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Formal from different vantage points

University Researcher
(4 yrs 1991-1995)
(UC Berkeley)

Goal: advance state-
of-the-art

Semiconductor tool user
(6 yrs 2005-2011)

(Oski) -

Goal: optimize $ and
time-to-market
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EDA tool developer
(10 yrs 1995-2005)
(Cadence, Jasper)

Goal: build
competitive tools
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Formal in academia Oalei

FTECHNDLDG@Y

 Goal: advance state-of-the-art

e Areas of concern
 Temporal logics (CTL, CTL*, PLTL)
e Fairness and w-automata
o Complexity
- Known: CTL Model checking linear time complexity (size of FSM)

- Proved: CTL model checking PSPACE-complete (size of design)

e Time to returns: almost infinite

 Anecdote: “model check a 9-state FSM at Motorola”
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Formal in EDA company Ol

FTECHNDLDG@Y

Goal: build competitive tools

 Areas of concern
* Verilog/SystemVerilog parsing
» User interface and GUI

* Property synthesis: PSL and SVA

Time to returns: 4-5 years

Anecdote: “lost an eval at Intel because tool ran for 28 days”
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Formal in semiconductor industry Oales

FTECHNDLDG@Y

« Goal: optimize $ and time-to-market

e Areas of concern
 Verification planning
e Metrics to measure progress, and when we are done
* |Integrate simulation and formal planning and results

» Abstraction (and reductions) are key to making formal productive
e Time to returns: 3-6 months

* Anecdote: “how did you miss a bug on a formally verified block?”
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Types of post-silicon flaws Ol

TECHNOLOGY

Verification is the still the largest problem
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10%

Wilson Research Group and Mentor Graphics
2010 Functional Verification Study. Used with permission.



Verification market size (2009)* Oalet

TECHNOLOGY
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Gate-level RTL Source:

Gary Smith EDA,

» Gate-level formal (equivalence checking) October 2010

 Then (1993): Chrysalis; Now: Cadence (Verplex), Synopsys

 RTL formal (model checking)
 Then (1994): Averant, IBM; Now: Jasper, Mentor (0-In)



Formal tool usage in industry

Around for 20 years

Expectations has been set high
« Low efforts for constraints

e Tools run fast enough
Expectations have been set low
* Only verify local assertions

* No End-to-End proofs
Perception: low !/$

Training and staffing

* Few places to learn formal
application

* Single user should not do both
formal and simulation

Oales

TECHNOLOGY
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Tradeoffs in design flow Ol
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Biggest challenges needing solutions 07/
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 Verification management and coverage

MANAGING THE VERIFICATION 16%
PROCESS 15% 2007

E 2010

DEFINING APPROPRIATE
COVERAGE METRICS

13%

14%

KNOWING MY VERIFICATION
COVERAGE

11%
12%

35%
320

0% 5% 10% 15% 20% 25% 30% 35% 40%

CREATING SUFFICIENT TESTS
TO VERIFY THE DESIGN

Wilson Research Group and Mentor Graphics
. 2010 Functional Verification Study, Used with permission.



Achieving verification closure Ol
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Partition Verification between Formal and Simulation

Apply Abstractions for Verification Convergence

Measure

Integrate Formal and Simulation Coverage




Where to apply model checking Ol

TECHNOLOGY

“Control”, “Data Transport” designs

« Arbiters of many kinds * Bus bridge

« Interrupt controller * Memory Controller
« DMA controller

* Host bus interface
« Standard interfaces (PCI Express, USB)
* Clock disable unit

* Power management unit
* Credit manager block

* Tag generator

e Schedulers

Multiple, concurrent streams
=== = p===== > Hard to completely verify using simulation
D N 4
7 .
—_— —> “10 bugs per 1000 gates”

-Ted Scardamalia, IBM
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Where not to apply model checking

“Data transform” designs

13

Floating point unit

Graphics shading unit

Inverse quantization
Convolution unit in a DSP chip
MPEG decoder

Classification search algorithm
Instruction decode

P 1

ryyi
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Single, sequential functional streams
“2 bugs per 1000 gates”
-Ted Scardamalia, IBM
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Formal (MC, SEC*) and simulation strengths ~ O#&<&

EEEEEEEEEE

* SEC = Sequential Equivalence Checking (RTL vs C model)

LINT][LSU[  arm

——H MAC USB
C

MC DMAC AXI-AHB

USB BRIDGE
PHY
RF
| :

]
|GPIO| |T|MR|||2C|

Formal (MC)

Formal (SEC)

Simulation \
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How perfect does formal have to be? Okl

. Graphic: MacGregor
* Not all bugs need to found/fixed Marketing

 Formal does not need to find the last bug
e Usually bounded proofs are good enough
(if bound is good enough!)
 Formal has to be more cost-effective than the alternative
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Bug -fix cost rises exponentially OF7/
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Verification manager’s dashboard

Oales
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A simulation testbench Osbei
[Tift] [Tift] L

e ™\ { Bus Functional Models (BFM) J e N

(Input stimulus generator)
< T
Checkers [* Coverage
(Scoreboard) (code and
functional)
Design Under Test
(DUT)
1\ / N\ /




A formal testbench 927/54
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b $ %
Checkers [* Coverage
(Scoreboard) (code and
functional)
Design Under Test
(DUT)
1\ / N\ /

[ Abstraction Models ]




Three Cs of Formal 97/ %

TECHNOLOGY

Checkers

e Constraints
o Complexity

* (using Abstraction Models)

... and Coverage (to measure completeness of formal)
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Traditional formal verification 97/ %

TECHNOLOGY

Usually based on Local Checkers:
1. RTL assertions RTL assertions

2. Interface assertions

« Useful for bug hunting >
* Not for finding all/most bugs, or as !
replacement for simulation effort AXI4 | interface | DDR2
* For replacing simulation, need AVIP | assertions | AVIP

End-to-End Checkers

Run into complexity barrier End-to-End

Checker

* For medium- or large-sized designs,
run into state space explosion

* Without Abstraction Models, cannot
scale complexity

21 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012



Checkers (End -to-End) Oatl

TECHNOLOGY

 For End-to-End formal verification, less than 5% of Checker code is
SVA,; restis SV or Verilog

* (Synthesizable) Reference model is typically as big an effort as the RTL

N I O

AX 14 i

MC Checker

MC Reference Model

Memory FIFO
Controller (MC)
RTL

1

SVA Assertions

\ 4

DDR2if
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Source of Complexity

input a; RTL
reg b;

reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case( st)
2'b00: if (~a) st <= 2'b01;
2'b01: st<=2bl0;
2'b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <=1'b0;
else if (~a | b) b <= 1'b0O;
else b <=1'b1;

Checker: (st==2’b01) => ~b

23 OSKI TECHNOLOGY CONFIDENTIAL
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/\ Internal Netlist

% st[0]

=D Sst[1]

Internal STG

23=8
210 =1,024

220 =1,048,576
230=1,073,741,824
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Complexity — function of Cone-of-Influence F7/%4

TECHNOLOGY

* One coarse measure of Complexity

* number of flops/memory bits in the Cone-of-Influence of the Checker

Design
Block
— O ]
L] Checker
Cone-of- S
Influence L]
—> [ H
Irrelevant
Logic
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State space complexity Ol
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N e

.
. .
. .
.
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Abstractions (to manage complexity) Oales

HHHHHHHHHH

An “Abstraction” of a design is a design that has a
superset of the design behavior

Useful to overcome complexity barriers
« Smaller Cone-of-Influence
« Shallower search space

 Ability to skip long initialization sequences

Cannot give a false positive

e Can give a false negative (Fail), but...

* You get a trace to determine the reason for the negative
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Complexity (and Abstractions) Oall

o Effect of abstractions:
* Reduces state space
 Adds state transitions

 Adds Reset states
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Overcoming complexity with Abstractions Oales
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Without Abstractions
Realistic design sizes

RUNTIME

With Abstractions

DESIGN SIZE
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Examples of Abstractions 0F7/%4

FTECHNDLDG@Y

« Allow DUT to reset to a deep state

« BANKS_IDLE state for a memory controllers (skips thousands of
clocks of initialization)

* Replace memory by a memory model tracking a specific Byte of
a specific Beat of a specific Transaction

« 13t transaction, 243" beat, 15t Byte

* Replace a Tag Generator by an abstract model
* Reduce sequential depth by tracking specific value

« Example in the next few slides...

29 OSKI TECHNOLOGY CONFIDENTIAL



Example: PCle Transaction Layer Oales

TECHNOLOGY

Tx Steer
Arbitration

Rx Flow §
Control |

Tx DRR

Scheduler
= Control Ry
T Decoder g Buffer
e 128-bit datapath « Conf responses arbitrated with

. 8VCs TLPs and FC DLLPs

d H'itoéy’l policy-dependent DRR Tx, Rx Buffers can store multiple
scheduer TLPs (upto 32kb each)

30 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012



Abstraction for Tag Allocator Ol
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request 0 ee——p Tag Allocator G tag_return_0
[ J ([ J
[ J ([ J
o { ]
request 7 e G tag return_7
EMPLY G ——
grant/tag_outl ]
° 33 79 12 9 .. | Gu— refresh_all
[ J
o Tag linked @ CDU_rm/tag
grant/tag_out7 Qmmm—| list

* Pick an arbitrary, but fixed tag: e.g. tag #79

* Replace Tag Allocator by a two-state Abstraction:
« HAS_ 79 (H): models that Tag_Allocator has tag #79
« DOESNOT_HAVE_79 (D): Tag Allocator does not have #79

Si OSKI TECHNOLOGY CONFIDENTIAL



Abstraction for Tag Allocator Ol

TECHNOLOGY

(tag_return == 79)

m m (tag_return != 79)

grant && (tag out == 79)
A. Use Tag Allocator Abstraction (DUT = Design with abstracted TA)

(!grant) ||
(tag_out != 79)

e Add constraints
1. (state == H) |-> (lempty);
2. (state ==D) |-> (tag_out != 79);
* Add assertions:
1. (state == H) |-> (tag_return != 79);

2. (state == D) |-> Tag #79 is eventually returned

B. Prove Tag Allocator Abstraction (DUT = Tag Allocator RTL)
* Reverse constraints and assertions (e.g. prove no tags leak)

e Can be a sequentially long, but on a tiny DUT
32 OSKI TECHNOLOGY CONFIDENTIAL



Abstraction Model Ol
* Other example of Abstraction Models:

 Localization

« Datapath

« Memory

* Sequence

« Counter

* Floating pulse

e Without Abstraction Models:

* On most interesting designs, formal tools do not search far enough
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Verification closure with formal
and simulation

OSKI TECHNOLOGY, INC.

Unigue Methodology. Highest Coverage. Fastest Time to Market.
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Coverage on RTL designs

RTL (Verilog)

1. reg p;

2. always @(*) begin

3. if (a || (b && c))
4, p = d;

5. else

6. p = e;

7. end

Equivalent RTL

1. reg w, p;

2. always @(*) begin

3. w=a || (b & ¢);

4. end

5. always @ (*) begin

6. p=(w&d) || (('w) & e);
7. end

S5

OSKI TECHNOLOGY CONFIDENTIAL
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Synthesis

b — \ Gate-level
c — J netlist
a
e

P
d

2/2/2012



Input Coverage: line/expression coverage

P O O O O

Line

coverage

r b O O Frr »r O O

b O B O r O L, O

O O o o o @ d O

) \

- réeg p;

p =d;
else

p = e;

NouuphwWNERER

. end

— target #1

. target #2

. always @(*) begin
if (a || (b & ¢))

EXxpression
coverage

P B P O O O O

b O O r B O O

b O »r O O B+, O

O O o O O ® d O
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#1

#H2
#3
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STG coverage vs code coverage Ol

TECHNOLOGY

input a;
reg b;
reg [1:0] st;

always @ (posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case( st)
2'b00: if (~a) st <= 2'b01;
2'b01: st <=2bl0;
2'b10: if (a) st <= 2'b00;
endcase

always @ (posedge clk or negedge rst)
if (~rst) b <= 1'b0;
else if (~a | b) b <=1'b0;
else b <= 1'b1;

37 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012



Simulation coverage (a = 0)

input a;
reg b;
reg [1:0] st;

always @ (posedge clk or negedge rst)
if (~rst) st <= 2'b00;
else case( st)
2'b00: if (~a) st <=2'b01;
2'b01: st<=2bl0;
2'b10: if (a) st <=2'b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <=1'b0;
else if (~a|b) b <=1'b0O;
else b <= 1'b1;

38 OSKI TECHNOLOGY CONFIDENTIAL
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Coverage-driven simulation methodology Oali

Spec Verification
P Plan

Constraint and bias refinement { Bl

v

Checker

Waiver
List *
More tests

Coverage
Tests
} Model

)

Coverage
Analysis
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Coverage for hardware designs Ol
 Trivial to get to 60-70% code coverage

* 100% line/expression coverage often required for tapeouts
 Manual waivers are allowed

 NVIDIA SNUG 2011 paper

o 270 man weeks to do waiver analysis for one design

« 180 man weeks to write missing tests

40 OSKI TECHNOLOGY CONFIDENTIAL



Coverage closure phases Dbl

TECHNOLOGY

Functional coverage mPlanned mCovered
targets

1500 I

1400

1300

1200

1100

1000

900

800

700

600 T T T T T T
Jap-08 Feb-08 Mar-08 Apr-08 May-08 Jun-08 Jul-08

Test Coverage

Setu
P Writing | Remodeling

Large holes Small holes
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Coverage database collection 0F7/%4

TECHNOLOGY

Transaction Data Link Physical PCle
Layer Layer Layer BFM
-
L AXI-PCle bridge checker ]

\ 4

L Coverage J L Coverage J L Coverage J

S

Coverage
DB #1
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Coverage database collection 0F7/%4

TECHNOLOGY

AXI Transaction Data Link Physical PCle
BFM Layer Layer Layer BFM

- ~

AXI-PCle bridge checker ]

\ 4

L Coverage J L Coverage J L Coverage J
 — ->
Coverage Coverage

DB#1 [l DB #2
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Coverage is not the be-all and end -all 9F7/%

GGGGGGGGGG

“The perfect is the enemy of good”
-Voltaire (1772)

« Coverage is not perfect

e Bugs are missed even with 100%
coverage

e But...

« Helps measure progress

* Helps identify blind-spots
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Input vs Observable coverage Ol

GGGGGGGGGG

« “Have I verified enough input sequences” (Input

coverage)

* “Is my set of checkers complete enough” (Observable

coverage)

o Same two notions apply for both simulation AND formal

* Bounded model checking (BMC) is the most used formal

technique

Formal does not verify all possible input sequences
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Coverage reporting Oales

FTECHNOLO@Y
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Coverage reporting Oales
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Is my formal complete? Okl

 Are my Checkers complete?
* Are my Constraints complete?

* Is my Complexity strategy complete?
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Formal coverage (depth = 1)

input a;
reg b;
reg [1:0] st;

always @ (posedge clk or negedge rst)
if (~rst) st <= 2'b00;
else case( st)
2'b00: if (~a) st <=2'b01;
2'b01: st<=2'bl0;
2'b10: if (a) st <=2'b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <=1'b0;
else if (~a|b) b <=1'b0O;
else b <= 1'b1;

49 OSKI TECHNOLOGY CONFIDENTIAL
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Input Coverage for formal Oales

FTECHNDLDG@Y

e Constraints: Environment may be over-constrained

 Intentional: avoided some hard to model or verify input
combinations

« Unintentional: bugs in constraints; forgot to remove intentional
over-constraints

« Complexity: All checkers are verified up to proof depth N

* Any target, not reachable in N clocks, is not covered

* Checkers: does not verify completeness of Checkers

* No different than simulation!
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Coverage database collection 0F7/%4

TECHNOLOGY

AXI Transaction Data Link Physical PCle
BFM Layer Layer Layer BFM

- ~

AXI-PCle bridge checker ]

\ 4

L Coverage J L Coverage J L Coverage J
 — ->
Coverage Coverage

DB#1 [l DB #2
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Formal coverage integrated with simulation F7/%4

AXI End-to-end
asserts checkers

;( internal ( b
L asserts
AXI |, Transaction ) TL
constraints Layer “lconstraints

~

\ 4

L Coverage

> Formal
CoveragegCoverage Coverage
DB#1 full DB #2 B DB
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Formal code coverage methodology Ol

TECHNOLOGY

Implement Checkers
and Constraints

Run formal verification
and collect Coverage

Add Abstractions
and/or fix Constraints

Are
Coverage goals
met?

Design is formally
verified
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Observable Coverage (using mutations) Oatl

1. reg p;
2

3.

4, p =
5. else
6. p =
7. end

. always @(*) begin
if (a || (b & ¢))

d;

€5

1. reg p;

2. always @(*) begin

3. if (a || (b && c))
4, p = 1°bX;

5. else

6. p = e;

7. end

54

Mutant for line#4
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TECHNOLOGY

1. reg p;

2. always @(*) begin

3. if (a || (b && c))
4, p = d;

5. else

6. p = 1°bX;

7. end

Mutant for line#6



Observable Coverage for formal

1. reg p;

2

3.

4, p =
5. else

6. p =
7. end

d;

€5

. always @(*) begin
if (a || (b & ¢))

1. reg p;

2. always @(*) begin

3. if (a || (b && c))

4, p = <primary_input>
5. else

6. p = e;

7. end

55

Mutant for line#4
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TECHNOLOGY

1. reg p;

2. always @(*) begin

3. if (a || (b && c))

4, p = d;

5. else

6. p = <primary_input>
7. end

Mutant for line#6



Conclusions Oalei

FTECHNDLDG@Y

 Formal Coverage must fit with Simulation Coverage

e Same metrics, same meaning

e Formal verification in practice:
« BMC is the primary workhorse of practical formal verification
e Checkers are complex Verilog, simple SVA

« Abstraction Models are key to increasing formal coverage
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Thanks

Contact email: vigyan@oskitech.com
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