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Time in Distributed Systems

It was true that “A distributed system can be 
characterized by the fact that the global state is 
distributed and that a common time base does not 
exist.” [1]
Distributed system programming often needs to access 
information about time.

Estimate the time at which events occur
Detect process failures
Synchronize activities of different systems

In the past, time synchronization has been a relatively 
expensive service.

Use imprecise clocks.
Use logical time/virtual time.

[1] Friedemann Mattern, “Virtual Time and Global States of Distributed Systems”, 1988
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Time in Distributed Systems

A large part of difficulty in programming distributed 
embedded systems is due to imprecise clocks.
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Time in Distributed Systems

Logical time or virtual time is about ordering of events:
e < e’ (event e happens before e’) if t(e) < t(e’) .

Now, time synchronization offers a consistent global 
notion of time.

It is meaningful to talk about the metric nature of time: t(e’) – t(e)

Time synchronization could greatly change the design 
of distributed systems!  
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Motivating Example

Camera has computer-controlled zoom and focus capabilities.
Zoom and focus take time to set up, and the camera should not 
take picture during this period.
The video of each camera is synchronized and time stamped

All the views of some interesting moment can be played back in sequence 
How often a camera takes picture is also controlled by the computer.

e: zoom camera at t

e’: take picture at t’

If t – t’ <     , then e should 
be dropped.
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How to Design the Application?

Challenges include: computation and timing relation 
between events to be realized in software
Prevailing software methods abstract away time, 
replacing it with ordering. Moreover,

Order not specified as part of the interface definition.
It can be difficult to control the order in concurrent systems. 

Need programming languages that include time and 
concurrency as first-class properties.

Elevating time to the programming language level
• Time is part of the semantics of programs

Augmenting software component interfaces with timing information
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Discrete Event Systems

Dynamic systems that evolve in accordance to events
The state of the system changes only when an event occurs
Events are associated with time

• Ex. arrival of a packet, completion of a job, failure of a machine

DE models have been used for modeling physical 
systems including:

Hardware systems (VHDL, Verilog)
Manufacturing systems
Communication networks (OPNET, NS-2)
Transportation systems
Stock market
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Discrete Event Modeling in Ptolemy II

DE Director implements 
timed semantics using 
an event queue

Event source

Time line

Reactive actors

Signal
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Motivating Example

Camera has computer-controlled zoom and focus capabilities.
Zoom and focus take time to set up, and the camera should not 
take picture during this period.
The video of each camera is synchronized and time stamped 

All the views of some interesting moment can be played back in sequence 
How often a camera takes picture is also controlled by the computer.

e: zoom camera at t

e’: take picture at t’

If t – t’ <     , then e should 
be dropped.
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DE Model for the Example
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DE Model on the Central Computer
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v = 2: zoom in camera.



Yang, Berkeley 12

DE Model on the Central Computer
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v = 2: zoom in camera.

v > 2: change period p to (v-2)*p.
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e: zoom camera at t

e’: take picture at t’
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Ex. v = 1, tm = 1: take a picture at tr = 1.

v = 2, tm = 3: zoom in camera at tr = 3.
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Event at s1 is received at real time tm < tr <= tm + D

D is the up-bound of network delay

d should greater than D
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Challenges in Executing the Model

Not be practical nor efficient to use a centralized event 
queue to sort events in chronological order.
Do the techniques developed for distributed DE 
simulation work? 

Conservative? Optimistic?

Our approach: events only need to be processed in 
time-stamp order when they are causally related.
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DE Model for the Example
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Challenges in Executing the Model

Not be practical nor efficient to use a centralized event 
queue to sort events in chronological order.
Do the techniques developed for distributed DE 
simulation work? 

Conservative? Optimistic?

Our approach: events only need to be processed in 
time-stamp order when they are causally related.
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Intuition on Out of Order Execution
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D : is the up bound of network delay; d > D
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D : is the up bound of network delay; d > D

We can always safely process an event e at the first 
input of Merge by tr >  tm - d + D 
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Relevant Dependency Analysis 

Relevant dependency analysis gives a formal 
framework for analyzing causality relationships to 
determine the minimal ordering constraints on 
processing events. 
It capture the idea that events only need to be 
processed in time-stamp order when they are causally 
related. 
Can preserve the deterministic behaviors specified in 
DE models without paying the penalty of totally ordered 
executions.

Yang Zhao, Edward A. Lee and Jie Liu "Programming Temporally Integrated 
Distributed Embedded Systems’’, UCB/EECS-2006-82, May 28, 2006
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Causality Interface 

[Zhou--Lee]
Causality interface of a component declares the dependency 
between input and output.
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Causality Interface Composition
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Relevant Dependency

Relevant dependency on any pair of input ports p1 and p2 
specifies whether an event at p1 will affect an output signal 
that may also depend on an event at p2.
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Relevant Dependency

d( p1, p6) = d means any event with time stamp t at p2 can be 
processed when all events at p1 are known up to time stamp t 
− d.
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Relevant Order

Relevant dependencies induce a partial order, called 
the relevant order, on events.
e1 <r e2 means that e1 must be processed before e2.
If neither e1 <r e2, nor e2 <r e1, i.e. e1 ||r e2, then e1, e2
can be processed in any order.
This technique can be adapted to distributed execution.
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Conclusion

Time synchronization can greatly change the way distributed 
systems are designed.
Discrete-event model can be used as a programming model to 
explicitly specify and manipulate time relations between 
events.  
It is challenging to design distributed systems to make sure 
they are executable. 
Causality analysis can be used to determine when events can 
be processed out of order to improve executability.
Work in progress: 

statically check whether a system design is executable.
Implementing a runtime environment on P1000 by Agilent.
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