Statistics in Control

Anil Aswani UC Berkeley

Berkeley Retrofitted and Inexpensive HVAC Testbed for Energy Efficiency (BRITE)

- Partially engineered living laboratory
 - 640 sq. ft. computer space
 - Networked thermostat
 - Newton's law of cooling with complex heating load from occupant behavior

(Aswani, et al., Proc. IEEE, 2011); (Aswani, et al., submitted, 2011)

Partially Engineered Systems

Energy-efficient building automation

(Aswani, et al., Proc. IEEE, 2011)

Semi-autonomous systems (Aswani, et al., submitted, 2011)

Biology and cancer (Aswani, et al., BMC Bioinformatics, 2010)

Control Paradigms

Model Based

- Theoretical guarantees
 - Safety and stability
 - Robustness

Learning Based

- High Performance
 - Adaptation
 - Emergent behavior

Learning + Model Based

- Theoretical guarantees from model
- High performance from learning

Model Predictive Control (MPC)

Three elements

Element	Example: BRITE
Finite horizon cost	Energy usage and temperature variation
Model	Newton's law of cooling
Constraints	Room temperature Equipment on-time

Optimization solved at each time step

$$u_m^* = \arg\min x'_{m+N} P x_{m+N} + \sum_{k=0}^{N-1} \left(x'_{m+k} Q x_{m+k} + u'_{m+k} R u_{m+k} \right)$$

s.t. $x_{m+k} \in \mathcal{X}; \ x_{m+N} \in \mathcal{X}_N$
 $u_{m+k} \in \mathcal{U}$
 $x_{n+1} = A x_n + B u_n$

(Mayne, et al., 2000); (Borelli, et al., 2009); (Aswani, et al., 2011)

Solution of MPC

Element	
Non-linear feedback	Minimizer of optimization
Value function	Convex for linear problems
Enlarged feasible set	$\mathcal{X}_F = \{x : \exists u^*\}$

(Mayne, et al., 2000); (Borelli, et al., 2009)

Modeling for Efficient HVAC

- Physics given by Newton's law of cooling
- Difficult to model heating load
 - Time-varying nature
 - Lack of direct data

(Aswani, et al., Proc. IEEE, 2011)

Control Paradigms

Model Based

- Theoretical guarantees
 - Safety and stability
 - Robustness

Learning Based

- High Performance
 - Adaptation
 - Emergent behavior

Learning + Model Based

- Theoretical guarantees from model
- High performance from learning

Identification of System Model

- Model: $x_{n+1} = f(x_n, u_n) + x_n$
- **Data:** $\xi_n = x_n + \epsilon; \quad \mathbb{E}(\epsilon) = 0; \operatorname{var}(\epsilon) = \sigma^2$

Regression is ill-posed when

a) Measured data is collinear

- b) Manifold relationship between input variables
- Can using b) improve identification of illposed regression models?

Piecewise Linear Models

Exploratory modeling for nonlinear systems

Piecewise Linear Models

- Exploratory modeling for nonlinear systems
- Indentify local linear models

Piecewise Linear Models

- Exploratory modeling for nonlinear systems
- Indentify local linear models
- Combine local models to cover space

Manifold Regularization

- For each local model
 - Input variables form plane
 - Outputs linear with respect to inputs
- With differential geometric view
 - Manifold described by cotangent space about a point
 - Exterior derivative
 - Best linear approximation of function
 - Spans cotangent space

Manifold Regularization

- Idea: Exploit differential geometric structure
 - 1) Locally estimate cotangent space
 - Compute local covariance matrix: $\hat{C}_p = X'_p W_p X_p$
 - Take first $d\ {\rm principal\ components}$
 - 2) Estimate exterior derivative
 - Penalize deviation of estimate from manifold $\hat{df}_p = \arg\min \|W_p(Y - X_p\beta)\|_2^2 + \lambda \|\hat{\Pi}\beta\|_2^2$

Projection orthogonal to cotangent space

Local linear regression

(Aswani, et. al, Annals of Statistics, 2010)

Quadrotor Helicopter Testbed

- Partially engineered semi-autonomous system
 - Embedded processor onboard
 - Simple steady-state model
 - Complex physics in dynamic regimes

(Aswani, et al., ICRA, 2009); (Bouffard, et al., submitted, 2011)

Quadrotor Dataset

- Measurements
 - Position-velocity
 - Angular orientation-velocity
- Online learning simulation
 - Build piecewise linear model with $\{x_i, u_i : 0 \le i \le n\}$
 - Predict position ten steps into future $\{\hat{x}_i^{\mathrm{pos}}: n+1 \leq i \leq n+10\}$
 - Compare prediction to actual data

$$\sqrt{1/10 \cdot \sum_{i=n+1}^{n+10} \|\hat{x}_i^{\text{pos}} - x_i^{\text{pos}}\|_2^2}$$

 Reduced error with manifold regularization

	Prediction Error		
Ordinary Least Squares	0.807	(3.26)	
Ridge Regression	0.165	(0.07)	
Elastic Net	0.166	(0.08)	
Partial Least Squares	0.194	(0.10)	
Principal Components Regression	0.174	(0.09)	
Exterior Derivative Estimator	0.156	(0.07)	

Averages and standard deviations over 100 steps of online learning

Augmentation of Learning

- Consequence: No learning orthogonal to cotangent space of manifold
- Stable control needs more structure
 - Apprenticeship learning uses expert human data
 - Possibility of new technique using physical model

Control Paradigms

Model Based

- Theoretical guarantees
 - Safety and stability
 - Robustness

Learning Based

- High Performance
 - Adaptation
 - Emergent behavior

Learning + Model Based

- Theoretical guarantees from model
- High performance from learning

Learning-based MPC (LBMPC)

- Insight: Performance and safety can be decoupled in MPC
- Idea: Maintain two models
 - First updated with learning
 - Second kept fixed
- Learning can be any statistical tool

Performance

- Cost function
- Learned model

Safety

- Constraints and uncertainty
- Original model
- (Aswani, et al., submitted, 2011); (Aswani, et al., Proc. IEEE, 2011)

Components of LBMPC

Five elements

Element	Example: BRITE
Finite horizon cost	Energy usage and temperature variation
Model	Newton's law of cooling
Constraints	Room temperature Equipment on-time
Uncertainty	Modeling error Heating load variation
Oracle (Learned model)	Learning of heating load

Constraints robustified by subtracting out effect of uncertainty

(Aswani, et al., submitted, 2011)

LBMPC Formulation

- At each time step
 - Optimization solved
 - Oracle updated

$$u_{m}^{*} = \arg \min J(\tilde{x}_{m+1}, \dots, \tilde{x}_{m+N}, u_{m}, \dots, u_{m+N-1})$$

s.t. $\tilde{x}_{n+1} = A\tilde{x}_{n} + Bu_{n} + \mathcal{O}_{m}(\tilde{x}_{n}, u_{n})$
 $x_{m+k} \in \mathcal{X} \ominus \mathcal{R}_{i}; x_{m+N} \in \mathcal{X}_{N} \ominus \mathcal{R}_{N}$
 $u_{m+k} = Kx_{m+k} + c_{m+k} \in \mathcal{U} \ominus K\mathcal{R}_{i}$
 $x_{n+1} = Ax_{n} + Bu_{n}$

(Aswani, et al., submitted, 2011)

LBMPC Formulation

- At each time step
 - Optimization solved
 - Oracle updated

 $\begin{array}{ll} \text{LBMPC} & \text{Performance} \\ u_m^* = \arg\min & J(\tilde{x}_{m+1}, \dots, \tilde{x}_{m+N}, u_m, \dots, u_{m+N-1}) \\ \text{s.t.} & \tilde{x}_{n+1} = A\tilde{x}_n + Bu_n + \mathcal{O}_m(\tilde{x}_n, u_n) \\ & x_{m+k} \in \mathcal{X} \ominus \mathcal{R}_i; x_{m+N} \in \mathcal{X}_N \ominus \mathcal{R}_N \\ & u_{m+k} = Kx_{m+k} + c_{m+k} \in \mathcal{U} \ominus K\mathcal{R}_i \\ & x_{n+1} = Ax_n + Bu_n \end{array}$

Safety

Solution of LBMPC

(Aswani, et al., submitted, 2011)

Theoretical Properties of LBMPC

- For bounded modeling error, LBMPC has
 - Deterministic stability
 - Control always computable
 - States remain bounded and in constraints
 - Deterministic robustness
 - Continuous value function
 - Input-to-state stable (ISS) to modeling error
- If system dynamics are sufficiently excited
 - Control law of LBMPC stochastically converges to control law of MPC that knows the true model

Partially Engineered Systems

Energy-efficient building automation

(Aswani, et al., Proc. IEEE, 2011)

Semi-autonomous systems (Aswani, et al., submitted, 2011)

Biology and cancer (Aswani, et al., BMC Bioinformatics, 2010) ₂₅

Quadrotor Helicopter

- Linear model
 - Physics for structure
 - Experimental coefficients
- Physics improve statistics
 - Fewer parameters
 - Less noise

(Aswani, et al., submitted, 2011); (Bouffard, et al., submitted, 2011)

Quadrotor Helicopter

- Linear model
 - Physics for structure
 - Experimental coefficients
- Physics improve statistics
 - Fewer parameters
 - Less noise

(Aswani, et al., submitted, 2011); (Bouffard, et al., submitted, 2011)

Quadrotor Helicopter

- Linear model
 - Physics for structure
 - Experimental coefficients
- Physics improve statistics
 - Fewer parameters
 - Less noise

(Aswani, et al., submitted, 2011); (Bouffard, et al., submitted, 2011)

Quadrotor Experiments

- Implementation with this structure
 - Oracle and state estimation
 - Dual Extended Kalman filter (EKF)
 - LBMPC is quadratic program (QP)
 - Solved using LSSOL solver

Experiments

- Learning physical effect
- Improved performance
- Robustness under mislearning
- High-precision task

Luenberger Observer $\hat{x}_{n+1} = (A+F)\hat{x}_n + (B+H)u_n$ $+(k+z)+\hat{K}\zeta_n$ $\zeta_n = y_n - C\hat{x}_n$ $L_n = P'_{2,n} C' \Xi^{-1}$ $P_{2,n+1} = (A+F)P_{2,n} + M_n P_{3,n} - \hat{K}\Xi L'_n$ $P_{3,n+1} = P_{3,n} - L_n \Xi L'_n - \delta P_{3,n} P'_{3,n} + \Upsilon$ $M_n = \partial (F\hat{x}_n + Hu_n + z) / \partial \beta$ $\beta_{n+1} = \text{bound}(\beta_n + L_n\zeta_n)$ Extended Kalman Filter

Dual EKF

(Ljung, 1979); (Aswani, et al., submitted, 2011); (Bouffard, et al., submitted, 2011)

Berkeley Retrofitted and Inexpensive HVAC Testbed for Energy Efficiency (BRITE)

- Partially engineered living laboratory
 - 640 sq. ft. computer space
 - Networked thermostat
 - Newton's law of cooling with complex heating load from occupant behavior

(Aswani, et al., Proc. IEEE, 2011); (Aswani, et al., submitted, 2011)

Challenges in Efficient HVAC

Existing control overcools (or overheats)

Minutes

(Aswani, et al., Proc. IEEE, 2011)

Temperature Modeling

- Semi-parametric regression modeling
 - Parametric: Newton's law of cooling
 - Nonparametric: Heating load

 $T_{n+1} = AT_n + B_1u_n + B_2w_n + q_n$

 Novelty: Estimate heating load using only temperature measurements of thermostat

Energy Modeling

- Electrical home AC
 - Transient and steady state power
 - Power independent (on average) of outside

Energy estimates

E_{actual} = ∑_{k=0}^{N-1} [0.925 ⋅ u_{m+k} + 0.015 ⋅ 1(u_{m+k} > 0)] kWh

Convex relaxation using L1 norm

$$E_{\text{convex}} = \sum_{k=0}^{N-1} (0.925 + 0.015) \cdot u_{m+k} \text{ kWh}$$

(Aswani, et al., Proc. IEEE, 2011)

Experiments on BRITE

- Compare controllers under identical conditions using simulations and experiments
- LBMPC provides 30-70% energy savings

Experiment	Method	Switches	Energy	Tracking Error	Temperature Variation	Average External Load
Thermostat Controller	LBMPC	94	23.6 kWh	0.75 °C	0.13 °C	11.0 °C
	MPC	96	30.5 kWh	0.62 °C	0.30 °C	11.0 °C
	Thermostat	71	32.6 kWh	0.61 °C	0.20 °C	11.0 °C
LBMPC Controller	LBMPC	81	11.8 kWh	0.86 °C	0.17 °C	8.7 °C
	MPC	70	8.6 kWh	0.93 °C	0.21 °C	8.7 °C
	Thermostat	38	34.5 kWh	0.55 °C	0.19 °C	8.7 °C

(Aswani, et al., Proc. IEEE, 2011)

Experimental Measurements

(Aswani, et al., Proc. IEEE, 2011)

Acknowledgements

- Claire Tomlin
- S. Shankar Sastry
- Peter Bickel
- David Culler
- Mark Biggin
- Jay Taneja
- Humberto Gonzalez
- Neal Master
- Patrick Bouffard
- Andrew Krioukov
- Virginia Smith

- NSF CNS-0931843
- NSF CCR-0225610
- ONR SMARTS MURI

Thank you

Any questions?