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Berkeley Retrofitted and Inexpensive HVAC "
Testbed for Energy Efficiency (BRITE)

•  Partially engineered living laboratory!
–  640 sq. ft. computer space!
– Networked thermostat!
– Newton’s law of cooling with complex heating load 

from occupant behavior!
2	  (Aswani, et al., Proc. IEEE, 2011); (Aswani, et al., submitted, 2011)



Partially Engineered Systems
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Energy-efficient building automation !
(Aswani, et al., Proc. IEEE, 2011)

Semi-autonomous systems!
(Aswani, et al., submitted, 2011)

Biology and cancer!
(Aswani, et al., BMC Bioinformatics, 2010)



Learning Based
•  High Performance!
•  Adaptation!
•  Emergent behavior!

	  

Control Paradigms

Model Based
•  Theoretical guarantees!
•  Safety and stability!
•  Robustness!

Learning + Model Based
•  Theoretical guarantees from model!
•  High performance from learning!
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Model Predictive Control (MPC)
•  Three elements!

•  Optimization solved at each time step !
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Element Example: BRITE

Finite horizon cost Energy usage and temperature 
variation

Model Newton’s law of cooling

Constraints Room temperature
Equipment on-time

(Mayne, et al., 2000); (Borelli, et al., 2009); (Aswani, et al., 2011)



Solution of MPC
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Rp

XN

X

Element

Non-linear feedback Minimizer of optimization

Value function Convex for linear problems

Enlarged feasible set


XF = {x : ∃u∗}

XF

(Mayne, et al., 2000); (Borelli, et al., 2009)



Modeling for Efficient HVAC

•  Physics given by Newton’s law of cooling!
•  Difficult to model heating load!
– Time-varying nature!
– Lack of direct data!
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Solar 
Heating

Occupants
Equipment

(Aswani, et al., Proc. IEEE, 2011)



Learning Based
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•  Adaptation!
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Control Paradigms

Model Based
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Identification of System Model
•  Model:!
•  Data:!

•  Regression is ill-posed when!
a)  Measured data is collinear!
b)  Manifold relationship between input variables!

•  Can using b) improve identification of ill-
posed regression models?
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xn+1 = f(xn, un) + xn

ξn = xn + �; E(�) = 0; var(�) = σ2

(Aswani, et. al, Annals of Statistics, 2010)



Piecewise Linear Models
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•  Exploratory modeling for nonlinear systems!
•  Indentify local linear models!
•  Combine local models to cover space!

Relationship 
between inputs

Ambient space of 
input variables 

(Aswani, et. al, Annals of Statistics, 2010)



Piecewise Linear Models

11	  

•  Exploratory modeling for nonlinear systems!
•  Indentify local linear models!
•  Combine local models to cover space!

Local relationship 
between inputs

Relationship 
between inputs

Ambient space of 
input variables 

(Aswani, et. al, Annals of Statistics, 2010)



Piecewise Linear Models
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•  Exploratory modeling for nonlinear systems!
•  Indentify local linear models!
•  Combine local models to cover space!

Local relationship 
between inputs

Relationship 
between inputs

Ambient space of 
input variables 

(Aswani, et. al, Annals of Statistics, 2010)



Manifold Regularization
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•  For each local model!
–  Input variables form plane!
–  Outputs linear with respect to inputs!

•  With differential geometric view!
–  Manifold described by cotangent space about a point!
–  Exterior derivative !

•  Best linear approximation of function!
•  Spans cotangent space!

(Aswani, et. al, Annals of Statistics, 2010)
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Manifold Regularization
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•  Idea: Exploit differential geometric structure!
1)  Locally estimate cotangent space!
•  Compute local covariance matrix:!
•  Take first    principal components "!

2)  Estimate exterior derivative!
•  Penalize deviation of estimate from manifold!

(Aswani, et. al, Annals of Statistics, 2010)

d

Projection orthogonal 
to cotangent space

Local linear regression

Ĉp = X �
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2



Quadrotor Helicopter Testbed

•  Partially engineered semi-autonomous system!
– Embedded processor onboard!
– Simple steady-state model!
– Complex physics in dynamic regimes!

15	  (Aswani, et al., ICRA, 2009); (Bouffard, et al., submitted, 2011)



Quadrotor Dataset
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•  Measurements!
–  Position-velocity!
–  Angular orientation-velocity!

•  Online learning simulation!
–  Build piecewise linear model with!

–  Predict position ten steps into future!

–  Compare prediction to actual data!

•  Reduced error with manifold 
regularization!

Prediction Error

Ordinary Least 
Squares

  0.807 (3.26)

Ridge Regression   0.165   (0.07)

Elastic Net   0.166   (0.08)

Partial Least Squares 0.194 (0.10)

Principal Components 
Regression

  0.174   (0.09)

Exterior Derivative 
Estimator

  0.156   (0.07)

Averages and standard deviations
over 100 steps of online learning

(Aswani, et al., ICRA, 2009)

{xi, ui : 0 ≤ i ≤ n}

{x̂pos
i : n+ 1 ≤ i ≤ n+ 10}
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Augmentation of Learning
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•  Consequence: No learning orthogonal to 
cotangent space of manifold!

•  Stable control needs more structure!
– Apprenticeship learning uses expert human data!
– Possibility of new technique using physical model !

(Abbeel, et al., 2008); (Aswani, et al., Annals of Statistics, 2010)
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Learning-based MPC (LBMPC)
•  Insight: Performance and safety can be 

decoupled in MPC!
•  Idea: Maintain two models!
– First updated with learning!
– Second kept fixed!

•  Learning can be any statistical tool!
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Performance
•  Cost function!
•  Learned model!

Safety
•  Constraints and uncertainty!
•  Original model!

(Aswani, et al., submitted, 2011); (Aswani, et al., Proc. IEEE, 2011)



Components of LBMPC
•  Five elements!

•  Constraints robustified by subtracting out 
effect of uncertainty!
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Element Example: BRITE

Finite horizon cost Energy usage and temperature 
variation

Model Newton’s law of cooling

Constraints Room temperature
Equipment on-time

Uncertainty Modeling error
Heating load variation

Oracle (Learned 
model)

Learning of heating load

(Aswani, et al., submitted, 2011)



•  At each time step!
– Optimization solved!
– Oracle updated!

LBMPC Formulation
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u∗
m = argmin J(x̃m+1, . . . , x̃m+N , um, . . . , um+N−1)

s.t. x̃n+1 = Ax̃n +Bun +Om(x̃n, un)

xm+k ∈ X �Ri;xm+N ∈ XN �RN

um+k = Kxm+k + cm+k ∈ U �KRi

xn+1 = Axn +Bun

(Aswani, et al., submitted, 2011)



•  At each time step!
– Optimization solved!
– Oracle updated!

LBMPC Formulation
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Performance

Safety

LBMPC
u∗
m = argmin J(x̃m+1, . . . , x̃m+N , um, . . . , um+N−1)

s.t. x̃n+1 = Ax̃n +Bun +Om(x̃n, un)

xm+k ∈ X �Ri;xm+N ∈ XN �RN

um+k = Kxm+k + cm+k ∈ U �KRi

xn+1 = Axn +Bun

(Aswani, et al., submitted, 2011)



Solution of LBMPC
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Rp

XN

X

Rp

XN

X

Oracle

Nominal Model
(Aswani, et al., submitted, 2011)



Theoretical Properties of LBMPC
•  For bounded modeling error, LBMPC has!
– Deterministic stability!
•  Control always computable!
•  States remain bounded and in constraints!

– Deterministic robustness!
•  Continuous value function!
•  Input-to-state stable (ISS) to modeling error!

•  If system dynamics are sufficiently excited!
– Control law of LBMPC stochastically converges 

to control law of MPC that knows the true model!
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Partially Engineered Systems
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Energy-efficient building automation !
(Aswani, et al., Proc. IEEE, 2011)

Semi-autonomous systems!
(Aswani, et al., submitted, 2011)

Biology and cancer!
(Aswani, et al., BMC Bioinformatics, 2010)



Quadrotor Helicopter
•  Linear model!
–  Physics for structure!
–  Experimental coefficients!

•  Physics improve statistics!
–  Fewer parameters!
–  Less noise!
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xn+1 = Axn +Bun + d

A B d F H z

Om = Fxn +Hun + z

(Aswani, et al., submitted, 2011); (Bouffard, et al., submitted, 2011)
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(Aswani, et al., submitted, 2011); (Bouffard, et al., submitted, 2011)



Quadrotor Helicopter
•  Linear model!
–  Physics for structure!
–  Experimental coefficients!

•  Physics improve statistics!
–  Fewer parameters!
–  Less noise!
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xn+1 = Axn +Bun + d Om = Fxn +Hun + z

A B d F H z

(Aswani, et al., submitted, 2011); (Bouffard, et al., submitted, 2011)



Quadrotor Experiments
•  Implementation with this 

structure !
–  Oracle and state 

estimation!
•  Dual Extended Kalman 

filter (EKF)!
–  LBMPC is quadratic 

program (QP)!
•  Solved using LSSOL solver!

•  Experiments!
–  Learning physical effect!
–  Improved performance!
–  Robustness under mis-

learning!
–  High-precision task!

29	  (Ljung, 1979); (Aswani, et al., submitted, 2011); (Bouffard, et al., submitted, 2011)
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Berkeley Retrofitted and Inexpensive HVAC "
Testbed for Energy Efficiency (BRITE)

•  Partially engineered living laboratory!
–  640 sq. ft. computer space!
– Networked thermostat!
– Newton’s law of cooling with complex heating load 

from occupant behavior!
30	  (Aswani, et al., Proc. IEEE, 2011); (Aswani, et al., submitted, 2011)



Challenges in Efficient HVAC
Existing control overcools (or overheats)!

31	  
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AC on

AC off

Complex energy 
characteristics!

Time-varying 
heating load!

(Aswani, et al., Proc. IEEE, 2011)



Temperature Modeling
•  Semi-parametric regression modeling!
– Parametric: Newton’s law of cooling!
– Nonparametric: Heating load!

– Novelty: Estimate heating load using only 
temperature measurements of thermostat!

!
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Tn+1 = ATn +B1un +B2wn + qn
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(Aswani, et al., Proc. IEEE, 2011); (Aswani, et al., submitted, 2011)



Energy Modeling
•  Electrical home AC!
–  Transient and steady 

state power!
–  Power independent (on 

average) of outside!
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•  Energy estimates!

•  Convex relaxation using L1 norm!

(Aswani, et al., Proc. IEEE, 2011)



Experiments on BRITE 
•  Compare controllers under identical 

conditions using simulations and experiments!
•  LBMPC provides 30-70% energy savings!
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Experiment Method Switches Energy Tracking
Error

Temperature 
Variation



Average
External 

Load

Thermostat 
Controller

LBMPC 94 23.6 kWh	   0.75 °C 0.13 °C 11.0 °C

MPC 96 30.5 kWh	   0.62 °C 0.30 °C 11.0 °C

Thermostat 71 32.6 kWh	   0.61 °C 0.20 °C 11.0 °C

LBMPC 
Controller

LBMPC 81 11.8 kWh	   0.86 °C 0.17 °C 8.7 °C

MPC 70 8.6 kWh	   0.93 °C 0.21 °C 8.7 °C

Thermostat 38 34.5 kWh 0.55 °C 0.19 °C 8.7 °C

(Aswani, et al., Proc. IEEE, 2011)



Experimental Measurements
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LBMPC Experiment – 11.8 kWh

Thermostat Simulation – 34.5 kWh

LBMPC Simulation – 23.6 kWh

Thermostat Experiment – 32.6 kWh

LBMPC Controller Experiment !

Thermostat Controller Experiment!

(Aswani, et al., Proc. IEEE, 2011)
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Thank you

Any questions?!


