
Deploying formal in a simulation world

VIGYAN SINGHAL

OSKI TECHNOLOGY

Formal from different vantage points

2/2/20122

University Researcher
(4 yrs 1991-1995)

(UC Berkeley)

Goal: advance state-
of-the-art

EDA tool developer
(10 yrs 1995-2005)
(Cadence, Jasper)

Goal: build
competitive tools

Semiconductor tool user
(6 yrs 2005-2011)

(Oski)

Goal: optimize $ and
time-to-market

• Goal: advance state-of-the-art

• Areas of concern

• Temporal logics (CTL, CTL*, PLTL)

• Fairness and ω-automata

• Complexity

• Known: CTL Model checking linear time complexity (size of FSM)

• Proved: CTL model checking PSPACE-complete (size of design)

• Time to returns: almost infinite

• Anecdote: “model check a 9-state FSM at Motorola”

Formal in academia

2/2/20123

• Goal: build competitive tools

• Areas of concern

• Verilog/SystemVerilog parsing

• User interface and GUI

• Property synthesis: PSL and SVA

• Time to returns: 4-5 years

• Anecdote: “lost an eval at Intel because tool ran for 28 days”

Formal in EDA company

2/2/20124

• Goal: optimize $ and time-to-market

• Areas of concern

• Verification planning

• Metrics to measure progress, and when we are done

• Integrate simulation and formal planning and results

• Abstraction (and reductions) are key to making formal productive

• Time to returns: 3-6 months

• Anecdote: “how did you miss a bug on a formally verified block?”

Formal in semiconductor industry

2/2/20125

Types of post-silicon flaws

0%

10%

20%

30%

40%

50%

60%

2004

2007

2010

Wilson Research Group and Mentor Graphics
2010 Functional Verification Study. Used with permission.

R
es

po
ns

es

6

Verification is the still the largest problem

Verification market size (2009)*

Simulation
($401.8M)

Formal
($38.3M)

0

50

100

150

200

250

300

350

400

450

Gate-level RTL

M
ill

io
ns

Simulation Formal

$0.4M

• Gate-level formal (equivalence checking)
• Then (1993): Chrysalis; Now: Cadence (Verplex), Synopsys

• RTL formal (model checking)
• Then (1994): Averant, IBM; Now: Jasper, Mentor (0-In)

Source:
Gary Smith EDA,

October 2010

* excluding analog

Formal tool usage in industry

Formal
($38.3M)

Source: xkcd.com

• Around for 20 years

• Expectations has been set high

• Low efforts for constraints

• Tools run fast enough

• Expectations have been set low

• Only verify local assertions

• No End-to-End proofs

• Perception: low !/$

• Training and staffing

• Few places to learn formal
application

• Single user should not do both
formal and simulation

Tradeoffs in design flow

2/2/20129

Resources

32%

12%

14%

15%

35%

11%

13%

16%

0% 5% 10% 15% 20% 25% 30% 35% 40%

CREATING SUFFICIENT TESTS
TO VERIFY THE DESIGN

KNOWING MY VERIFICATION
COVERAGE

DEFINING APPROPRIATE
COVERAGE METRICS

MANAGING THE VERIFICATION
PROCESS 2007

2010

Wilson Research Group and Mentor Graphics
2010 Functional Verification Study, Used with permission.

• Verification management and coverage

Biggest challenges needing solutions

10

Achieving verification closure

Plan

Verify

Measure

Apply Abstractions for Verification Convergence

Integrate Formal and Simulation Coverage

Partition Verification between Formal and Simulation

Where to apply model checking

2/2/2012

“Control”, “Data Transport” designs

• Arbiters of many kinds

• Interrupt controller

• Power management unit

• Credit manager block

• Tag generator

• Schedulers

Multiple, concurrent streams

Hard to completely verify using simulation

“10 bugs per 1000 gates”

-Ted Scardamalia, IBM

• Bus bridge

• Memory Controller

• DMA controller

• Host bus interface

• Standard interfaces (PCI Express, USB)

• Clock disable unit

OSKI TECHNOLOGY CONFIDENTIAL12

“Data transform” designs
• Floating point unit

• Graphics shading unit

• Inverse quantization

• Convolution unit in a DSP chip

• MPEG decoder

• Classification search algorithm

• Instruction decode

Where not to apply model checking

2/2/2012

Single, sequential functional streams

“2 bugs per 1000 gates”

-Ted Scardamalia, IBM

OSKI TECHNOLOGY CONFIDENTIAL13

f(x) g(y) h(z)

2/2/201214

Simulation

Formal (MC)
MAC

AXI-AHB
BRIDGE

RF

DEC SCH EXEC

LSUINT ARM

MC

USB
C

BB
USB
PHY

GPIO I2CTIMR

Formal (SEC) DMAC

Formal (MC, SEC*) and simulation strengths

* SEC = Sequential Equivalence Checking (RTL vs C model)

How perfect does formal have to be?

2/2/201215

Graphic: MacGregor
Marketing• Not all bugs need to found/fixed

• Formal does not need to find the last bug

• Usually bounded proofs are good enough
(if bound is good enough!)

• Formal has to be more cost-effective than the alternative

Bug -fix cost rises exponentially

Block-level
design

Block-level
verification

Chip-level
verification

ECO
phase

Tapeout

Silicon
is back

$1M

$100k

$10k

$1k

$100

$10M

Verification manager’s dashboard

2/2/201217

Coverage tracking

Bug tracking

Runtime status

Design Under Test
(DUT)

A simulation testbench

Bus Functional Models (BFM)
(Input stimulus generator)

Checkers
(Scoreboard)

Coverage
(code and
functional)

Test
#1

Test
#2

Test
#N

. . .

Design Under Test
(DUT)

A formal testbench

Constraints

Checkers
(Scoreboard)

Coverage
(code and
functional)

Abstraction Models

Three Cs of Formal

• Checkers

• Constraints

• Complexity

• (using Abstraction Models)

• … and Coverage (to measure completeness of formal)

OSKI TECHNOLOGY CONFIDENTIAL20 2/2/2012

Traditional formal verification

• Usually based on Local Checkers:

1. RTL assertions

2. Interface assertions

• Useful for bug hunting

• Not for finding all/most bugs, or as
replacement for simulation effort

• For replacing simulation, need
End-to-End Checkers

• Run into complexity barrier

• For medium- or large-sized designs,
run into state space explosion

• Without Abstraction Models, cannot
scale complexity

OSKI TECHNOLOGY CONFIDENTIAL21 2/2/2012

MC

RTL assertions

AXI4
AVIP

DDR2
AVIP

Interface
assertions

End-to-End
Checker

Checkers (End -to-End)

• For End-to-End formal verification, less than 5% of Checker code is
SVA; rest is SV or Verilog

• (Synthesizable) Reference model is typically as big an effort as the RTL

22

Memory
Controller (MC)

RTL

D D R 2 i/f

A X I 4 i/f

MC Checker

FSM

FIFO

Counters

MC Reference Model

SVA Assertions

Source of Complexity

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case(st)

2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

Checker: (st == 2’b01) => ~b

a
st[0]

st[1]

b

RTL
Internal Netlist

Internal STG

23 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

23 = 8
210 = 1,024
220 = 1,048,576
230 = 1,073,741,824

Irrelevant
Logic

Cone-of-
Influence

Design
Block

Checker

Complexity – function of Cone-of-Influence

• One coarse measure of Complexity

• number of flops/memory bits in the Cone-of-Influence of the Checker

OSKI TECHNOLOGY CONFIDENTIAL24 2/2/2012

State space complexity

25 OSKI TECHNOLOGY CONFIDENTIAL

R

3

1

1

2

1

1

2

2

3

8191

3

2

3

8191

81918191

255 255.

Abstractions (to manage complexity)

• An “Abstraction” of a design is a design that has a
superset of the design behavior

• Useful to overcome complexity barriers

• Smaller Cone-of-Influence

• Shallower search space

• Ability to skip long initialization sequences

• Cannot give a false positive

• Can give a false negative (Fail), but…

• You get a trace to determine the reason for the negative

26 OSKI TECHNOLOGY CONFIDENTIAL

Complexity (and Abstractions)

27 OSKI TECHNOLOGY CONFIDENTIAL

R

2

1

1

2

1

1

3

2

2

255. . .

R

• Effect of abstractions:

• Reduces state space

• Adds state transitions

• Adds Reset states

Overcoming complexity with Abstractions

2/2/201228

DESIGN SIZE

Without Abstractions

With Abstractions

Realistic design sizes

R
U

N
T

IM
E

OSKI TECHNOLOGY CONFIDENTIAL

Examples of Abstractions

• Allow DUT to reset to a deep state

• BANKS_IDLE state for a memory controllers (skips thousands of
clocks of initialization)

• Replace memory by a memory model tracking a specific Byte of
a specific Beat of a specific Transaction

• 13th transaction, 243rd beat, 1st Byte

• Replace a Tag Generator by an abstract model

• Reduce sequential depth by tracking specific value

• Example in the next few slides…

29 OSKI TECHNOLOGY CONFIDENTIAL

Example: PCIe Transaction Layer

Rx
Decoder

Tx Flow
Control

Rx
Buffer

Tx
Buffer

Tx DRR
Scheduler

Rx Flow
Control

Conf
Space

Tx Steer
Arbitration

• 128-bit datapath

• 8 VCs

• History, policy-dependent DRR
scheduler

30 OSKI TECHNOLOGY CONFIDENTIAL

• Conf responses arbitrated with
TLPs and FC DLLPs

• Tx, Rx Buffers can store multiple
TLPs (upto 32kb each)

2/2/2012

Abstraction for Tag Allocator

• Pick an arbitrary, but fixed tag: e.g. tag #79

• Replace Tag Allocator by a two-state Abstraction:

• HAS_79 (H): models that Tag_Allocator has tag #79

• DOESNOT_HAVE_79 (D): Tag Allocator does not have #79

31 OSKI TECHNOLOGY CONFIDENTIAL

Tag linked
list

33 79 12 9 …

request_0

request_7

tag_return_0

tag_return_7

grant/tag_out0

grant/tag_out7

refresh_all

cpu_rm/tag

empty

Tag Allocator

A. Use Tag Allocator Abstraction (DUT = Design with abstracted TA)

• Add constraints

1. (state == H) |-> (!empty);

2. (state == D) |-> (tag_out != 79);

• Add assertions:

1. (state == H) |-> (tag_return != 79);

2. (state == D) |-> Tag #79 is eventually returned

B. Prove Tag Allocator Abstraction (DUT = Tag Allocator RTL)

• Reverse constraints and assertions (e.g. prove no tags leak)

• Can be a sequentially long, but on a tiny DUT
32 OSKI TECHNOLOGY CONFIDENTIAL

Abstraction for Tag Allocator

H D
(!grant) ||

(tag_out != 79)

grant && (tag_out == 79)

(tag_return == 79)

(tag_return != 79)

Abstraction Model

• Other example of Abstraction Models:

• Localization

• Datapath

• Memory

• Sequence

• Counter

• Floating pulse

• Without Abstraction Models:

• On most interesting designs, formal tools do not search far enough

33 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Verification closure with formal
and simulation

OSKI TECHNOLOGY, INC.

Unique Methodology. Highest Coverage. Fastest Time to Market.

1. reg p;
2. always @(*) begin
3. if (a || (b && c))
4. p = d;
5. else
6. p = e;
7. end

Coverage on RTL designs

a

RTL (Verilog)

Gate-level
netlist

35 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

1. reg w, p;
2. always @(*) begin
3. w = a || (b && c);
4. end
5. always @ (*) begin
6. p = (w && d) || ((!w) && e);
7. end

Equivalent RTL

b

d

c

e
p

Synthesis

1. reg p;
2. always @(*) begin
3. if (a || (b && c))
4. p = d;
5. else
6. p = e;
7. end

Input Coverage: line/expression coverage

2/2/2012

a b c p

0 0 0 e

0 0 1 e

0 1 0 e

0 1 1 d

1 0 0 d

1 0 1 d

1 1 0 d

1 1 1 d

a b c p

0 0 0 e

0 0 1 e

0 1 0 e

0 1 1 d

1 0 0 d

1 0 1 d

1 1 0 d

1 1 1 d

target #1

target #2

#1

#2

#3

#4

Line
coverage

Expression
coverage

STG coverage vs code coverage

00,0

01,000,1

01
1

0

1

0

10,0

0

10,1

1

0

1

11,1

11,0 01,1

37 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case(st)

2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

Simulation coverage (a = 0)

00,0

01,000,1

01
1

0

1

0

10,0

0

10,1

1

0

1

11,1

11,0 01,1

38 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case(st)

2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

Coverage-driven simulation methodology

BFMs

RTL
Verification

Plan
Spec

Checker

Coverage
ModelTests

Coverage
Analysis

More tests

Constraint and bias refinement

TestsTests

2/2/201239 OSKI TECHNOLOGY CONFIDENTIAL

Waiver
List

Coverage for hardware designs

• Trivial to get to 60-70% code coverage

• 100% line/expression coverage often required for tapeouts

• Manual waivers are allowed

• NVIDIA SNUG 2011 paper

• 270 man weeks to do waiver analysis for one design

• 180 man weeks to write missing tests

40 OSKI TECHNOLOGY CONFIDENTIAL

Coverage closure phases

Setup Test

Writing
Coverage

Remodeling
Large holes Small holes

55%

63% 70%
81%

87%

Functional coverage

targets

2/2/201241 OSKI TECHNOLOGY CONFIDENTIAL

Coverage database collection

Testlist
#1

2/2/201242 OSKI TECHNOLOGY CONFIDENTIAL

AXI
BFM

PCIe
BFM

Transaction
Layer

Data Link
Layer

Physical
Layer

AXI-PCIe bridge checker

Coverage CoverageCoverage

Coverage
DB #1

AXI
BFM

PCIe
BFM

Transaction
Layer

Data Link
Layer

Physical
Layer

AXI-PCIe bridge checker

Coverage CoverageCoverage

Testlist
#2

+
Coverage

DB #1
Coverage

DB #2

2/2/201243 OSKI TECHNOLOGY CONFIDENTIAL

Coverage database collection

Coverage is not the be-all and end -all

2/2/201244

“The perfect is the enemy of good”

-Voltaire (1772)

• Coverage is not perfect

• Bugs are missed even with 100%
coverage

• But…

• Helps measure progress

• Helps identify blind-spots

• “Have I verified enough input sequences” (Input

coverage)

• “Is my set of checkers complete enough” (Observable

coverage)

• Same two notions apply for both simulation AND formal

• Bounded model checking (BMC) is the most used formal

technique

Input vs Observable coverage

2/2/201245 OSKI TECHNOLOGY CONFIDENTIAL

NOTE Formal does not verify all possible input sequences

Coverage reporting

OSKI TECHNOLOGY CONFIDENTIAL46

Coverage reporting

OSKI TECHNOLOGY CONFIDENTIAL47

Is my formal complete?

• Are my Checkers complete?

• Are my Constraints complete?

• Is my Complexity strategy complete?

48 OSKI TECHNOLOGY CONFIDENTIAL

Formal coverage (depth = 1)

00,0

01,000,1

01
1

0

1

0

10,0

0

10,1

1

0

1

11,1

11,0 01,1

49 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case(st)

2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

Input Coverage for formal

• Constraints: Environment may be over-constrained

• Intentional: avoided some hard to model or verify input
combinations

• Unintentional: bugs in constraints; forgot to remove intentional
over-constraints

• Complexity: All checkers are verified up to proof depth N

• Any target, not reachable in N clocks, is not covered

• Checkers: does not verify completeness of Checkers

• No different than simulation!
50 OSKI TECHNOLOGY CONFIDENTIAL

AXI
BFM

PCIe
BFM

Transaction
Layer

Data Link
Layer

Physical
Layer

AXI-PCIe bridge checker

Coverage CoverageCoverage

Testlist
#2

+
Coverage

DB #1
Coverage

DB #2

2/2/201251 OSKI TECHNOLOGY CONFIDENTIAL

Coverage database collection

AXI
constraints

TL
constraints

Transaction
Layer

AXI
asserts

Coverage

internal
asserts

End-to-end
checkers

Formal
Coverage

DB
Coverage

DB #1 + +
Coverage

DB #2

Formal coverage integrated with simulation

2/2/201252 OSKI TECHNOLOGY CONFIDENTIAL

Formal code coverage methodology

Implement Checkers
and Constraints

Run formal verification
and collect Coverage

Are
Coverage goals

met?

Add Abstractions
and/or fix Constraints

Design is formally
verified

53 OSKI TECHNOLOGY CONFIDENTIAL

Observable Coverage (using mutations)

54 OSKI TECHNOLOGY CONFIDENTIAL

1. reg p;
2. always @(*) begin
3. if (a || (b && c))
4. p = d;
5. else
6. p = e;
7. end

1. reg p;
2. always @(*) begin
3. if (a || (b && c))
4. p = 1’bX;
5. else
6. p = e;
7. end

1. reg p;
2. always @(*) begin
3. if (a || (b && c))
4. p = d;
5. else
6. p = 1’bX;
7. end

Mutant for line#4 Mutant for line#6

Observable Coverage for formal

55 OSKI TECHNOLOGY CONFIDENTIAL

1. reg p;
2. always @(*) begin
3. if (a || (b && c))
4. p = d;
5. else
6. p = e;
7. end

1. reg p;
2. always @(*) begin
3. if (a || (b && c))
4. p = <primary_input>
5. else
6. p = e;
7. end

1. reg p;
2. always @(*) begin
3. if (a || (b && c))
4. p = d;
5. else
6. p = <primary_input>
7. end

Mutant for line#4 Mutant for line#6

• Formal Coverage must fit with Simulation Coverage

• Same metrics, same meaning

• Formal verification in practice:

• BMC is the primary workhorse of practical formal verification

• Checkers are complex Verilog, simple SVA

• Abstraction Models are key to increasing formal coverage

Conclusions

2/2/201256 OSKI TECHNOLOGY CONFIDENTIAL

• Adnan Aziz

• Sandesh Borgaonkar

• Richard Boulton

• Choon Chng

• Harry Foster

• Vineet Gupta

• Anton Lopatinsky

• Deepak Pant

• Philippa Slayton

• Shashidhar Thakur

Contact email: vigyan@oskitech.com

Thanks

2/2/201257

