
PTIDES: Programming
Temporally Integrated
Distributed Embedded Systems

Yang Zhao, EECS, UC Berkeley
Edward A. Lee, EECS, UC Berkeley
Jie Liu, Microsoft Research

2006 Conference on IEEE-1588
NIST, Gaithersburg, MD, USA
October 2 - 4, 2005.

Yang, Berkeley 2

Time in Distributed Systems

It was true that “A distributed system can be
characterized by the fact that the global state is
distributed and that a common time base does not
exist.” [1]
Distributed system programming often needs to access
information about time.

Estimate the time at which events occur
Detect process failures
Synchronize activities of different systems

In the past, time synchronization has been a relatively
expensive service.

Use imprecise clocks.
Use logical time/virtual time.

[1] Friedemann Mattern, “Virtual Time and Global States of Distributed Systems”, 1988

Yang, Berkeley 3

v

Time in Distributed Systems

A large part of difficulty in programming distributed
embedded systems is due to imprecise clocks.

Camera1 Camera2

Camera1

@t1

Camera2

@t1

Yang, Berkeley 4

Time in Distributed Systems

Logical time or virtual time is about ordering of events:
e < e’ (event e happens before e’) if t(e) < t(e’) .

Now, time synchronization offers a consistent global
notion of time.

It is meaningful to talk about the metric nature of time: t(e’) – t(e)

Time synchronization could greatly change the design
of distributed systems!

Yang, Berkeley 5

Motivating Example

Camera has computer-controlled zoom and focus capabilities.
Zoom and focus take time to set up, and the camera should not
take picture during this period.
The video of each camera is synchronized and time stamped

All the views of some interesting moment can be played back in sequence
How often a camera takes picture is also controlled by the computer.

e: zoom camera at t

e’: take picture at t’

If t – t’ < , then e should
be dropped.

Δ

20

40

40

20

50

30

30

20

40

40

20

50

30

30

Yang, Berkeley 6

How to Design the Application?

Challenges include: computation and timing relation
between events to be realized in software
Prevailing software methods abstract away time,
replacing it with ordering. Moreover,

Order not specified as part of the interface definition.
It can be difficult to control the order in concurrent systems.

Need programming languages that include time and
concurrency as first-class properties.

Elevating time to the programming language level
• Time is part of the semantics of programs

Augmenting software component interfaces with timing information

Yang, Berkeley 7

Discrete Event Systems

Dynamic systems that evolve in accordance to events
The state of the system changes only when an event occurs
Events are associated with time

• Ex. arrival of a packet, completion of a job, failure of a machine

DE models have been used for modeling physical
systems including:

Hardware systems (VHDL, Verilog)
Manufacturing systems
Communication networks (OPNET, NS-2)
Transportation systems
Stock market

Yang, Berkeley 8

Discrete Event Modeling in Ptolemy II

DE Director implements
timed semantics using
an event queue

Event source

Time line

Reactive actors

Signal

Yang, Berkeley 9

Motivating Example

Camera has computer-controlled zoom and focus capabilities.
Zoom and focus take time to set up, and the camera should not
take picture during this period.
The video of each camera is synchronized and time stamped

All the views of some interesting moment can be played back in sequence
How often a camera takes picture is also controlled by the computer.

e: zoom camera at t

e’: take picture at t’

If t – t’ < , then e should
be dropped.

Δ

20

40

40

20

50

30

30

20

40

40

20

50

30

30

Yang, Berkeley 10

DE Model for the Example

Clock

Merge

Camera

Display
Command

Central
Computer

s1

Device

Delay
d

Queue

Process
Image

s2

Route

Yang, Berkeley 11

DE Model on the Central Computer

Display
Command

Central
Computer

Process
Image

s1 s2

zoom in all

tr = 2

tm

v

1

2

1 32

v = 2: zoom in camera.

Yang, Berkeley 12

DE Model on the Central Computer

Display
Command

Central
Computer

Process
Image

s1 s2

double perio
d

tr = 5.5

tm

v

1
2

1 32

v = 2: zoom in camera.
3
4

4 65

v = 2: zoom in camera.

v > 2: change period p to (v-2)*p.

Yang, Berkeley 13

s1

s2

Clock

Merge

Camera

Device

Delay
d

Queue

Route

DE Model for the Cameras

tm

v

1
2

1 32

3
4

4 65
tm

v

1
2

1 32

3
4

4 65

Assume d = 1

Yang, Berkeley 14

s1

s2

Clock

Merge

Camera

Device

Delay
d

Queue

Route

DE Model for the Cameras

tm

v

1
2

1 32

3
4

4 65

Assume d = 1

tm

v

1
2

1 32

3
4

4 65

tm
1
2

1 32

v

Yang, Berkeley 15

s1

s2

Clock

Merge

Camera

Device

Delay
d

Queue

Route

DE Model for the Cameras

tm

v

1
2

1 32

3
4

4 65

1 3 5 62 4
tm1

v

1097 8

Yang, Berkeley 16

s1

s2

Clock

Merge

Camera

Device

Delay
d

Queue

Route

DE Model for the Cameras

1 3 5 62 4
tm1

v

1097 8

tm
1
2

1 32

v

1 3 5 62 4
tm1

v

1097 8

2

e: zoom camera at t

e’: take picture at t’

If t – t’ < =1, then e should
be dropped.

Yang, Berkeley 17

s1

s2

Clock

Merge

Camera

Device

Delay
d

Queue

Route

DE Model for the Cameras

1 3 5 62 4
tm1

v

1097 8

2

Ex. v = 1, tm = 1: take a picture at tr = 1.

v = 2, tm = 3: zoom in camera at tr = 3.

Yang, Berkeley 18

s1

s2

Clock

Merge

Camera

Device

Delay
d

Queue

Route

DE Model for the Cameras

1 3 5 62 4
tm1

v

1097 8

2

tm

v

1
2

1 32

3
4

4 65
tm

v

1
2

1 32

3
4

4 65

Event at s1 is received at real time tm < tr <= tm + D

D is the up-bound of network delay

d should greater than D

Yang, Berkeley 19

Challenges in Executing the Model

Not be practical nor efficient to use a centralized event
queue to sort events in chronological order.
Do the techniques developed for distributed DE
simulation work?

Conservative? Optimistic?

Our approach: events only need to be processed in
time-stamp order when they are causally related.

Yang, Berkeley 20

DE Model for the Example

Clock

Merge

Camera

Display
Command

Central
Computer

s1

Device

Delay
d

Queue

Process
Image

s2

Route

tm
1

1 32

v

Assure no event with time

stamp tm < 3 at tr = 3

Received at real time tr > 3

Deadline missed!

Yang, Berkeley 21

Challenges in Executing the Model

Not be practical nor efficient to use a centralized event
queue to sort events in chronological order.
Do the techniques developed for distributed DE
simulation work?

Conservative? Optimistic?

Our approach: events only need to be processed in
time-stamp order when they are causally related.

Yang, Berkeley 22

Intuition on Out of Order Execution

Clock

Merge

Camera

Display
Command

Central
Computer

s1

Device

Delay
d

Queue

Process
Image

s2

Route

tm
1

1 32

v

If there is an event with time

stamp tm <= 3-d at tr <= 3-d

Received by real time

tr < 3-d+D

tm
1

1 32

?

tm
1

1 3-d

?

D : is the up bound of network delay; d > D

Yang, Berkeley 23

s1

s2

Clock

Merge

Camera

Device

Delay
d

Queue

Route

Intuition on Out of Order Execution

tm
1

1 32

v

D : is the up bound of network delay; d > D

We can always safely process an event e at the first
input of Merge by tr > tm - d + D

Yang, Berkeley 24

Relevant Dependency Analysis

Relevant dependency analysis gives a formal
framework for analyzing causality relationships to
determine the minimal ordering constraints on
processing events.
It capture the idea that events only need to be
processed in time-stamp order when they are causally
related.
Can preserve the deterministic behaviors specified in
DE models without paying the penalty of totally ordered
executions.

Yang Zhao, Edward A. Lee and Jie Liu "Programming Temporally Integrated
Distributed Embedded Systems’’, UCB/EECS-2006-82, May 28, 2006

Yang, Berkeley 25

Causality Interface

[Zhou--Lee]
Causality interface of a component declares the dependency
between input and output.

DPP oia →×:δ

dppa =),(21δ

s1

s2

Clock

Merge

Camera

Device

Delay
d

Queue

Route
s1

s2

Clock

Merge

Camera

Device

Delay
d

Queue

Route

p13

p1

p6
p7

p8
p9

p11p10
p14

p15p12 p16

p2

p4

p5

p3

0),(
),(

87

m in86

=
=

pp
Tpp

a

a

δ
δ '),(1615 Δ=ppaδ

Yang, Berkeley 26

Causality Interface Composition

dpp =),(91δ

s1

s2

Clock

Merge

Camera

Device

Delay
d

Queue

Route
s1

s2

Clock

Merge

Camera

Device

Delay
d

Queue

Route

p13

p1

p6
p7

p8
p9

p11p10
p14

p15p12 p16

p2

p4

p5

p3

minT

p3

p6

p4

p5
p2

p15p7

p10

p8 p9

p14

p13

p16'Δ
p1 d

p11 p12

Yang, Berkeley 27

Relevant Dependency

Relevant dependency on any pair of input ports p1 and p2
specifies whether an event at p1 will affect an output signal
that may also depend on an event at p2.

minT

p3

p6

p4

p5
p2

p15p7

p10

p8 p9

p14

p13

p16'Δ
p1 d

p11 p12

p6 & p7

p3

p4

p5
p2

p15

p8

p14
p16'Δ

p1 d

p11

p9 & p10

p12 & p13

Yang, Berkeley 28

p6 & p7

p3

p4

p5
p2

p15

p8

p14
p16'Δ

p1 d

p11

p9 & p10

p12 & p13

Relevant Dependency

d(p1, p6) = d means any event with time stamp t at p2 can be
processed when all events at p1 are known up to time stamp t
− d.

Yang, Berkeley 29

Relevant Order

Relevant dependencies induce a partial order, called
the relevant order, on events.
e1 <r e2 means that e1 must be processed before e2.
If neither e1 <r e2, nor e2 <r e1, i.e. e1 ||r e2, then e1, e2
can be processed in any order.
This technique can be adapted to distributed execution.

Yang, Berkeley 30

Conclusion

Time synchronization can greatly change the way distributed
systems are designed.
Discrete-event model can be used as a programming model to
explicitly specify and manipulate time relations between
events.
It is challenging to design distributed systems to make sure
they are executable.
Causality analysis can be used to determine when events can
be processed out of order to improve executability.
Work in progress:

statically check whether a system design is executable.
Implementing a runtime environment on P1000 by Agilent.

	PTIDES: Programming Temporally Integrated Distributed Embedded Systems
	Time in Distributed Systems
	Time in Distributed Systems
	Time in Distributed Systems
	Motivating Example
	How to Design the Application?
	Discrete Event Systems
	Discrete Event Modeling in Ptolemy II
	Motivating Example
	DE Model for the Example
	DE Model on the Central Computer
	DE Model on the Central Computer
	DE Model for the Cameras
	DE Model for the Cameras
	DE Model for the Cameras
	DE Model for the Cameras
	DE Model for the Cameras
	DE Model for the Cameras
	Challenges in Executing the Model
	DE Model for the Example
	Challenges in Executing the Model
	Intuition on Out of Order Execution
	Intuition on Out of Order Execution
	Relevant Dependency Analysis
	Causality Interface
	Causality Interface Composition
	Relevant Dependency
	Relevant Dependency
	Relevant Order
	Conclusion

	Text1: In Proceedings of 2006 IEEE 1588 Conference, October 2-4, 2006, Gaithersburg, MD

