Deploying formal in a simulation world

VIGYAN SINGHAL
OSKI TECHNOLOGY

075

smmmy TECHNOLOGY

Formal from different vantage points

University Researcher
(4 yrs 1991-1995)
(UC Berkeley)

Goal: advance state-
of-the-art

Semiconductor tool user
(6 yrs 2005-2011)

(Oski) -

Goal: optimize $ and
time-to-market

Ol

TECHNOLOGY

EDA tool developer
(10 yrs 1995-2005)
(Cadence, Jasper)

Goal: build
competitive tools

2/2/2012

Formal in academia Oalei

FTECHNDLDG@Y

 Goal: advance state-of-the-art

e Areas of concern
 Temporal logics (CTL, CTL*, PLTL)
e Fairness and w-automata
o Complexity
- Known: CTL Model checking linear time complexity (size of FSM)

- Proved: CTL model checking PSPACE-complete (size of design)

e Time to returns: almost infinite

 Anecdote: “model check a 9-state FSM at Motorola”

3 2/2/2012

Formal in EDA company Ol

FTECHNDLDG@Y

Goal: build competitive tools

 Areas of concern
* Verilog/SystemVerilog parsing
» User interface and GUI

* Property synthesis: PSL and SVA

Time to returns: 4-5 years

Anecdote: “lost an eval at Intel because tool ran for 28 days”

4 2/2/2012

Formal in semiconductor industry Oales

FTECHNDLDG@Y

« Goal: optimize $ and time-to-market

e Areas of concern
 Verification planning
e Metrics to measure progress, and when we are done
* |Integrate simulation and formal planning and results

» Abstraction (and reductions) are key to making formal productive
e Time to returns: 3-6 months

* Anecdote: “how did you miss a bug on a formally verified block?”

5 2/2/2012

Types of post-silicon flaws Ol

TECHNOLOGY

Verification is the still the largest problem

60%

50%

40%

30%

Responses

20%

10%

Wilson Research Group and Mentor Graphics
2010 Functional Verification Study. Used with permission.

Verification market size (2009)* Oalet

TECHNOLOGY

* excluding analog

. 450 m Simulation = Formal
< 400
= 350
300
250
200
150

100 $0.4M

v I
0

Gate-level RTL Source:

Gary Smith EDA,

» Gate-level formal (equivalence checking) October 2010

 Then (1993): Chrysalis; Now: Cadence (Verplex), Synopsys

 RTL formal (model checking)
 Then (1994): Averant, IBM; Now: Jasper, Mentor (0-In)

Formal tool usage in industry

Around for 20 years

Expectations has been set high
« Low efforts for constraints

e Tools run fast enough
Expectations have been set low
* Only verify local assertions

* No End-to-End proofs
Perception: low !/$

Training and staffing

* Few places to learn formal
application

* Single user should not do both
formal and simulation

Oales

TECHNOLOGY

T SHOULD |
COOK MORE! |
. MONTHS PASS
1 THROW AWAY |
REMAINING
BLY INGREDIENTS INGREDIENTS
| ASTHEYGO BAD
| PUT SOME
IN A PAN ”EEKsl s
THROW AWAY,
COOK LEFTOVERS
g
DAYS PASS
T TASTE HKINDA ‘ORDER; A
GOOD? HOURS PASS
PUT LEFTOVERS _J
IN FRIDGE.

Source: xkcd.com

Tradeoffs in design flow Ol

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

@
> %
@b %

N ®

9
Resources

g 2/2/2012

Biggest challenges needing solutions 07/

TECHNOLOGY

 Verification management and coverage

MANAGING THE VERIFICATION 16%
PROCESS 15% 2007

E 2010

DEFINING APPROPRIATE
COVERAGE METRICS

13%

14%

KNOWING MY VERIFICATION
COVERAGE

11%
12%

35%
320

0% 5% 10% 15% 20% 25% 30% 35% 40%

CREATING SUFFICIENT TESTS
TO VERIFY THE DESIGN

Wilson Research Group and Mentor Graphics
. 2010 Functional Verification Study, Used with permission.

Achieving verification closure Ol

TECHNOLOGY

Partition Verification between Formal and Simulation

Apply Abstractions for Verification Convergence

Measure

Integrate Formal and Simulation Coverage

Where to apply model checking Ol

TECHNOLOGY

“Control”, “Data Transport” designs

« Arbiters of many kinds * Bus bridge

« Interrupt controller * Memory Controller
« DMA controller

* Host bus interface
« Standard interfaces (PCI Express, USB)
* Clock disable unit

* Power management unit
* Credit manager block

* Tag generator

e Schedulers

Multiple, concurrent streams
=== = p===== > Hard to completely verify using simulation
D N 4
7 .
—_— —> “10 bugs per 1000 gates”

-Ted Scardamalia, IBM

12 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Where not to apply model checking

“Data transform” designs

13

Floating point unit

Graphics shading unit

Inverse quantization
Convolution unit in a DSP chip
MPEG decoder

Classification search algorithm
Instruction decode

P 1

ryyi

OSKI TECHNOLOGY CONFIDENTIAL

Ol

TECHNOLOGY

Single, sequential functional streams
“2 bugs per 1000 gates”
-Ted Scardamalia, IBM

2/2/2012

Formal (MC, SEC*) and simulation strengths ~ O#&<&

EEEEEEEEEE

* SEC = Sequential Equivalence Checking (RTL vs C model)

LINT][LSU[arm

——H MAC USB
C

MC DMAC AXI-AHB

USB BRIDGE
PHY
RF
| :

]
|GPIO| |T|MR|||2C|

Formal (MC)

Formal (SEC)

Simulation \

14 2/2/2012

How perfect does formal have to be? Okl

. Graphic: MacGregor
* Not all bugs need to found/fixed Marketing

 Formal does not need to find the last bug
e Usually bounded proofs are good enough
(if bound is good enough!)
 Formal has to be more cost-effective than the alternative

15 2/2/2012

Bug -fix cost rises exponentially OF7/

TECHNOLOGY

A
$1IOMT

$IMT
$100k 1~
$10k T

Sk

Tapeout

$100° 1 |/

.
1 1 1 1 f

Block-level Block-level Chip-level ECO -
. e Y. 4 Silicon
design verification verification phase < back

Verification manager’s dashboard

Oales

FTECHNOLO@Y
Coverage tracking
@ 100
»
T 90
3
2 =0
g Coverage
E 70 7 percentage
§ so0 -
(¥
T
o 50 . . T . .
5 9 13 17 21 25
Verification Schedule in Weeks
Bug tracking
90 a0
80 w80
% 70 _%" 70
o 60 = 60
5 50 ° 50
T 40 TB bugs 2 a0 Mew bugs
2 30 E 30
E >0 H RTL bugs é >0 H Open bugs
i : 5
0 T T T T -_'___ 0 T T T T T -_'___
5 9 13 17 21 1 5] 13 17 21 25
Verification Schedule in Weeks Verification Schedule in Weeks
Runtime status
«w 200
]
< 160
]
S
= 1207 Not Written
E =0 — m Fail
E 40 N Pass
=
o -
5] 13 17 21 25
Verification Schedule in Weeks
17 2/2/2012

A simulation testbench Osbei
[Tift] [Tift] L

e ™\ { Bus Functional Models (BFM) J e N

(Input stimulus generator)
< T
Checkers [* Coverage
(Scoreboard) (code and
functional)
Design Under Test
(DUT)
1\ / N\ /

A formal testbench 927/54

TECHNOLOGY

4 A { Constraints J 4 A
b $ %
Checkers [* Coverage
(Scoreboard) (code and
functional)
Design Under Test
(DUT)
1\ / N\ /

[Abstraction Models]

Three Cs of Formal 97/ %

TECHNOLOGY

Checkers

e Constraints
o Complexity

* (using Abstraction Models)

... and Coverage (to measure completeness of formal)

20 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Traditional formal verification 97/ %

TECHNOLOGY

Usually based on Local Checkers:
1. RTL assertions RTL assertions

2. Interface assertions

« Useful for bug hunting >
* Not for finding all/most bugs, or as !
replacement for simulation effort AXI4 | interface | DDR2
* For replacing simulation, need AVIP | assertions | AVIP

End-to-End Checkers

Run into complexity barrier End-to-End

Checker

* For medium- or large-sized designs,
run into state space explosion

* Without Abstraction Models, cannot
scale complexity

21 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Checkers (End -to-End) Oatl

TECHNOLOGY

 For End-to-End formal verification, less than 5% of Checker code is
SVA,; restis SV or Verilog

* (Synthesizable) Reference model is typically as big an effort as the RTL

N I O

AX 14 i

MC Checker

MC Reference Model

Memory FIFO
Controller (MC)
RTL

1

SVA Assertions

\ 4

DDR2if

22

Source of Complexity

input a; RTL
reg b;

reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case(st)
2'b00: if (~a) st <= 2'b01;
2'b01: st<=2bl0;
2'b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <=1'b0;
else if (~a | b) b <= 1'b0O;
else b <=1'b1;

Checker: (st==2’b01) => ~b

23 OSKI TECHNOLOGY CONFIDENTIAL

Oales

TECHNOLOGY

/\ Internal Netlist

% st[0]

=D Sst[1]

Internal STG

23=8
210 =1,024

220 =1,048,576
230=1,073,741,824

2/2/2012

Complexity — function of Cone-of-Influence F7/%4

TECHNOLOGY

* One coarse measure of Complexity

* number of flops/memory bits in the Cone-of-Influence of the Checker

Design
Block
— O]
L] Checker
Cone-of- S
Influence L]
—> [H
Irrelevant
Logic

24 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

State space complexity Ol

TECHNOLOGY

N e

.
. .
. .
.

25 OSKI TECHNOLOGY CONFIDENTIAL

Abstractions (to manage complexity) Oales

HHHHHHHHHH

An “Abstraction” of a design is a design that has a
superset of the design behavior

Useful to overcome complexity barriers
« Smaller Cone-of-Influence
« Shallower search space

 Ability to skip long initialization sequences

Cannot give a false positive

e Can give a false negative (Fail), but...

* You get a trace to determine the reason for the negative

26 OSKI TECHNOLOGY CONFIDENTIAL

Complexity (and Abstractions) Oall

o Effect of abstractions:
* Reduces state space
 Adds state transitions

 Adds Reset states

27 OSKI TECHNOLOGY CONFIDENTIAL

Overcoming complexity with Abstractions Oales

TECHNOLOGY

Without Abstractions
Realistic design sizes

RUNTIME

With Abstractions

DESIGN SIZE

28 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Examples of Abstractions 0F7/%4

FTECHNDLDG@Y

« Allow DUT to reset to a deep state

« BANKS_IDLE state for a memory controllers (skips thousands of
clocks of initialization)

* Replace memory by a memory model tracking a specific Byte of
a specific Beat of a specific Transaction

« 13t transaction, 243" beat, 15t Byte

* Replace a Tag Generator by an abstract model
* Reduce sequential depth by tracking specific value

« Example in the next few slides...

29 OSKI TECHNOLOGY CONFIDENTIAL

Example: PCle Transaction Layer Oales

TECHNOLOGY

Tx Steer
Arbitration

Rx Flow §
Control |

Tx DRR

Scheduler
= Control Ry
T Decoder g Buffer
e 128-bit datapath « Conf responses arbitrated with

. 8VCs TLPs and FC DLLPs

d H'itoéy’l policy-dependent DRR Tx, Rx Buffers can store multiple
scheduer TLPs (upto 32kb each)

30 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Abstraction for Tag Allocator Ol

TECHNOLOGY

request 0 ee——p Tag Allocator G tag_return_0
[J ([J
[J ([J
o {]
request 7 e G tag return_7
EMPLY G ——
grant/tag_outl]
° 33 79 12 9 .. | Gu— refresh_all
[J
o Tag linked @ CDU_rm/tag
grant/tag_out7 Qmmm—| list

* Pick an arbitrary, but fixed tag: e.g. tag #79

* Replace Tag Allocator by a two-state Abstraction:
« HAS_ 79 (H): models that Tag_Allocator has tag #79
« DOESNOT_HAVE_79 (D): Tag Allocator does not have #79

Si OSKI TECHNOLOGY CONFIDENTIAL

Abstraction for Tag Allocator Ol

TECHNOLOGY

(tag_return == 79)

m m (tag_return != 79)

grant && (tag out == 79)
A. Use Tag Allocator Abstraction (DUT = Design with abstracted TA)

(!grant) ||
(tag_out != 79)

e Add constraints
1. (state == H) |-> (lempty);
2. (state ==D) |-> (tag_out != 79);
* Add assertions:
1. (state == H) |-> (tag_return != 79);

2. (state == D) |-> Tag #79 is eventually returned

B. Prove Tag Allocator Abstraction (DUT = Tag Allocator RTL)
* Reverse constraints and assertions (e.g. prove no tags leak)

e Can be a sequentially long, but on a tiny DUT
32 OSKI TECHNOLOGY CONFIDENTIAL

Abstraction Model Ol
* Other example of Abstraction Models:

 Localization

« Datapath

« Memory

* Sequence

« Counter

* Floating pulse

e Without Abstraction Models:

* On most interesting designs, formal tools do not search far enough

33 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Verification closure with formal
and simulation

OSKI TECHNOLOGY, INC.

Unigue Methodology. Highest Coverage. Fastest Time to Market.

075

smmmy TECHNOLOGY

Coverage on RTL designs

RTL (Verilog)

1. reg p;

2. always @(*) begin

3. if (a || (b && c))
4, p = d;

5. else

6. p = e;

7. end

Equivalent RTL

1. reg w, p;

2. always @(*) begin

3. w=a || (b & ¢);

4. end

5. always @ (*) begin

6. p=(w&d) || (('w) & e);
7. end

S5

OSKI TECHNOLOGY CONFIDENTIAL

Oales

TECHNOLOGY

Synthesis

b — \ Gate-level
c — J netlist
a
e

P
d

2/2/2012

Input Coverage: line/expression coverage

P O O O O

Line

coverage

r b O O Frr »r O O

b O B O r O L, O

O O o o o @ d O

) \

- réeg p;

p =d;
else

p = e;

NouuphwWNERER

. end

— target #1

. target #2

. always @(*) begin
if (a || (b & ¢))

EXxpression
coverage

P B P O O O O

b O O r B O O

b O »r O O B+, O

O O o O O ® d O

Oales

TECHNOLOGY

#1

#H2
#3

— #4

2/2/2012

STG coverage vs code coverage Ol

TECHNOLOGY

input a;
reg b;
reg [1:0] st;

always @ (posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case(st)
2'b00: if (~a) st <= 2'b01;
2'b01: st <=2bl0;
2'b10: if (a) st <= 2'b00;
endcase

always @ (posedge clk or negedge rst)
if (~rst) b <= 1'b0;
else if (~a | b) b <=1'b0;
else b <= 1'b1;

37 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Simulation coverage (a = 0)

input a;
reg b;
reg [1:0] st;

always @ (posedge clk or negedge rst)
if (~rst) st <= 2'b00;
else case(st)
2'b00: if (~a) st <=2'b01;
2'b01: st<=2bl0;
2'b10: if (a) st <=2'b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <=1'b0;
else if (~a|b) b <=1'b0O;
else b <= 1'b1;

38 OSKI TECHNOLOGY CONFIDENTIAL

Ol

TECHNOLOGY

2/2/2012

Coverage-driven simulation methodology Oali

Spec Verification
P Plan

Constraint and bias refinement { Bl

v

Checker

Waiver
List *
More tests

Coverage
Tests
} Model

)

Coverage
Analysis

86 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Coverage for hardware designs Ol
 Trivial to get to 60-70% code coverage

* 100% line/expression coverage often required for tapeouts
 Manual waivers are allowed

 NVIDIA SNUG 2011 paper

o 270 man weeks to do waiver analysis for one design

« 180 man weeks to write missing tests

40 OSKI TECHNOLOGY CONFIDENTIAL

Coverage closure phases Dbl

TECHNOLOGY

Functional coverage mPlanned mCovered
targets

1500 I

1400

1300

1200

1100

1000

900

800

700

600 T T T T T T
Jap-08 Feb-08 Mar-08 Apr-08 May-08 Jun-08 Jul-08

Test Coverage

Setu
P Writing | Remodeling

Large holes Small holes

41 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Coverage database collection 0F7/%4

TECHNOLOGY

Transaction Data Link Physical PCle
Layer Layer Layer BFM
-
L AXI-PCle bridge checker]

\ 4

L Coverage J L Coverage J L Coverage J

S

Coverage
DB #1

42 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Coverage database collection 0F7/%4

TECHNOLOGY

AXI Transaction Data Link Physical PCle
BFM Layer Layer Layer BFM

- ~

AXI-PCle bridge checker]

\ 4

L Coverage J L Coverage J L Coverage J
 — ->
Coverage Coverage

DB#1 [l DB #2

43 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Coverage is not the be-all and end -all 9F7/%

GGGGGGGGGG

“The perfect is the enemy of good”
-Voltaire (1772)

« Coverage is not perfect

e Bugs are missed even with 100%
coverage

e But...

« Helps measure progress

* Helps identify blind-spots

44 2/2/2012

Input vs Observable coverage Ol

GGGGGGGGGG

« “Have I verified enough input sequences” (Input

coverage)

* “Is my set of checkers complete enough” (Observable

coverage)

o Same two notions apply for both simulation AND formal

* Bounded model checking (BMC) is the most used formal

technique

Formal does not verify all possible input sequences

45 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Coverage reporting Oales

FTECHNOLO@Y
¥)) ICC Report: uncover_html - Mozilla Firefox J B Engich (United States) ‘ @‘ E _&]x]
Fle Edt Vew Hstory Bookmarks Eols el
‘ [12C Report: uncover_html + -
(€) | [Alesrcuecuments and Settingsjdarrom(Desttopfuncover/uncaver_hlonlde_Lsunm_0_t1 Pt -[@] (M- Geoge RIS

Top Level Summary Legend and Help

Instance name: mic
Module/Entity name: mic

Total Block Expression | Toggle FSM Assertion Name
82% 95% (172/180) 96% (2929/3056) 20% (1/5) Cumulative
97% No Items No ltems 97% (412/424) No Items No Items Self

Coverage of immediate sub-instances:

Expression |Toggle FSM Assertion Name

No Items 96% (2032/2121) | No Iltems No ltems mic_fifo_0
No Items 82% (52/63) No ltems mic_arb_0
79% (19/24) fifo_state 0
mux8_0
No Items 92% (100/109) No ltems memctl_0
No ltems 98% (50/51) No ltems

58% 91% (29/32)
96% (50/52)
70% (7/10)

No ltems

% Find: | formal & mext @ Previous o Highligheal T Makch case

Wistart| |~ 13 @ EIVE @ @ | [Inbox - Microsoft outlock

@ 1CC Report: uncover_...] RE: [Broadeom DVT] Ass... | -] DAC Staff Registration ... | |- C:\Documents and Settin...]Desklup * 100% jt « [5iE8PM

46 OSKI TECHNOLOGY CONFIDENTIAL

Coverage reporting Oales

CiEace |
W Fefipamer = 1

Instasoe o
Lreal l:l'l.'ﬂ'dl'im.dt =I:+.m | LI:II:H.EI:IdEJ:-r.E.'-E = r.'.qm |- Lecal Blotk Graife [a1 w1% | Laca Exprasskn: Gl'-!.I:IE [E:I1 i
. Bk 42 21%0 + : :

| |'|1_'.-rr"

1 Blocks ml.l I:n-:lu:- 'I'“ Br-lnl:hE'F I:lnrr

mi ek T

1' 0 1 |
tranghii
=n <= REDZ
(=]
pise
Lk in
FED: Bepin
17 ia)
o = LAEEN:
ez BT DB}
a8 =w YELLIFA:
ol]
LEEER. Eegis
if (a)
S «m REDE
eli=e 1T (&%
&8 om YELLIR:
par
WELLIM - Ledaddii

1 3]
@ <= BED:

Eﬁﬂsuuﬂnu-r-'uu“

[= TR R R R

| . - : ES O =8 Plockl
i Lomclar R Jnel e] fespa i mhom e i o goyal Him epa s o wir koo peimerpe v £ Messanes

47 OSKI TECHNOLOGY CONFIDENTIAL

Is my formal complete? Okl

 Are my Checkers complete?
* Are my Constraints complete?

* Is my Complexity strategy complete?

48 OSKI TECHNOLOGY CONFIDENTIAL

Formal coverage (depth = 1)

input a;
reg b;
reg [1:0] st;

always @ (posedge clk or negedge rst)
if (~rst) st <= 2'b00;
else case(st)
2'b00: if (~a) st <=2'b01;
2'b01: st<=2'bl0;
2'b10: if (a) st <=2'b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <=1'b0;
else if (~a|b) b <=1'b0O;
else b <= 1'b1;

49 OSKI TECHNOLOGY CONFIDENTIAL

Ol

TECHNOLOGY

2/2/2012

Input Coverage for formal Oales

FTECHNDLDG@Y

e Constraints: Environment may be over-constrained

 Intentional: avoided some hard to model or verify input
combinations

« Unintentional: bugs in constraints; forgot to remove intentional
over-constraints

« Complexity: All checkers are verified up to proof depth N

* Any target, not reachable in N clocks, is not covered

* Checkers: does not verify completeness of Checkers

* No different than simulation!

50 OSKI TECHNOLOGY CONFIDENTIAL

Coverage database collection 0F7/%4

TECHNOLOGY

AXI Transaction Data Link Physical PCle
BFM Layer Layer Layer BFM

- ~

AXI-PCle bridge checker]

\ 4

L Coverage J L Coverage J L Coverage J
 — ->
Coverage Coverage

DB#1 [l DB #2

51 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Formal coverage integrated with simulation F7/%4

AXI End-to-end
asserts checkers

;(internal (b
L asserts
AXI |, Transaction) TL
constraints Layer “lconstraints

~

\ 4

L Coverage

> Formal
CoveragegCoverage Coverage
DB#1 full DB #2 B DB

52 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Formal code coverage methodology Ol

TECHNOLOGY

Implement Checkers
and Constraints

Run formal verification
and collect Coverage

Add Abstractions
and/or fix Constraints

Are
Coverage goals
met?

Design is formally
verified

58 OSKI TECHNOLOGY CONFIDENTIAL

Observable Coverage (using mutations) Oatl

1. reg p;
2

3.

4, p =
5. else
6. p =
7. end

. always @(*) begin
if (a || (b & ¢))

d;

€5

1. reg p;

2. always @(*) begin

3. if (a || (b && c))
4, p = 1°bX;

5. else

6. p = e;

7. end

54

Mutant for line#4

OSKI TECHNOLOGY CONFIDENTIAL

TECHNOLOGY

1. reg p;

2. always @(*) begin

3. if (a || (b && c))
4, p = d;

5. else

6. p = 1°bX;

7. end

Mutant for line#6

Observable Coverage for formal

1. reg p;

2

3.

4, p =
5. else

6. p =
7. end

d;

€5

. always @(*) begin
if (a || (b & ¢))

1. reg p;

2. always @(*) begin

3. if (a || (b && c))

4, p = <primary_input>
5. else

6. p = e;

7. end

55

Mutant for line#4

OSKI TECHNOLOGY CONFIDENTIAL

Oales

TECHNOLOGY

1. reg p;

2. always @(*) begin

3. if (a || (b && c))

4, p = d;

5. else

6. p = <primary_input>
7. end

Mutant for line#6

Conclusions Oalei

FTECHNDLDG@Y

 Formal Coverage must fit with Simulation Coverage

e Same metrics, same meaning

e Formal verification in practice:
« BMC is the primary workhorse of practical formal verification
e Checkers are complex Verilog, simple SVA

« Abstraction Models are key to increasing formal coverage

56 OSKI TECHNOLOGY CONFIDENTIAL 2/2/2012

Thanks

Contact email: vigyan@oskitech.com

57

Adnan Aziz

Sandesh Borgaonkar
Richard Boulton
Choon Chng

Harry Foster

Vineet Gupta

Anton Lopatinsky
Deepak Pant
Philippa Slayton
Shashidhar Thakur

Oales

FTECHNDLDG@Y

2/2/2012

