
The Future of 
Embedded Software

Edward A. Lee
Professor, Chair of EE, and Associate Chair of EECS
UC Berkeley

ARTEMIS 2006 Annual Conference
Graz, Austria
May 22-24, 2006



Lee, Berkeley 2

Why Embedded Software?
Why Now?

“Information technology (IT) is on the verge of another 
revolution. Driven by the increasing capabilities and ever 
declining costs of computing and communications devices, IT is 
being embedded into a growing range of physical devices linked 
together through networks and will become ever more pervasive 
as the component technologies become smaller, faster, and 
cheaper... These networked systems of embedded computers 
... have the potential to change radically the way people interact 
with their environment by linking together a range of devices 
and sensors that will allow information to be collected, shared,
and processed in unprecedented ways. ... The use of [these 
embedded computers] throughout society could well dwarf 
previous milestones in the information revolution.”

National Research Council Report
Embedded Everywhere



Lee, Berkeley 3

The Key Obstacle to Progress:
Gap Between Systems and Computing

Traditional dynamic systems theory needs to 
adapt to better account for the behavior of 
software and networks.

Traditional computer science needs to adapt 
to embrace time, concurrency, and the 
continuum of physical processes.



Lee, Berkeley 4

The Next Systems Theory:
Simultaneously Physical and Computational

The standard model:
Embedded software is software on small 
computers. The technical problem is one of 
optimization (coping with limited resources).

The Berkeley model:
Embedded software is software integrated with 
physical processes. The technical problem is 
managing time and concurrency in 
computational systems.



Lee, Berkeley 5

Obstacles in Today’s Technology:
Consider Real Time

Electronics Technology Delivers Timeliness…

… and the overlaying software abstractions 
discard it.



Lee, Berkeley 6

Computation in the 20th Century

f : {0,1}∗ → {0,1}∗

A computation is a function that maps a finite 
sequence of bits into a finite sequence of bits.

• No time

• No concurrency



Lee, Berkeley 7

A Few 20th Century Innovations that Rely 
on Time Being Irrelevant

Programming languages
Caches
Virtual memory
Dynamic dispatch
Speculative execution
Power management (voltage scaling)
Memory management (garbage collection)
Just-in-time (JIT) compilation
Multitasking (threads and processes)
Networking (TCP)
Theory (computability, complexity)



Lee, Berkeley 8

Some Approaches Addressing
Timeliness in Software

Put time into programming languages
Promising start: Giotto, Discrete-event models, timed dataflow models

Rethink the OS/programming language split
Promising start: TinyOS/nesC

Rethink the hardware/software split
Promising start: FPGAs with programmable cores

Memory hierarchy with predictability
Promising start: Scratchpad memories vs. caches

Memory management with predictability
Promising start: Bounded pause time garbage collection

Predictable, controllable deep pipelines
Promising start: Pipeline interleaving + stream-oriented languages

Predictable, controllable, understandable concurrency
Promising start: Synchronous languages, SCADE

Networks with timing
Promising start: Time triggered architectures, time synchronization

Computational dynamical systems theory
Promising start: Hybrid systems, schedulability analysis



Lee, Berkeley 9

Obstacles in Today’s Technology:
Consider Concurrency

Sutter and Larus observe:
“humans are quickly overwhelmed by concurrency and find it 
much more difficult to reason about concurrent than 
sequential code. Even careful people miss possible 
interleavings among even simple collections of partially 
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency revolution. ACM 
Queue, 3(7), 2005.

Does this mean that it is hard for humans to reason about 
concurrency?

If so, we would not be able to function in the (highly 
concurrent) physical world.



Lee, Berkeley 10

Most Concurrent Software is Built
Using Threads

Threads are sequential processes that share memory.

Threads are either the implicit or explicit model in
Most real-time operating systems (RTOS’s)
Device drivers
Most concurrent programs in C++ or Java



Lee, Berkeley 11

Consider a Simple Example

“The Observer pattern defines a one-to-many 
dependency between a subject object and any 
number of observer objects so that when the 
subject object changes state, all its observer 
objects are notified and updated 
automatically.”

Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John 
Vlissides (Addison-Wesley Publishing Co., 1995. ISBN: 
0201633612): 



Lee, Berkeley 12

Example: Observer Pattern in Java

public void addListener(listener) {…}

public void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Thanks to Mark S. Miller for the details 
of this example.

Will this work in a 
multithreaded context?



Lee, Berkeley 13

Example: Observer Pattern
With Mutual Exclusion (Mutexes)

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Javasoft recommends against this. 
What’s wrong with it?



Lee, Berkeley 14

Mutexes using Monitors are Minefields

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}
valueChanged() may attempt to 
acquire a lock on some other object 
and stall. If the holder of that lock 
calls addListener(), deadlock!



Lee, Berkeley 15
A Story: Ptolemy Project Code Review Introduced DeadlockA Story: Ptolemy Project Code Review Introduced Deadlock



Lee, Berkeley 16

Simple Observer Pattern Becomes
Not So Simple

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}

while holding lock, make copy 
of listeners to avoid race 
conditions

notify each listener outside of 
synchronized block to avoid 
deadlock

This still isn’t right.
What’s wrong with it?



Lee, Berkeley 17

Simple Observer Pattern:
How to Make It Right?

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}
Suppose two threads call setValue(). One of them will set the value last, 
leaving that value in the object, but listeners may be notified in the opposite 
order. The listeners may be alerted to the value changes in the wrong order!



Lee, Berkeley 18

Such Problems can Linger Undetected in Code 
for a Very Long Time: Another Typical Story

/**
CrossRefList is a list that maintains pointers to other CrossRefLists.
…
@author Geroncio Galicia, Contributor: Edward A. Lee
@version $Id: CrossRefList.java,v 1.78 2004/04/29 14:50:00 eal Exp $
@since Ptolemy II 0.2
@Pt.ProposedRating Green (eal)
@Pt.AcceptedRating Green (bart)
*/
public final class CrossRefList implements Serializable {

…
protected class CrossRef implements Serializable{

…
// NOTE: It is essential that this method not be
// synchronized, since it is called by _farContainer(),
// which is.  Having it synchronized can lead to
// deadlock.  Fortunately, it is an atomic action,
// so it need not be synchronized.
private Object _nearContainer() {

return _container;
}

private synchronized Object _farContainer() {
if (_far != null) return _far._nearContainer();
else return null;

}
…

}
}

Code that had been in 
use for four years, 
central to Ptolemy II, 
with an extensive test 
suite with 100% code 
coverage, design 
reviewed to yellow, then 
code reviewed to green 
in 2000, causes a 
deadlock during a demo 
on April 26, 2004.



Lee, Berkeley 19

What it Feels Like to Use the synchronized
Keyword in Java

Im
ag

e 
“b

or
ro

we
d”

fr
om

 a
n 

Io
m

eg
a 

ad
ve

rt
is

em
en

t 
fo

r 
Y2

K 
so

ft
wa

re
 a

nd
 d

is
k 

dr
iv

es
, S

ci
en

ti
fi

c 
Am

er
ic

an
, S

ep
te

m
be

r 
19

99
.



Lee, Berkeley 20

Families of Possible Solutions

Train programmers to use threads.
Improve software engineering processes.
Identify and apply design patterns.
Quantify quality of service.
Verify system properties formally.

None of these deliver a rigorous, analyzable, 
and understandable model of concurrency.



Lee, Berkeley 21

A stake in the ground…

Nontrivial software written with threads, 
semaphores, and mutexes is 
incomprehensible to humans.



Lee, Berkeley 22

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the 
nondeterminism by imposing constraints on 
execution order (e.g., mutexes).



Lee, Berkeley 23

Improve Threads?
Or Replace Them?

Improve threads
Pruning tools (mutexes, semaphores, …)
OO programming
Coding rules (Acquire locks in the same order…)
Libraries (Stapl, Java 5.0, …)
Patterns (MapReduce, Transactions, …)
Formal verification (Blast, thread checkers, …)
Enhanced languages (Split-C, Cilk, Guava, …)
Enhanced mechanisms (Promises, futures, …)

Change concurrency models



Lee, Berkeley 24

Threads are Not the Only Possibility:
1st example: Hardware Description 
Languages

entity latch is
port (s,r : in bit;

q,nq : out bit);
end latch;

architecture dataflow of latch is
begin

q<=r nor nq;
nq<=s nor q;

end dataflow;

e.g. VHDL:



Lee, Berkeley 25

Threads are Not the Only Possibility:
2nd example: Sensor Network Languages

Component 1

interface used

interface provided

Component 2

interface used

interface provided

command invoked

command implemented event signaled

event handled

Typical usage pattern:
hardware interrupt 
signals an event.
event handler posts a 
task.
tasks are executed when 
machine is idle.
tasks execute atomically 
w.r.t. one another.
tasks can invoke 
commands and signal 
events.
hardware interrupts can 
interrupt tasks.
exactly one monitor, 
implemented by disabling 
interrupts.

Command 
implementers can 
invoke other 
commands or 
post tasks, but do 
not trigger events.

e.g. nesC/TinyOS



Lee, Berkeley 26

Threads are Not the Only Possibility:
3rd example: Network Languages

Click with a visual syntax in Mescal

push output port
push input port

pull output port

agnostic output port

Typical usage 
pattern:
queues have 
push input, 
pull output.
schedulers 
have pull 
input, push 
output.
thin 
wrappers for 
hardware 
have push 
output or 
pull input 
only.



Lee, Berkeley 27

Threads are Not the Only Possibility:
4th example: Synchronous Languages

Lustre/SCADE, from http://www.esterel-technologies.com/

Typical usage pattern:
specify tasks aligned to a 
master “clock” and subclocks
clock calculus checks for 
consistency and deadlock
decision logic is given with 
hierarchical state machines.

synchronous signal value

state machine giving decision logic



Lee, Berkeley 28

Threads are Not the Only Possibility:
5th example: Instrumentation Languages

e.g. LabVIEW, Structured dataflow model of computation



Lee, Berkeley 29

Threads are Not the Only Possibility:
6th example: Continuous-Time Languages 

Typical usage pattern:
model the continuous dynamics 
of the physical plant
model the discrete-time 
controller
code generate the discrete-time 
controller

continuous-time signal

Simulink + Real-Time Workshop



Lee, Berkeley 30

A Common Feature

None is mainstream in computing.
All are domain-specific.
Emphasis on concurrent composition with determinism:

Composability
Security
Robustness
Resource management
Evolvability

Compared with message passing schemas, such as 
PVM, MPI, OpenMP, these impose stricter interaction 
patterns that yield determinism in the face of 
concurrency.



Lee, Berkeley 31

Many of These and Other Concurrent 
Component Models are Actor Oriented

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through 
an object is 

streams of data

class name

data

methods

call return

What flows through 
an object is 

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen



Lee, Berkeley 32

The First (?) Actor-Oriented Platform
The On-Line Graphical Specification of Computer Procedures
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen

Partially constructed actor-oriented model with 
a class definition (top) and instance (below).

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother, 
Ivan Sutherland) to create the first actor-oriented 
programming framework.



Lee, Berkeley 33

Recall the Observer Pattern

“The Observer pattern defines a one-to-many 
dependency between a subject object and any 
number of observer objects so that when the 
subject object changes state, all its observer 
objects are notified and updated 
automatically.”



Lee, Berkeley 34

Observer Pattern using CSP-like 
Rendezvous

Each actor is a process, communication is via rendezvous, 
and the Merge explicitly represents nondeterministic multi-
way rendezvous.

The above diagram is an expression in a composition 
language with a visual syntax.



Lee, Berkeley 35

Now that we’ve made a trivial design pattern 
trivial, we can work on more interesting aspects 
of the design.

E.g., suppose we don’t care how long notification 
of the observer is deferred, as long as the 
observer is notified of all changes in the right 
order?



Lee, Berkeley 36

Observer Pattern using Process Networks 
[Kahn 1974] Extended with 
Nondeterministic Merge

Each actor is a process, communication is via 
streams, and the NondeterministicMerge
explicitly merges streams nondeterministically.



Lee, Berkeley 37

Suppose further that we want to explicitly specify 
the timing of producers?



Lee, Berkeley 38

Observer Pattern using Discrete Events

Messages have a (semantic) time, and actors react to 
messages chronologically. Merge now becomes 
deterministic.



Lee, Berkeley 39

Instead of a Program Being…

f : B∗∗ → B∗∗



Lee, Berkeley 40

… a Program Can Be

f : (T→ B∗)P → (T→ B∗)P

A computation is a function that maps an evolving pattern of 
bits into an evolving pattern of bits.

Composition of concurrent components becomes function 
composition, resulting in well-founded determinate 
computation (composability!)

For some partially ordered set T.



Lee, Berkeley 41

Challenges

Computation is deeply rooted in the sequential paradigm.
Threads appear to adhere to this paradigm, but throw out its essential 
attractiveness.

Programmers are reluctant to accept new syntax
Regrettably, syntax has a bigger effect on acceptance than semantics, 
as witnessed by the wide adoption of threads.

Only general purpose languages are interesting
A common litmus test: must be able to write the compiler for the
language in the language.



Lee, Berkeley 42

Opportunities

New syntaxes can be accepted when their purpose is orthogonal to
that of established languages.

Witness UML, a family of languages for describing object-oriented 
design, complementing C++ and Java.

Composition languages can provide capabilities orthogonal to those 
of established languages.

The syntax can be noticeably distinct (as in the diagrams shown 
before).

Patterns of composition can be codified
E.g.: MapReduce.



Lee, Berkeley 43

So What is the Future of 
Embedded Software?

I don’t know…

But I know what it should be:

Foundational architectures that combine 
software and models of physical dynamics with 
composition languages that have concurrency 
and time in a rigorous, composable, semantic 
framework.

THREADS



Lee, Berkeley 44

Conclusion

Many innovations in computation lose timing predictability.
If timing predictability is important, many things have to change.

Threads are the dominant concurrency model for programmers.
Threads discard the most essential features of programs.
Threads are incomprehensible to humans.
Threads ≠ concurrency.

Deterministic aims should be achieved with deterministic means.
Nondeterminism should be used judiciously and explicitly.

Actor orientation offers alternative component models.
Composition languages can realize actor models.
There are opportunities for language design.


	The Future of �Embedded Software
	Why Embedded Software?�Why Now?
	The Key Obstacle to Progress:�Gap Between Systems and Computing
	The Next Systems Theory:�Simultaneously Physical and Computational
	Obstacles in Today’s Technology:�Consider Real Time
	Computation in the 20th Century
	A Few 20th Century Innovations that Rely on Time Being Irrelevant
	Some Approaches Addressing�Timeliness in Software
	Obstacles in Today’s Technology:�Consider Concurrency
	Most Concurrent Software is Built�Using Threads
	Consider a Simple Example
	Example: Observer Pattern in Java
	Example: Observer Pattern�With Mutual Exclusion (Mutexes)
	Mutexes using Monitors are Minefields
	Simple Observer Pattern Becomes�Not So Simple
	Simple Observer Pattern:�How to Make It Right?
	Such Problems can Linger Undetected in Code for a Very Long Time: Another Typical Story
	What it Feels Like to Use the synchronized Keyword in Java
	Families of Possible Solutions
	A stake in the ground…
	Succinct Problem Statement
	Improve Threads?�Or Replace Them?
	Threads are Not the Only Possibility:�1st example: Hardware Description Languages
	Threads are Not the Only Possibility:�2nd example: Sensor Network Languages
	Threads are Not the Only Possibility:�3rd example: Network Languages
	Threads are Not the Only Possibility:�4th example: Synchronous Languages
	Threads are Not the Only Possibility:�5th example: Instrumentation Languages
	Threads are Not the Only Possibility:�6th example: Continuous-Time Languages 
	A Common Feature
	Many of These and Other Concurrent Component Models are Actor Oriented
	The First (?) Actor-Oriented Platform�The On-Line Graphical Specification of Computer Procedures�W. R. Sutherland, Ph.D. Thesi
	Recall the Observer Pattern
	Observer Pattern using CSP-like Rendezvous
	Observer Pattern using Process Networks [Kahn 1974] Extended with Nondeterministic Merge
	Observer Pattern using Discrete Events
	Instead of a Program Being…
	… a Program Can Be
	Challenges
	Opportunities
	So What is the Future of �Embedded Software?
	Conclusion

