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Abstract 
All widely used software abstractions lack temporal semantics. The notion of correct execution of a 
program written in every widely-used programming language today does not depend on the temporal 
behavior of the program. But temporal behavior matters in almost all systems, particularly in networked 
systems. Even in systems with no particular real-time requirements, timing of programs is relevant to the 
value delivered by programs, and in the case of concurrent and distributed programs, also affects the 
functionality. In systems with real-time requirements, including most embedded systems, temporal behavior 
affects not just the value delivered by a system but also its correctness. 
 
This talk will argue that time can and must become part of the semantics of programs for a large class of 
applications. It will argue that temporal behavior is not always just a performance metric, but is often rather 
a correctness criterion. To illustrate that this is both practical and useful, we will describe recent efforts at 
Berkeley in the design and analysis of timing-centric software systems. In particular, we will focus on two 
projects, PRET, which seeks to provide computing platforms with repeatable timing, and PTIDES, which 
provides a programming model for distributed real-time systems. 



Lee, Berkeley  3 Courtesy of Kuka Robotics Corp.!

Cyber-Physical Systems (CPS): 
Orchestrating networked computational  
resources with physical systems 

Courtesy of Doug Schmidt!

Power 
generation and 
distribution 

Courtesy of  
General Electric 

Military systems: 

E-Corner, Siemens 

Transportation 
(Air traffic 
control at 
SFO) Avionics 

Telecommunications 

Factory automation 

Instrumentation 
(Soleil Synchrotron) 

Daimler-Chrysler 

Automotive 

Building Systems 



Lee, Berkeley  4 

Claim 

For CPS, programs do not adequately specify behavior. 
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A Story 

The Boeing 777 was Boeing’s first fly-by-wire aircraft, 
controlled by software. It is deployed, appears to be 
reliable, and is succeeding in the marketplace. Therefore, 
it must be a success. However… 

Boeing was forced to purchase and store an advance 
supply of the microprocessors that will run the software, 
sufficient to last for the estimated 50 year production run 
of the aircraft and another many years of maintenance. 

Why? 
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Lesson from this example: 

Apparently, the software does not specify the behavior 
that has been validated and certified! 

 

Unfortunately, this problem is very common, even with 
less safety-critical, certification-intensive applications. 
Validation is done on complete system implementations, 
not on software. 
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Problems that complicate analysis of system behavior: 

Structure of a Cyber-Physical System 

Messages from different 
sources interleave 

nondeterministically Sensors may be locked 
out for an indeterminate 

amount of time 

Plat 

Variability of execution 
times affects results 

(not just WCET) 
Interrupt-driven I/O 
disrupts timing 

Platforms’ 
measurements of time 

differ 

A fault in a remote 
component may disrupt a 

critical local activity 

A fault in a remote 
component may 
go undetected for 
a long time 

Etc… 
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A Key Challenge: 
Timing is not Part of Software Semantics 

Correct execution of a program in C, C#, Java, Haskell, 
OCaml, etc. has nothing to do with how long it takes to do 
anything. All our computation and networking abstractions 
are built on this premise. 

  
Programmers have to step outside the 
programming abstractions to specify 
timing behavior. 
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Execution-time analysis, by itself, 
does not solve the problem! 

Analyzing software for timing behavior requires: 
 
• Paths through the program (undecidable) 
• Detailed model of microarchitecture 
• Detailed model of the memory system 
• Complete knowledge of execution context 
• Many constraints on preemption/concurrency 
• Lots of time and effort 
 
And the result is valid only for that exact 
hardware and software! 
 
Fundamentally, the ISA of the processor  
has failed to provide an adequate abstraction. 

Wilhelm, et al. (2008). "The worst-case 
execution-time problem - overview of 
methods and survey of tools." ACM TECS 7
(3): p1-53. 

Our first goal is to reduce 
the problem so that this is 
the only hard part. 
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Part 1: PRET Machines 

¢  PREcision-Timed processors = PRET 
¢  Predictable, REpeatable Timing = PRET 
¢  Performance with REpeatable Timing = PRET 

= PRET + 

Computing With time 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 
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Dual Approach 

¢  Rethink the ISA 
l  Timing has to be a correctness property not a 

performance property. 

¢  Implementation has to allow for multiple realizations 
and efficient realizations of the ISA 
l  Repeatable execution times 
l  Repeatable memory access times 
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Example of one sort of mechanism we would like: 

tryin (500ms) { 
   // Code block 
} catch { 
    panic(); 
} 

jmp_buf  buf; 
 
if ( !setjmp(buf) ){ 
  set_time r1, 500ms 
  exception_on_expire r1, 0  
  // Code block 
  deactivate_exception 0     
} else { 
    panic(); 
} 
 
exception_handler_0 () { 
     longjmp(buf) 
} 

If	
  the	
  code	
  block	
  takes	
  longer	
  than	
  
500ms	
  to	
  run,	
  then	
  the	
  panic()	
  
procedure	
  will	
  be	
  invoked.	
  
	
  
But	
  then	
  we	
  would	
  like	
  to	
  verify	
  
that	
  panic()	
  is	
  never	
  invoked!	
   Pseudocode	
  showing	
  the	
  mechanism	
  

in	
  a	
  mix	
  of	
  C	
  and	
  assembly.	
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Extending an ISA with  
Timing Semantics 

[V1]	
  Best	
  effort:	
  	
  
set_time r1, 1s 
// Code block 
delay_until r1   

[V2]	
  Late	
  miss	
  detec5on	
  	
  	
  
set_time r1, 1s       
// Code block 
branch_expired r1, <target> 
delay_until r1 
 

set_time r1, 1s 
exception_on_expire r1, 1 
// Code block 
deactivate_exception 1 
delay_until r1 
 

[V3]	
  Immediate	
  miss	
  detec5on	
  	
  	
  

[V4]	
  Exact	
  execu5on:	
  	
  
set_time r1, 1s 
// Code block 
MTFD r1   
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To provide timing guarantees, we need 
implementations that deliver repeatable timing 

Fortunately, electronics technology 
delivers highly reliable and precise 
timing… 

… but the overlaying software 
abstractions discard it. Chip architects 
heavily exploit the lack of temporal 
semantics. 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 
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To deliver repeatable timing, we have to 
rethink the microarchitecture 

Challenges: 
 

l  Pipelining 
l  Memory hierarchy 
l  I/O (DMA, interrupts) 
l  Power management (clock and voltage scaling) 
l  On-chip communication 
l  Resource sharing (e.g. in multicore) 
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Hardware 
thread Hardware 

thread Hardware 
thread 

Our Current PRET Architecture 
PTArm, a soft core on a 
Xilinx Virtex 5 FPGA 

Hardware 
thread 

registers 

scratch 
pad 

memory 

I/O devices 

Interleaved 
pipeline with one 
set of registers 

per thread 

SRAM 
scratchpad 

shared among 
threads 

DRAM main 
memory, 

separate banks 
per thread 

memory 
memory 

memory 

Note inverted memory 
compared to multicore!  
 
Fast, close memory is 
shared, slow remote 
memory is private! 



Lee, Berkeley  17 

Multicore PRET 

In today’s multicore 
architectures, one thread can 
disrupt the timing of another 
thread even if they are 
running on different cores 
and are not communicating! 

 
Our preliminary work shows that control over timing 
enables conflict-free routing of messages in a network on 
chip, making it possible to have non-interfering programs 
on a multicore PRET. 
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Status of the PRET project 

¢  Results: 
l  PTArm implemented on Xilinx Virtex 5 FPGA. 
l  UNISIM simulator of the PTArm facilitates experimentation. 
l  DRAM controller with repeatable timing and DMA support. 
l  PRET-like utilities implemented on COTS Arm. 

¢  Much still to be done: 
l  Realize MTFD, interrupt I/O, compiler toolchain, 

scratchpad management, etc. 
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A Key Next Step: 
Parametric PRET Architectures 

ISA that admits a variety of implementations: 
¢  Variable clock rates and energy profiles 
¢  Variable number of cycles per instruction 
¢  Latency of memory access varying by address 
¢  Varying sizes of memory regions 
¢  … 

A given program may meet deadlines on only some 
realizations of the same parametric PRET ISA. 

set_time r1, 1s 
// Code block 
MTFD r1   
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Realizing the MTFD instruction on a  
parametric PRET machine 

The goal is to make software that will run correctly on a variety of 
implementations of the ISA, and that correctness can be checked for each 
implementation. 

set_time r1, 1s 
// Code block 
MTFD r1   
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PRET Publications 
¢  S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET) 

Machine," in the Wild and Crazy Ideas Track of DAC, June 2007. 

¢  B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards and E. A. Lee, “Predictable 
programming on a precision timed architecture,” CASES 2008. 

¢  S. Edwards, S. Kim, E. A. Lee, I. Liu, H. Patel and M. Schoeberl, “A Disruptive 
Computer Design Idea: Architectures with Repeatable Timing,” ICCD 2009. 

¢  D. Bui, H. Patel, and E. Lee, “Deploying hard real-time control software on 
chip-multiprocessors,” RTCSA 2010. 

¢  Bui, E. A. Lee, I. Liu, H. D. Patel and J. Reineke, “Temporal Isolation on 
Multiprocessing Architectures,” DAC 2011. 

¢  J. Reineke, I. Liu, H. D. Patel, S. Kim, E. A. Lee, PRET DRAM Controller: Bank 
Privatization for Predictability and Temporal Isolation (to appear), CODES
+ISSS, Taiwan, October, 2011. 

¢  S. Bensalem, K. Goossens, C. M. Kirsch, R. Obermaisser, E. A. Lee, J. Sifakis, 
Time-Predictable and Composable Architectures for Dependable 
Embedded Systems, Tutorial Abstract (to appear), EMSOFT, Taiwan, October, 
2011 

http://chess.eecs.berkeley.edu/pret/ 
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Part 2: How to get the Source Code? 

The input (mostly likely C) will ideally be generated from a model, like Simulink 
or SCADE. The model specifies temporal behavior at a higher level than code 
blocks, and it specifies a concurrency model that can limit preemption points. 
However, Simulink and SCADE have naïve models of time. 
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Problems that complicate analysis of system behavior: 

Recall Structure of a Cyber-Physical System 

Messages from different 
sources interleave 

nondeterministically Sensors may be locked 
out for an indeterminate 

amount of time 

Plat 

Variability of execution 
times affects results 

(not just WCET) 
Interrupt-driven I/O 
disrupts timing 

Platforms’ 
measurements of time 

differ 

A fault in a remote 
component may disrupt a 

critical local activity 

A fault in a remote 
component may 
go undetected for 
a long time 

Etc… 
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Ptides: First step:  
Time-stamped messages. 

Messages carry time 
stamps that define their 

interleaving 
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Ptides: Second step:  
Network time synchronization 

GPS, NTP, IEEE 1588, 
time-triggered busses, 
etc., all provide some 
form of common time 
base. These are 
becoming fairly common. 

Assume bounded 
clock error 

Assume bounded 
clock error e 

Assume bounded 
clock error e 



Lee, Berkeley  26 

Ptides: Third step: 
Bind time stamps to real time at sensors and actuators 

Input time stamps are 
≥ real time 

Input time stamps are 
≥ real time 

Output time stamps 
are ≤ real time 

Output time stamps 
are ≤ real time Messages are 

processed in time-
stamp order. 

Clock synchronization 
gives global meaning to 

time stamps 
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Global latencies between sensors and actuators become 
controllable, which enables analysis of system dynamics. 

Ptides: Fourth step: 
Specify latencies in the model 

Model includes 
manipulations of time 
stamps, which control 

latencies between 
sensors and actors 

Actuators may be 
designed to interpret 
input time stamps as 
the time at which to 

take action. Feedback through the physical world 



Lee, Berkeley  28 

Ptides: Fifth step 
Safe-to-process analysis (ensures determinacy)  
Safe-to-process analysis guarantees that the generated code obeys time-stamp 
semantics (events are processed in time-stamp order), given some assumptions. 

Assume bounded 
network delay d 

Assume bounded 
clock error 

Assume bounded 
clock error e 

An earliest event with 
time stamp t here can 
be safely merged when 
real time exceeds  
t + s + d + e – d2 

Assume bounded 
clock error e 

Assume bounded 
sensor delay s 

Application 
specification of 

latency d2 
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Ptides Schedulability Analysis 
Determine whether deadlines can be met 

Schedulability analysis incorporates computation times to determine 
whether we can guarantee that deadlines are met. 

Deadline for delivery of 
event with time stamp t 

here is t – c3 – d2 

Deadline for delivery 
here is t 

Assume bounded 
computation time c1 

Assume bounded 
computation time c3 

Assume bounded 
computation time c2 
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PtidyOS: A lightweight microkernel supporting 
Ptides semantics 

PtidyOS runs on 
¢  Arm (Luminary Micro) 
¢  Renesas 
¢  XMOS 
Occupies about 16 kbytes of 
memory. 
 

Luminary  
Micro  
8962 

An interesting property of 
PtidyOS is that despite being 
highly concurrent, preemptive, 
and EDF-based, it does not 
require threads.  
A single stack is sufficient! 

The name “PtidyOS” is a bow to TinyOS, 
which is a similar style of runtime kernel. 

Renesas 7216 
Demonstration Kit  

  XMOS 
development 
board with 4 

XCores. 
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Workflow 
Structure 

 
 
 

HW Platform Software 
Component 

Library 

Ptides Model Code 
Generator  

 
PtidyOS 

Code 

Plant Model 

Network Model 

HW in the 
Loop 

Simulator 

Causality 
Analysis 

Program 
Analysis 

Schedulability 
Analysis 

Analysis	
  

Mixed 
Simulator 

Ptolemy II Ptides domain 

Ptolemy II Discrete-event, 
Continuous, and 
Wireless domains 

Luminary  
Micro  
8962 IEEE 1588 Network 

time protocol 
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A Typical Cyber-Physical System 
Printing Press 

•  	
  Applica5on	
  aspects	
  
•  local	
  (control)	
  
•  distributed	
  (coordina5on)	
  
•  global	
  (modes)	
  

•  Open	
  standards	
  (Ethernet)	
  
•  Synchronous,	
  Time-­‐Triggered	
  
•  IEEE	
  1588	
  	
  5me-­‐sync	
  protocol	
  

•  High-­‐speed,	
  high	
  precision	
  
•  Speed:	
  1	
  inch/ms	
  
•  Precision:	
  0.01	
  inch	
  

-­‐>	
  Time	
  accuracy:	
  10us	
  Bosch-­‐Rexroth	
  
Goal:	
  Orchestrated	
  networked	
  resources	
  built	
  with	
  	
  
sound	
  design	
  principles	
  on	
  suitable	
  abstrac1ons	
  	
  	
  

32 
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Source: http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html 

Example – Flying Paster 
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Source:	
  hWp://offsetpressman.blogspot.com/2011/03/how-­‐flying-­‐paster-­‐works.html	
  

Flying	
  Paster	
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Printing Press – Model in Ptolemy II 
Model by Patricia Derler 
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Plant model  
+ 

Distributed Controllers 

5   Siemens CKI Project Review  
  Patricia Derler   

Printing Press – Model in Ptolemy II 
Model by Patricia Derler 
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Printing Press – Model in Ptolemy II 
Model by Patricia Derler 
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Platform independent 
model of functional and 

timing behavior 
Code Generation 
to multiple target 
platforms 

2x10
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/s
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Contact (red), Top Dead Center (green), Cut (blue) and Arm (black)

Time in seconds

Ev
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ts

Simulation 

Same I/O behavior 
w.r.t. value and timing 

e.g.: Renesas 7216 
Demonstration Kit  

 e.g.: XMOS 
development 
board with 4 

XCores. 

Determinate timing at sensors and actuators 
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Platform independent 
model of functional and 

timing behavior 
Code Generation 
to multiple target 
platforms 
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Demonstration Kit  

 e.g.: XMOS 
development 
board with 4 

XCores. 

Determinate timing at sensors and actuators 

XMOS 
Predictable timing 
Multiple cores 
No analog I/O 
No FPU 
No hardware clock 

Renesas 
PHY chip for accurate 
timestamping of 
inputs,  
Analog I/O 
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Renesas vs. XMOS: Measured I/O timing 
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Renesas vs. 
XMOS: Busy 
vs. Idle Time 
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Ptides Publications 
¢  Y. Zhao, J. Liu, E. A. Lee, “A Programming Model for Time-Synchronized 

Distributed Real-Time Systems,” RTAS 2007. 

¢  T. H. Feng and E. A. Lee, “Real-Time Distributed Discrete-Event Execution 
with Fault Tolerance,” RTAS 2008. 

¢  P. Derler, E. A. Lee, and S. Matic, “Simulation and implementation of the 
ptides programming model,” DS-RT 2008. 

¢  J. Zou, S. Matic, E. A. Lee, T. H. Feng, and P. Derler, “Execution strategies 
for Ptides, a programming model for distributed embedded systems,” 
RTAS 2009. 

¢  J. Zou, J. Auerbach, D. F. Bacon, E. A. Lee, “PTIDES on Flexible Task Graph: 
Real-Time Embedded System Building from Theory to Practice,” LCTES 
2009. 

¢  J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia and J. Zou, “Time-centric 
Models For Designing Embedded Cyber-physical Systems,” ACES-MB 
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¢  J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou, Distributed Real-
Time Software for Cyber-Physical Systems, To appear in Proceedings of the 
IEEE special issue on CPS, December, 2011. 

http://chess.eecs.berkeley.edu/ptides/ 
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Conclusions 

Today, timing behavior is a property only of realizations of 
software systems. 

Tomorrow, timing behavior will be a semantic property of  
programs and models. 

Raffaello Sanzio da Urbino – The Athens School 

Overview References: 
•  Lee. Computing needs time. CACM, 52(5):70–79, 2009 
•  Eidson et. al, Distributed Real-Time Software for Cyber-Physical 

Systems, Proc. of the IEEE January, 2012. 
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A Test Case 
for PtidyOS 

Tunneling Ball Device 
–  sense ball 
–  track disk 
–  adjust trajectory  
 

This device, designed by Jeff Jensen, 
mixes periodic, quasi-periodic, and 
sporadic real-time events. 
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Tunneling Ball Device in Action 
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Tunneling Ball Device – 10 rps 
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Tunneling Ball Device 
Mixed event 
sequences 

Periodic Events 

Quasi Periodic Events 

Sporadic Events 
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Distributed PTIDES Relies on Network Time 
Synchronization with Bounded Error 

This may become 
routine! 
With this PHY, clocks 
on a LAN agree on the 
current time of day to 
within 8ns, far more 
precise than older 
techniques like NTP. 
 
A question we are 
addressing at 
Berkeley: How does 
this change how we 
develop distributed 
CPS software? 

Press Release October 1, 2007 
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An Extreme Example: The Large Hadron Collider 

The WhiteRabbit project at CERN is synchronizing the clocks of computers 
10 km apart to within about 80 psec using a combination of IEEE 1588 PTP 
and synchronous ethernet. 


