
Precision Timed (PRET)
Machines

Edward A. Lee
Robert S. Pepper Distinguished Professor
UC Berkeley

BWRC Open House,
Berkeley, CA
February , 2012

Key Collaborators on
work shown here:

• Steven Edwards
• Jeff Jensen
• Sungjun Kim
• Isaac Liu
• Slobodan Matic
• Hiren Patel
• Jan Reinke
• Sanjit Seshia
• Mike Zimmer
• Jia Zou

Lee, Berkeley 2

A Story

The Boeing 777 was Boeing’s first fly-by-wire aircraft,
controlled by software. It is deployed, appears to be
reliable, and is succeeding in the marketplace. Therefore,
it must be a success. However…

Boeing was forced to purchase and store an advance
supply of the microprocessors that will run the software,
sufficient to last for the estimated 50 year production run
of the aircraft and another many years of maintenance.

Why?

Lee, Berkeley 3

Lesson from this example:

Apparently, the software does not specify the behavior
that has been validated and certified!

Unfortunately, this problem is very common, even with
less safety-critical, certification-intensive applications.
Validation is done on complete system implementations,
not on software.

Lee, Berkeley 4

A Key Challenge:
Timing is not Part of Software Semantics

Correct execution of a program in C, C#, Java, Haskell,
OCaml, etc. has nothing to do with how long it takes to do
anything. All our computation and networking abstractions
are built on this premise.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Lee, Berkeley 5

Execution-time analysis, by itself,
does not solve the problem!

Analyzing software for timing behavior requires:

• Paths through the program (undecidable)
• Detailed model of microarchitecture
• Detailed model of the memory system
• Complete knowledge of execution context
• Many constraints on preemption/concurrency
• Lots of time and effort

And the result is valid only for that exact
hardware and software!

Fundamentally, the ISA of the processor
has failed to provide an adequate abstraction.

Wilhelm, et al. (2008). "The worst-case
execution-time problem - overview of
methods and survey of tools." ACM TECS
7(3): p1-53.

Our goal is to reduce the
problem so that this is the
only hard part.

Lee, Berkeley 6

PRET Machines

¢  PREcision-Timed processors = PRET
¢  Predictable, REpeatable Timing = PRET
¢  Performance with REpeatable Timing = PRET

= PRET +

Computing With time

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

Lee, Berkeley 7

Dual Approach

¢  Rethink the ISA
l  Timing has to be a correctness property not a

performance property.

¢  Implementation has to allow for multiple realizations
and efficient realizations of the ISA
l  Repeatable execution times
l  Repeatable memory access times

Lee, Berkeley 8

Example of one sort of mechanism we would like:

tryin (500ms) {
 // Code block
} catch {
 panic();
}

jmp_buf buf;

if (!setjmp(buf)){
 set_time r1, 500ms
 exception_on_expire r1, 0
 // Code block
 deactivate_exception 0
} else {
 panic();
}

exception_handler_0 () {
 longjmp(buf)
}

If	 the	 code	 block	 takes	 longer	 than	
500ms	 to	 run,	 then	 the	 panic()	
procedure	 will	 be	 invoked.	
	
But	 then	 we	 would	 like	 to	 verify	
that	 panic()	 is	 never	 invoked!	 Pseudocode	 showing	 the	 mechanism	

in	 a	 mix	 of	 C	 and	 assembly.	

Lee, Berkeley 9

Extending an ISA with
Timing Semantics

[V1]	 Best	 effort:	 	
set_time r1, 1s
// Code block
delay_until r1

[V2]	 Late	 miss	 detec5on	 	 	
set_time r1, 1s
// Code block
branch_expired r1, <target>
delay_until r1

set_time r1, 1s
exception_on_expire r1, 1
// Code block
deactivate_exception 1
delay_until r1

[V3]	 Immediate	 miss	 detec5on	 	 	

[V4]	 Exact	 execu5on:	 	
set_time r1, 1s
// Code block
MTFD r1

Lee, Berkeley 10

To provide timing guarantees, we need
implementations that deliver repeatable timing

Fortunately, electronics technology
delivers highly reliable and precise
timing…

… but the overlaying software
abstractions discard it. Chip architects
heavily exploit the lack of temporal
semantics.

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

Lee, Berkeley 11

To deliver repeatable timing, we have to
rethink the microarchitecture

Challenges:

l  Pipelining
l  Memory hierarchy
l  I/O (DMA, interrupts)
l  Power management (clock and voltage scaling)
l  On-chip communication
l  Resource sharing (e.g. in multicore)

Lee, Berkeley 12

Hardware
thread Hardware

thread Hardware
thread

Our Current PRET Architecture
PTArm, a soft core on a
Xilinx Virtex 5 FPGA

Hardware
thread

registers

scratch
pad

memory

I/O devices

Interleaved
pipeline with one
set of registers

per thread

SRAM
scratchpad

shared among
threads

DRAM main
memory,

separate banks
per thread

memory
memory

memory

Note inverted memory
compared to multicore!

Fast, close memory is
shared, slow remote
memory is private!

On a Virtex 6, we can fit 55
cores, for a total of 330
concurrent threads with
perfectly controllable timing.

Lee, Berkeley 13

Multicore PRET

In today’s multicore
architectures, one thread can
disrupt the timing of another
thread even if they are
running on different cores
and are not communicating!

Our preliminary work shows that control over timing
enables conflict-free routing of messages in a network on
chip, making it possible to have non-interfering programs
on a multicore PRET.

Lee, Berkeley 14

Status of the PRET project

¢  Results:
l  PTArm implemented on Xilinx Virtex 5 FPGA.
l  UNISIM simulator of the PTArm facilitates experimentation.
l  DRAM controller with repeatable timing and DMA support.
l  PRET-like utilities implemented on COTS Arm.

¢  Much still to be done:
l  Realize MTFD, interrupt I/O, compiler toolchain,

scratchpad management, etc.

Lee, Berkeley 15

A Key Next Step:
Parametric PRET Architectures

ISA that admits a variety of implementations:
¢  Variable clock rates and energy profiles
¢  Variable number of cycles per instruction
¢  Latency of memory access varying by address
¢  Varying sizes of memory regions
¢  …

A given program may meet deadlines on only some
realizations of the same parametric PRET ISA.

set_time r1, 1s
// Code block
MTFD r1

Lee, Berkeley 16

Realizing the MTFD instruction on a
parametric PRET machine

The goal is to make software that will run correctly on a variety of
implementations of the ISA, and that correctness can be checked for each
implementation.

set_time r1, 1s
// Code block
MTFD r1

Lee, Berkeley 17

PRET Publications
¢  S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET)

Machine," in the Wild and Crazy Ideas Track of DAC, June 2007.

¢  B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards and E. A. Lee, “Predictable
programming on a precision timed architecture,” CASES 2008.

¢  S. Edwards, S. Kim, E. A. Lee, I. Liu, H. Patel and M. Schoeberl, “A Disruptive
Computer Design Idea: Architectures with Repeatable Timing,” ICCD 2009.

¢  D. Bui, H. Patel, and E. Lee, “Deploying hard real-time control software on
chip-multiprocessors,” RTCSA 2010.

¢  Bui, E. A. Lee, I. Liu, H. D. Patel and J. Reineke, “Temporal Isolation on
Multiprocessing Architectures,” DAC 2011.

¢  J. Reineke, I. Liu, H. D. Patel, S. Kim, E. A. Lee, PRET DRAM Controller: Bank
Privatization for Predictability and Temporal Isolation (to appear), CODES
+ISSS, Taiwan, October, 2011.

¢  S. Bensalem, K. Goossens, C. M. Kirsch, R. Obermaisser, E. A. Lee, J. Sifakis,
Time-Predictable and Composable Architectures for Dependable
Embedded Systems, Tutorial Abstract (to appear), EMSOFT, Taiwan, October,
2011

http://chess.eecs.berkeley.edu/pret/

Lee, Berkeley 18

Conclusions

Today, timing behavior is a property only of realizations of
software systems.

Tomorrow, timing behavior will be a semantic property of
programs and models.

Raffaello Sanzio da Urbino – The Athens School

Overview References:
•  Bui, et al. Temporal Isolation on Multiprocessing Architectures, DAC 2011
•  Lee. Computing needs time. CACM, 52(5):70–79, 2009
•  Edwards & Lee, The case for Precision Timed (PRET) Machines, DAC 2007

