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A Story 

The Boeing 777 was Boeing’s first fly-by-wire aircraft, 
controlled by software. It is deployed, appears to be 
reliable, and is succeeding in the marketplace. Therefore, 
it must be a success. However… 

Boeing was forced to purchase and store an advance 
supply of the microprocessors that will run the software, 
sufficient to last for the estimated 50 year production run 
of the aircraft and another many years of maintenance. 

Why? 
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Lesson from this example: 

Apparently, the software does not specify the behavior 
that has been validated and certified! 

 

Unfortunately, this problem is very common, even with 
less safety-critical, certification-intensive applications. 
Validation is done on complete system implementations, 
not on software. 
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A Key Challenge: 
Timing is not Part of Software Semantics 

Correct execution of a program in C, C#, Java, Haskell, 
OCaml, etc. has nothing to do with how long it takes to do 
anything. All our computation and networking abstractions 
are built on this premise. 

  
Programmers have to step outside the 
programming abstractions to specify 
timing behavior. 



Lee, Berkeley  5 

Execution-time analysis, by itself, 
does not solve the problem! 

Analyzing software for timing behavior requires: 
 
• Paths through the program (undecidable) 
• Detailed model of microarchitecture 
• Detailed model of the memory system 
• Complete knowledge of execution context 
• Many constraints on preemption/concurrency 
• Lots of time and effort 
 
And the result is valid only for that exact 
hardware and software! 
 
Fundamentally, the ISA of the processor  
has failed to provide an adequate abstraction. 

Wilhelm, et al. (2008). "The worst-case 
execution-time problem - overview of 
methods and survey of tools." ACM TECS 
7(3): p1-53. 

Our goal is to reduce the 
problem so that this is the 
only hard part. 
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PRET Machines 

¢  PREcision-Timed processors = PRET 
¢  Predictable, REpeatable Timing = PRET 
¢  Performance with REpeatable Timing = PRET 

= PRET + 

Computing With time 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 
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Dual Approach 

¢  Rethink the ISA 
l  Timing has to be a correctness property not a 

performance property. 

¢  Implementation has to allow for multiple realizations 
and efficient realizations of the ISA 
l  Repeatable execution times 
l  Repeatable memory access times 
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Example of one sort of mechanism we would like: 

tryin (500ms) { 
   // Code block 
} catch { 
    panic(); 
} 

jmp_buf  buf; 
 
if ( !setjmp(buf) ){ 
  set_time r1, 500ms 
  exception_on_expire r1, 0  
  // Code block 
  deactivate_exception 0     
} else { 
    panic(); 
} 
 
exception_handler_0 () { 
     longjmp(buf) 
} 

If	  the	  code	  block	  takes	  longer	  than	  
500ms	  to	  run,	  then	  the	  panic()	  
procedure	  will	  be	  invoked.	  
	  
But	  then	  we	  would	  like	  to	  verify	  
that	  panic()	  is	  never	  invoked!	   Pseudocode	  showing	  the	  mechanism	  

in	  a	  mix	  of	  C	  and	  assembly.	  
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Extending an ISA with  
Timing Semantics 

[V1]	  Best	  effort:	  	  
set_time r1, 1s 
// Code block 
delay_until r1   

[V2]	  Late	  miss	  detec5on	  	  	  
set_time r1, 1s       
// Code block 
branch_expired r1, <target> 
delay_until r1 
 

set_time r1, 1s 
exception_on_expire r1, 1 
// Code block 
deactivate_exception 1 
delay_until r1 
 

[V3]	  Immediate	  miss	  detec5on	  	  	  

[V4]	  Exact	  execu5on:	  	  
set_time r1, 1s 
// Code block 
MTFD r1   
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To provide timing guarantees, we need 
implementations that deliver repeatable timing 

Fortunately, electronics technology 
delivers highly reliable and precise 
timing… 

… but the overlaying software 
abstractions discard it. Chip architects 
heavily exploit the lack of temporal 
semantics. 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 



Lee, Berkeley  11 

To deliver repeatable timing, we have to 
rethink the microarchitecture 

Challenges: 
 

l  Pipelining 
l  Memory hierarchy 
l  I/O (DMA, interrupts) 
l  Power management (clock and voltage scaling) 
l  On-chip communication 
l  Resource sharing (e.g. in multicore) 
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Hardware 
thread Hardware 

thread Hardware 
thread 

Our Current PRET Architecture 
PTArm, a soft core on a 
Xilinx Virtex 5 FPGA 

Hardware 
thread 

registers 

scratch 
pad 

memory 

I/O devices 

Interleaved 
pipeline with one 
set of registers 

per thread 

SRAM 
scratchpad 

shared among 
threads 

DRAM main 
memory, 

separate banks 
per thread 

memory 
memory 

memory 

Note inverted memory 
compared to multicore!  
 
Fast, close memory is 
shared, slow remote 
memory is private! 

On a Virtex 6, we can fit 55 
cores, for a total of 330 
concurrent threads with 
perfectly controllable timing. 
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Multicore PRET 

In today’s multicore 
architectures, one thread can 
disrupt the timing of another 
thread even if they are 
running on different cores 
and are not communicating! 

 
Our preliminary work shows that control over timing 
enables conflict-free routing of messages in a network on 
chip, making it possible to have non-interfering programs 
on a multicore PRET. 
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Status of the PRET project 

¢  Results: 
l  PTArm implemented on Xilinx Virtex 5 FPGA. 
l  UNISIM simulator of the PTArm facilitates experimentation. 
l  DRAM controller with repeatable timing and DMA support. 
l  PRET-like utilities implemented on COTS Arm. 

¢  Much still to be done: 
l  Realize MTFD, interrupt I/O, compiler toolchain, 

scratchpad management, etc. 



Lee, Berkeley  15 

A Key Next Step: 
Parametric PRET Architectures 

ISA that admits a variety of implementations: 
¢  Variable clock rates and energy profiles 
¢  Variable number of cycles per instruction 
¢  Latency of memory access varying by address 
¢  Varying sizes of memory regions 
¢  … 

A given program may meet deadlines on only some 
realizations of the same parametric PRET ISA. 

set_time r1, 1s 
// Code block 
MTFD r1   
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Realizing the MTFD instruction on a  
parametric PRET machine 

The goal is to make software that will run correctly on a variety of 
implementations of the ISA, and that correctness can be checked for each 
implementation. 

set_time r1, 1s 
// Code block 
MTFD r1   
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Conclusions 

Today, timing behavior is a property only of realizations of 
software systems. 

Tomorrow, timing behavior will be a semantic property of  
programs and models. 

Raffaello Sanzio da Urbino – The Athens School 
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