that is still
complete: It distinguishes two concrete states if and only if there are access sequences that will result
in a different hit/miss behavior.

Logarithmic-time eviction. Consider a cache set of size k: If LRU is employed, it takes at least k
accesses to evict a block that has just been accessed [9]. If PLRU is employed, a block might already
be evicted after only log2(k) + 1 accesses [9]. Although this is usually not the case, it is challenging
for a must-analysis to prove containedness of more than log2(k)+1 blocks. In Section 5, we introduce
a must-analysis that keeps track of correlations between memory blocks in order to exclude spurious
logarithmic-time eviction.

Arbitrary survival. May-analysis of PLRU is also more difficult than may-analysis of LRU or
FIFO: as opposed to LRU and FIFO, a block b may still be cached after an arbitrary number of
accesses to other memory blocks, even if arbitrarily many different blocks are accessed [1]. This
makes it challenging for a may-analysis to prove eviction of blocks. The only may-analysis we
currently see would be based on the “evict”-metric introduced in [9]. It would have to observe e(k) =
k
2
log2(k) + 1 successive accesses to pairwise different blocks in order to be able to then predict a

miss. Such an analysis would likely be of little or no practical use.

4. Coarsest Complete Abstraction: from Physical to Logical Cache States

Ordering blocks from last-in to first-in in logical states of FIFO and from most- to least-recently used
in logical states of LRU is similar. In both cases, blocks are ordered by decreasing miss replacement
distance:

Definition 1 (Miss Replacement Distance). The miss replacement distance, mrd(q, b), of a block b is
the minimum number of successive misses that evict b from the cache set q. If b /∈ q, mrd(q, b) := 0.

For PLRU, blocks can also be ordered by their miss replacement distance. However, this is more
involved. Consider the cache set states in Figure 2. All these states are equivalent with respect to their
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Figure 2. Three equivalent states and a state annotated with edge bits and logical cache positions.

replacement behavior: if one carries out an arbitrary but fixed access sequence on all states, the same
blocks will be evicted in the same order. Given that only misses happen, the blocks will be evicted
in the order c, b, d, a. The relation between the physical position of a block and its miss replacement
distance is established in four steps:

1. For replacement it does not matter whether a block b is contained in a left or a right subtree.
What matters is whether or not a tree bit points to the subtree containing b or not. Hence, we
associate an edge bit with each edge in the tree. It is 0 if the corresponding tree bit points along
this edge and 1 otherwise.

2. Subsequently, we associate an access path with each block b in a cache set q. An access path,
ap(q, b), is the sequence of edge bits encountered on the path from b to the root of q. If b /∈ q,
then ap(q, b) = ⊥. In (all of) the above examples, the access path of d is 10 and the one of c is
00.

3. The logical position of a block in a cache set is its access path interpreted as a binary number.
In the above examples, the logical position of d is 2 and the one of c is 0.

4. The miss replacement distance of a block is its logical position plus one.

For an example, see the rightmost PLRU tree in Figure 2: edges are annotated with edge bits and
leaves are annotated with logical cache positions.

Observation 2 (Access Path Update). Consider two cached blocks a 6= b with access paths pa and
pb. Let pa = prea ◦ p1 ◦ suff and pb = preb ◦ p1 ◦ suff , where |p1| = 1: the paths pa and pb start with
different prefixes prea respectively preb , join after the last different bit p1, and finish with the (possibly
empty) shared suffix suff . After accessing b, all tree bits on the path of b point away from b, i.e. all
edge bits are 1 and the new access path of b is p′b = 1 . . . 1. Since a and b share a suffix, setting the
tree bits on the path to b also affects a’s suffix: its new access path is p′a = prea ◦ 0︸︷︷︸

p1

◦ 1 . . . 1︸ ︷︷ ︸
suff

.

Theorem 3 (Miss Replacement Distance [9]). A block b with access path ap(q, b) = p1 . . . pn has
miss replacement distance mrd(q, b) = p1 . . . pn + 1.

Essentially, the above proceeding defines equivalence classes on PLRU cache sets, i.e. the quotient
structureQPLRU∼

k
:= QPLRUk

/∼, where the equivalence relation is based on access paths and abstracts
from the tree bits. q1 ∼ q2 ⇐⇒ ∀b ∈ B : ap(q1, b) = ap(q2, b). Hence, logical cache set states
q̃ ∈ QPLRU∼

k
can be represented as a function that maps blocks b ∈ B to their logical position q̃(b):

q̃ ∈ QPLRU∼
k
= B → {⊥, 0, . . . , k − 1} (2)

In an isomorphic representation as k-tuples of blocks, one can order blocks decreasingly by their logi-
cal position (miss replacement distance). For instance, q̃ = [a, d, b, c]∼ represents the three equivalent
states in Figure 2: q̃(a) = 3, q̃(d) = 2, q̃(b) = 1, q̃(c) = 0, and q̃(x) = ⊥ for all other blocks x.
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5. More Precise Must-Analysis Based on Subtree Distances

Logarithmic-time eviction. Consider the succession of states in Figure 3. After x has been inserted
into the cache set, it only takes 3 accesses to evict it—although the associativity is 4.

Generalized to a k-way PLRU, log2(k) + 1 is a tight lower bound on the number of accesses that are
necessary to evict a just inserted block [9]: After the access to a block x, its access path is 1 . . . 1.
To replace x, all edge bits on its access path must be flipped to 0 . . . 0. By Observation 2, an access
to another block a flips at most one of x’s edge bits to 0. Also, the shared suffix of a and x is set to
1 . . . 1. Hence, to evict x with as few accesses as possible, one set the edge bits to 0 from left to right
to avoid flipping bits back to 1.

For instance consider Figure 3: The access to b, which is the “direct neighbor” of x, sets the first edge
bit of x to 0. The access to c, which is contained in a subtree “that is one step further away” than b,
sets the second edge bit of x to 0. Note that accessing a instead of c has the same effect on x. If the
cache set was 8-way associative, the third edge bit could be set to 0 by accessing one of the 4 blocks
in the “next” subtree. Below we will formally define the notions in double quotes as subtree distance.

Sketch of the Analysis. As edge bits in an access path must be set to 0 from left to right to evict
a block, the number of leading zeros in access paths is an interesting size. To predict hits, our must-
analysis maintains an upper bound on the number of leading zeros: as long as this bound is less than
log2(k) for a block, that block can not be evicted. To improve analysis precision, we additionally
maintain approximations on subtree distances. With information about subtree distances, the analysis
can model the flipping of tree-bits more precisely and is able to exclude more spurious behavior, e.g.
the logarithmic-time eviction of blocks.

Leading Zeros and Subtree Distance.

Definition 4 (Number of Leading Zeros). The number of leading zeros of a block, lz(b), is the number
of leading zeros (nlz : N→ N)4 in the access path of that block (q̃(b)):

lz : QPLRU∼
k
× B → {⊥, 0, . . . , log2(k)} (3)

lz(q̃, b) :=

{
nlz(q̃(b)) : q̃(b) 6= ⊥
⊥ : otherwise

(4)

4nlz,ntz : N → N compute the number of leading/trailing zeros of two’s-complement numbers. For definitions and
efficient implementations see [10].
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Figure 4. Update of the number of leading zeros lz(q̃, b) upon a cache hit to block a.

For example, in the state q̃ = [x, c, b, a]∼ of Figure 3, lz(q̃, a) = 2, lz(q̃, b) = 1, lz(q̃, c) = lz(q̃, x) = 0,
and lz(q̃, y) = ⊥ for all other blocks y.

Definition 5 (Subtree Distance). The subtree distance between two cached blocks, d(q̃, a, b), is the
distance to their least common ancestor in the tree.

d : QPLRU∼
k
× B × B → {⊥, 0, . . . , log2(k)} (5)

d(q̃, a, b) :=

{
log2(k)− ntz(q̃(a)⊕ q̃(b)) : q̃(a) 6= ⊥, q̃(b) 6= ⊥
⊥ : otherwise

(6)

If both blocks are cached (q̃(·) 6= ⊥) the subtree distance between them is the height of the tree
(log2(k)) minus the length of their shared suffix (ntz(·)). Otherwise, the distance is undefined (⊥).
Assuming two’s complement binary encoding, the length of the shared suffix can be computed by:
First, a bitwise xor (⊕) of the logical positions, which produces a 0 bit if two bits are equal. Then, the
number of trailing zeros4 in the result is the length of the shared suffix. For example, in the first tree
of Figure 3, d(q̃, c, c) = 0, d(q̃, c, a) = 1, d(q̃, c, b) = d(q̃, c, x) = 2, and d(q̃, a, b) = d(q̃, a, x) = 2,
and so on.

To see how the number of leading zeros is updated upon a cache hit to a block a, consider Figure 4.
In the successor state q̃′ of q̃, the number of leading zeros after a hit to a (q̃(a) 6= ⊥) is

lz(q̃′, b) =


⊥ : lz(q̃, b) = ⊥
lz(q̃, b) + 1 : d(q̃, b, a) = lz(q̃, b) + 1 Figure 4(a)
min{lz(q̃, b), d(q̃, b, a)} : otherwise Figures 4(b), 4(c)

(7)

Upon a cache miss to block a (q̃(a) = ⊥) the logical position of each cached block is decremented
(q̃(b)−1), see Definition 1 and Theorem 3. Furthermore, the block at logical position 0 is evicted and
trivially lz(q̃′, a) = 0:

lz(q̃′, b) =


0 : b = a

lz(q̃(b)− 1) : b 6= a, q̃(b) 6= ⊥, q̃(b) > 0

⊥ : otherwise
(8)



Abstraction. As explained above, the number of leading zeros is decisive for the question whether
a block can be evicted. Hence, the first constituent of our abstract domain is the number of potential
leading zeros:

plz ∈ PLZk := B → {0, . . . , log2(k),>} (9)

As the prefix potential suggests, plz (b) is an upper bound on the number of leading zeros in the access
path of b. If plz (b) = >, then b may not be cached (anymore). Formally, the meaning of plz ∈ PLZk

is given by the concretization function:

γPLZk
: PLZk → QPLRU∼

k
(10)

γPLZk
(plz ) := {q̃ ∈ QPLRU∼

k
| plz (b) 6= > ⇒ 0 ≤ lz(q̃, b) ≤ plz (b)} (11)

For the analysis to be able to exclude the possibility of logarithmic-time eviction, it needs information
about subtree distances. To see this, consider Equation 7, specifically that the second case depends
on d(q̃, b, a): If the analysis had no information about the subtree distance d(q̃, b, a), it would have to
conservatively take into account the case that d(q̃, b, a) = lz(q̃, b) + 1. This would mean that upon an
access to block a, the upper bound plz (b) would have to be incremented for all b 6= a. Ultimately, an
analysis that abstracts completely from subtree distances can never exclude logarithmic-time eviction.
Consequently, to increase analysis precision, the second constituent of our abstract domain maintains
some information about subtree distances.

There are several ways to approximate subtree distances in an abstract domain. We chose an abstrac-
tion such that abstract elements can be represented efficiently. For each pair of blocks we distinguish
between four classes of distances; zero, non-maximal, maximal, and unknown:

ADk := B × B → {{0} , [1, log2(k)), {log2(k)} ,>} (12)

Formally, the meaning of ad ∈ ADk is given by:

γADk
: ADk → QPLRU∼

k
(13)

γADk
(ad) := {q̃ ∈ QPLRU∼

k
| ad(a, b) 6= > ⇒ d(q̃, a, b) ∈ ad(a, b)} (14)

Although the domain B ×B of an ad ∈ ADk is of size O(|B|2), each ad ∈ ADk can be stored in size
O(|B|) by using a set of two disjoint sets of blocks {B0, B1}:

ad(a, b) = {0} ⇐⇒ a = b,∃i : a ∈ Bi

ad(a, b) = [1, log2(k)) ⇐⇒ a 6= b,∃i : a, b ∈ Bi

ad(a, b) = {log2(k)} ⇐⇒ a 6= b,∃i : a ∈ Bi, b ∈ B1−i
ad(a, b) = > ⇐⇒ {a, b} 6⊆ B0 ∪B1

(15)

Blocks with maximal distance are contained in different sets, blocks with non-maximal distance are
contained in the same set. For instance ({a, b}, {c}) corresponds to ad(a, b) = [1, log2(k)), ad(a, c) =
ad(b, c) = {log2(k)}, and ad(x, y) = > for all other x 6= y.

Now that PLZk and ADk are introduced, we define the abstract domain of the must-analysis, which
is a partial function that associates bounds on leading zeros with approximations of subtree distances:

PlruAD
k := ADk ↪→ PLZk (16)



The set of concrete cache set states represented by q̂ ∈ PlruAD
k is determined by:

γAD
Plruk

: PlruAD
k → P(QPLRU∼

k
) (17)

γAD
Plruk

(q̂) :=
⋃

ad∈dom(q̂)

γADk
(ad) ∩ γPLZk

(q̂(ad)) (18)

A concrete state must satisfy any of the distance constraints γADk
(ad) and the associated constraints

on leading zeros γPLZk
(q̂(ad)).

Classification. An access to a block b can be classified as a hit if its number of leading zeros is at
most log2(k) for all approximations of subtree distances. Otherwise, the access might be a miss.

CAD
Plruk

: PlruAD
k × B → Class (19)

CAD
Plruk

(q̂, b) :=

{
H : ∀ad ∈ dom(q̂) : q̂(ad)(b) 6= >
> : otherwise

(20)

Join. For coinciding approximations of subtree distances, the associated approximation of leading
zeros is joined by taking the maximum bound for each block:

JAD
Plruk

(q̂1, q̂2) := λad .


q̂1(ad) : ad ∈ dom(q̂1) \ dom(q̂2)

q̂2(ad) : ad ∈ dom(q̂2) \ dom(q̂1)

JPLZk
(q̂1(ad), q̂2(ad)) : ad ∈ dom(q̂1) ∩ dom(q̂2)

(21)

JPLZk
(plz 1, plz 2) :=

{
λb.max{plz 1(b), plz 2(b)} : plz 1(b) 6= >, plz 2(b) 6= >
> : otherwise

(22)

Update. The update of PlruAD
k is based on the updates of ADk and PLZk. First, consider

UADk
: ADk × PLZk × B × Class→ 2ADk :

UADk
({B0, B1}, plz , a,H) := {{B′0, B1} | B′0 := B0 ∪ {a}, a /∈ B1, |B′0| ≤ k/2} (23)

UADk
({B0, B1}, plz , a,M) := {{B′0, B1} | B′0 := B0\{x}∪{a}, plz (x) ∈ {log2(k),>}, |B′0| ≤ k/2}

(24)

UADk
(ad , plz , a,>) := UADk

(ad , plz , a,H) ∪ UADk
(ad , plz , a,M) (25)

Upon a hit to block a, a must be cached. Hence, we can make assumptions about its distances by
adding it to a set Bi. To maintain consistency, a must not be contained in both sets simultaneously
(a /∈ B1−i). Furthermore, at most k/2 blocks can have non-maximal subtree disctance to each other
(|B′i| ≤ k/2). (Note that B0 and B1 are interchangeable since {B0, B1} is a set.)

Upon a cache miss, the accessed block a inherits its subtree distances from the replaced block x. Due
to the abstraction, several blocks might come into consideration for eviction, namely all blocks with
plz (x) ∈ {log2(k),>}.

If the access is unclassified, one has to take the union of the results of the hit- and miss-update.



The update of the potential leading zeros closely resembles the three cases in Figure 4:

UPLZk
(plz , ad , a) := λb.



0 if a = b

> else if ad(a, b) = >
plz (b) else if plz (b) + 1 < L

plz (b) + 1 else if L ≤ plz (b) + 1 ≤ U

U else if plz (b) + 1 > U

(26)

Since the subtree distances are approximated, one has to rely on lower and upper bounds (L ≡
min{n ∈ ad(a, b)}, U ≡ max{n ∈ ad(a, b)}) of the interval ad(a, b) 6= >. Consider the fourth case
for instance: since plz (b) + 1 = d(q̃, a, b) might be possible, one has to increment plz (b).

The update on PlruAD
k assigns each subtree distance approximation ad ′ an updated approximation of

leading zeros. Different approximations ad might be updated to the same ad ′. Hence, one must join
(t) all updated approximations of leading zeros (UPLZk

()) of all ad for which ad ′ ∈ UADk
(ad , . . .).

UAD
Plruk

(q̂, a, cl) :=

λad ′.
⊔
{UPLZk

(q̂(ad), ad ′, a) | ad ∈ dom(q̂), ad ′ ∈ UADk
(ad , q̂(ad), a, cl)} (27)

Uncertainty about accessed addresses. Cache analysis comprises value analysis and replacement
analysis. Value analysis determines approximations to accessed addresses, which are the inputs to
the cache. Given the accessed addresses, replacement analysis determines approximations to cache
contents. Therefore a replacement analysis is generally applicable to instruction, data, and unified
caches.

There are cases where the value analysis cannot precisely determine the address of a memory access.
Nonetheless, the replacement analysis can always handle such uncertainty in a sound way: a sound
successor state can be computed by performing updates of the current state for all addresses that might
be accessed and then joining all those states into a single one. However, this way, the uncertainty about
accessed addresses translates into additional uncertainty about cache set states, which might translate
into less classified accesses.

6. Closely Related Work

The related works most relevant for this paper are cache analyses of LRU [3], FIFO [4, 5] and
PLRU [8]. [3] introduces the concepts of may- and must-caches and present may- and must-analyses
for LRU that are based on abstract interpretation. [4, 5] introduce several must- and a may-analyses
for FIFO and show how to combine the corresponding abstract domains in order to improve analysis
precision. For pointers to earlier work on cache analysis directed at WCET analysis and other cache
analyses, we kindly refer the reader to [4].

The only prior analysis of PLRU, PlruRC
k , is a must-analysis based on relative competitiveness [8].

Under certain conditions, relative competitiveness allows one to use cache analyses for one policy
as cache analyses for other policies. For instance, an LRU must-analysis for a log2(k) + 1-way
associative cache can be employed as a must-analysis for a k-way PLRU.



7. Evaluation

In the following, we compare to each other

(a) the analysis PlruAD
k presented in this paper,

(b) the analysis PlruRC
k based on relative competitiveness [8] as explained in Section 6, and

(c) the collecting semantics PlruCS
k of PLRU.

The collecting semantics is the exact set of cache set states that may reach a program point. It delimits
the precision of any static analysis. If a memory access cannot be classified as hit or miss in the
collecting semantics, no sound static analysis can do so. We computed it using an analysis based on
a powerset domain of symbolically-represented concrete cache-set states.

To quantify the precision of the analyses, we applied the analyses to two parametrizable classes of
synthetic benchmarks, where the parameter n controls the level of temporal locality: Loop(n) is a loop
that iterates 16 times and accesses n different blocks, i.e. (1 2 . . . n)16. Rand(n) is a set of 100 se-
quences, each containing 100 randomly distributed accesses to n different blocks, i.e. (1|2| . . . |n)100.

The results for associativities k = 4 and k = 8 are shown in Table 1 (for k = 2, PLRU is identical to
LRU). Except for one negligible exception, PlruAD

k can guarantee higher hit rates than PlruRC
k .

For the Loop benchmarks, PlruRC
k cannot classify any hits if n > log2(k)+ 1, wheras PlruAD

k can do
so for up to n = 2 log2(k). Hence, PlruAD

k is preferable for loops containing more than log2(k) + 1
different accesses. If the analyses predict hits, the amount is close to the limit given by PlruCS

k .

The Rand benchmarks are stress tests for the abstract domains. For smaller n, both analyses perfom
equally well. For n > log2(k) + 1, the gap between the collecting semantics and the analysis results
grows. With increasing n, PlruRC

k falls behind PlruAD
k .

Regarding the efficiency of the analyses, please note that PlruAD
k and PlruCS

k are implemented as
prototypes whereas PlruRC

k is tuned. For each analysis we measured the overall time needed to com-
plete all benchmarks. For k = 4, all analyses took around 3.3s. For k = 8, PlruRC

k completed after
3.5s, PlruAD

k after 5.5s, and PlruCS
k after 12.5s. Compared to PlruRC

k , the disadvantage of PlruAD
k is

that it is a disjunctive domain, which entails higher memory consumption and lower performance.

Table 1. Guaranteed hit rates [%] provided by the two analyses and the collecting semantics.

Associativity k = 4 Associativity k = 8

n 2 3 4 5 2 3 4 5 6 7 8

L
oo

p PlruRC
k 93.8 93.8 0.0 0.0 93.8 93.8 93.8 0.0 0.0 0.0 0.0

PlruAD
k 93.8 93.8 92.2 0.0 93.8 93.8 93.8 92.5 90.6 0.0 0.0

PlruCS
k 93.8 93.8 92.2 0.0 93.8 93.8 93.8 92.5 91.7 90.2 86.7

R
an

d PlruRC
k 98.0 97.0 73.1 58.8 98.0 97.0 96.0 77.7 64.4 55.7 48.1

PlruAD
k 98.0 97.0 94.7 75.4 98.0 97.0 95.8 93.0 84.3 63.5 52.0

PlruCS
k 98.0 97.0 94.7 75.4 98.0 97.0 96.0 93.9 91.0 84.0 68.4



8. Conclusions and Further Work

Our first contribution, the PlruAD
k analysis, has pros and cons: It is more precise than its sole com-

petitor PlruRC
k . Most importantly, it can classify hits in “larger” loops, where PlruRC

k cannot. On the
other hand, its higher memory consumption might hamper scalability. However, tradeoffs are possible
by changing the approximation of subtree distances, i.e. plugging-in different domains ADk.

Our second contribution, the understanding of the subtree distance and its relation to other sizes, is
perhaps more valuable than the analysis itself: For FIFO, it was shown to be beneficial for precision
to refine the abstract transformer by discriminating between hits and misses [4]. For PLRU, this is
not sufficient as a hit can both, accelerate or defer the eviction of other blocks. Instead, we consider
the subtree distance as an important size in the design of future PLRU (may-)analyses, which will
possibly degrade PlruAD

k to a proof-of-concept analysis.
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