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Abstract

All widely used software abstractions lack temporal semantics. The notion of correct execution of a
program written in every widely-used programming language today does not depend on the temporal
behavior of the program. But temporal behavior matters in almost all systems, particularly in networked
systems. Even in systems with no particular real-time requirements, timing of programs is relevant to the
value delivered by programs, and in the case of concurrent and distributed programs, also affects the
functionality. In systems with real-time requirements, including most embedded systems, temporal behavior
affects not just the value delivered by a system but also its correctness.

This talk will argue that time can and must become part of the semantics of programs for a large class of
applications. It will argue that temporal behavior is not always just a performance metric, but is often rather
a correctness criterion. To illustrate that this is both practical and useful, we will describe recent efforts at
Berkeley in the design and analysis of timing-centric software systems. In particular, we will focus on two
projects, PRET, which seeks to provide computing platforms with repeatable timing, and PTIDES, which
provides a programming model for distributed real-time systems.
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Claim

For CPS, programs do not adequately specify behavior.
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The Boeing 777 was Boeing' s first fly-by-wire aircraft,
controlled by software. It is deployed, appears to be
reliable, and is succeeding in the marketplace. Therefore,
It must be a success. However...

Boeing was forced to purchase and store an advance
supply of the microprocessors that will run the software,
sufficient to last for the estimated 50 year production run
of the aircraft and another many years of maintenance.

Why?
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Lesson from this example: »»/m\

Apparently, the software does not specify the behavior
that has been validated and certified!

Unfortunately, this problem is very common, even with
less safety-critical, certification-intensive applications.
Validation is done on complete system implementations,
not on software.
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Structure of a Cyber-Physical System

Problems that complicate analysis of system behavior:
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A Key Challenge:
Timing is not Part of Software Semantics

Correct execution of a program in C, C#, Java, Haskell,
OCaml, etc. has nothing to do with how long it takes to do
anything. All our computation and networking abstractions
are built on this premise.

Programmers have to step outside the
programming abstractions to specify
timing behavior.
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Execution-time analysis, by itself,
does not solve the problem!

Our first goal is to reduce
the problem so that this is
the only hard part.

Sej

Analyzing software for timing behavior requires:
addr (a) |wait
cancel ! fetch (G‘L
_ ICl |« >
 Paths through the program (undecidable) _‘( o hotd
await (a walt
» Detailed model of microarchitecture cancel ! code(a) |
_ ——k 1C2 [¢ U
* Detailed model of the memory system @ i o
« Complete knowledge of execution context cancel IE"D
* Many constraints on preemption/concurrency o v
\

cancel

 Lots of time and effort

Y Y

next start

And the result is valid only for that exact X dwst;l(ﬁ !
hardware and software! set (a) / stop [store | wat
SST
Fundamentally, the ISA of the processor Wilhelm, et al. (2008). "The worst-case
has failed to provide an adequate abstraction. fnxeetggg%néﬂ]fgglf’r(;)e@eofptégl\ge_,,rﬁ%VKAO{ECS .
(3): p1-53.
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Part 1: PRET Machines

o PREcision-Timed processors = PRET
o Predictable, REpeatable Timing = PRET

o Performance with REpeatable Timing = PRET

// Perform the convolution.

for (int 1=0; 1i<10; i++) {
x[1] = ali]*b[J-1]; )
// Notify listeners.
notify(x[i]);

}

Computing With time
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Dual Approach

o Rethink the ISA

Timing has to be a correctness property not a
performance property.

o Implementation has to allow for multiple realizations
and efficient realizations of the ISA

Repeatable execution times
Repeatable memory access times
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Example of one sort of mechanism we would like:

jmp_buf buf;
tryin (500ms) { _ _
// Code block if ( Isetimp(buf) ){
} catch { set_time r1, 500ms
panic(); exception_on_expire r1, 0
ode bloc
/ // Code block

deactivate_exception 0

If the code block takes longer than }e;lfaenl{c "

500ms to run, then the panic() 3

procedure will be invoked.
exception _handler 0 () {

longimp(buf)
But then we would like to verify /

th(]t p(]nic() iS never in Voked! Pseudocode showing the mechanism

in a mix of C and assembly.
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Extending an ISA with
Timing Semantics

[V1] Best effort: [V3] Immediate miss detection
set _timer1, 1s set_time r1, 1s
// Code block exception_on_expire r1, 1
delay until r1 // Code block

deactivate exception 1
delay _until r1

[V2] Late miss detection [V4] Exact execution:
set_timer1, 1s set_timer1, 1s
// Code block // Code block

branch _expired r1, <target>

) MTFD r1
delay until r1

Lee, Berkeley 13



To provide timing guarantees, we need
iImplementations that deliver repeatable timing

Fortunately, electronics technology "

delivers highly reliable and precise
timing...

... but the overlaying software

E o—e¢

abstractions discard it. Chip architects

heavily exploit the lack of temporal
semantics.

// Perform the convolution.
for (int i=0; 1i<10; i++) {
x[1] = alil*b[J-1];
// Notify listeners.
notify(x[1]);
}
Lee, Berkeley 14



o deliver repeatable timing, we have to
rethink the microarchitecture

Challenges:

Pipelining

Memory hierarchy

/O (DMA, interrupts)

Power management (clock and voltage scaling)
On-chip communication

Resource sharing (e.g. in multicore)
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_ Note inverted memory
Our Current PRET Architecture compared to multicore!
PTArm, a soft core on a Fast, close memory s

Xilinx Virtex 5 FPGA shared, slow remote
memory is private!

Hardware

thread ST memory I/O devices
pad
registers
Interleaved SRAM DRAM main
pipeline with one Scratchpad memory,
set of registers Shared among separate banks
per thread threads per thread
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Multicore PRET

In today’ s multicore
architectures, one thread can
disrupt the timing of another
thread even if they are
running on different cores
and are not communicating!

Our preliminary work shows that control over timing

%

A,
PEO]
R
k.,
PE 5]
(2R)
K,
m PE 13
(2R)
R) &R
K, N

enables conflict-free routing of messages in a network on
chip, making it possible to have non-interfering programs

on a multicore PRET.
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Status of the PRET project

o Results:
PTArm implemented on Xilinx Virtex 5 FPGA.
UNISIM simulator of the PTArm facilitates experimentation.
DRAM controller with repeatable timing and DMA support.
PRET-like utilities implemented on COTS Arm.

o Much still to be done:

Realize MTFD, interrupt I/O, compiler toolchain,
scratchpad management, etc.
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set timeri, 1s

A Key Next Step: // Code block
Parametric PRET Architectures MIFD T

ISA that admits a variety of implementations:

o Variable clock rates and energy profiles

o Variable number of cycles per instruction

o Latency of memory access varying by address
o Varying sizes of memory regions

o ...

A given program may meet deadlines on only some
realizations of the same parametric PRET [ISA.
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Realizing the MTFD instruction on a
parametric PRET machine

set_timer1, 1s /archltecture/
// Code block parameters

MTFD r1

I—Danalyzer
source |
>—bcomp||er

checker

-&— certificate

link absolute
Im ;rr confidence
oade software

includes includes predicate
MTFD code MTFD to be
blocks instructions satisfied

object code

The goal is to make software that will run correctly on a variety of
implementations of the ISA, and that correctness can be checked for each
implementation.
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http.//chess.eecs.berkeley.edu/pret/

PRET Publications

o S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET)
Machine," in the Wild and Crazy Ideas Track of DAC, June 2007.

o B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards and E. A. Lee, “Predictable
programming on a precision timed architecture,” CASES 2008.

o S. Edwards, S. Kim, E. A. Lee, |. Liu, H. Patel and M. Schoeberl, “A Disruptive
Computer Design Idea: Architectures with Repeatable Timing,” ICCD 2009.

o D. Bui, H. Patel, and E. Lee, “Deploying hard real-time control software on
chip-multiprocessors,” RTCSA 2010.

o Bui, E. A. Lee, |. Liu, H. D. Patel and J. Reineke, “Temporal Isolation on
Multiprocessing Architectures,” DAC 2011.

o J. Reineke, I. Liu, H. D. Patel, S. Kim, E. A. Lee, PRET DRAM Controller: Bank
Privatization for Predictability and Temporal Isolation (to appear), CODES
+|SSS, Taiwan, October, 2011.

o S. Bensalem, K. Goossens, C. M. Kirsch, R. Obermaisser, E. A. Lee, J. Sifakis,
Time-Predictable and Composable Architectures for Dependable
Embedded Systems, Tutorial Abstract (to appear), EMSOFT, Taiwan, October,
2011
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Part 2: How to get the Source Code?

e architecture
OCUsS now parameters
on how this

comes about

analyzer
source
»_.p.]. [

checker -— certificate

linker absolute
Iloadeer confidence
software

includes includes predicate
MTFD code MTFD to be
blocks instructions satisfied

object code

The input (mostly likely C) will ideally be generated from a model, like Simulink
or SCADE. The model specifies temporal behavior at a higher level than code

blocks, and it specifies a concurrency model that can limit preemption points.
However, Simulink and SCADE have naive models of time.
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Recall Structure of a Cyber-Physical System

Ete...
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Ptides: First step:
Time-stamped messages.

Messages carry time

( | stamps that define their
Platform 1 interleaving

Computationl *
Platform 3

/ Computation3 E_—

Platform 2 I
’M* Sensc{rZ H Computation2 * Merge
||?1|:ey rsflggé network Iésgilt p hysical
fabric Source interface
S >

>
@ Computation4 *—

Physical

plant
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GPS, NTP, IEEE 1588,
Ptides: Second step: time-triggered busses,

etc., all provide some

Network time synchronization  form of common time

base. These are
becoming fairly common.

Platform 1
Computationl *
Platform 3

A |

/ // I Computation3 E_—
Platform 2 / / /
“.‘922* Sen54r2 H Comp/ /ion2 * Merge
;{ / / 1)
_ D¢
physncal /‘% physical
interface ggﬁ?cte interface
>

w

Assume bounded
clock error e

————
@-* Computation4 +—

v
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Ptides: Third step:
Bind time stamps to real time at sensors and actuators

Output time stamps
Platform 1 are < real time

[/
Computationl
X

Input time stamps are A

> real time

Platform 3

Output time stamps

are < real time

/ I Computation3 E_—
S
rm 2 /
"-i”ﬁ* Sensc{rZ H Computation2 *
A
v/
cal al
face network t
fabric ce
~— ] Computation4 *—

Physical Clock synchronization
plant gives global meaning to

time stamps

Input time stamps are
= real time

Mer
>’ Actuatorl

physical
interface

Messages are

processed in time-

stamp order.




Ptides: Fourth step:
Specify latencies in the model

Global latencies between sensors and actuators become
controllable, which enables analysis of system dynamics.

| |
l l Model includes
AL manipulations of time
[Sensori® | Computation1 j ' stamps, which control
Platform 3 1 latencies between
/ ICOmputaﬁon3 - sensors and actors
Platform 2 l
29.22* Sensdrz H Computation2 *
3
U | delay d3
phrec { oy
interface 'f’ael:‘:;g’ Source interf
> ¢ -
D@-ﬂ» Computation4 Actuators may be
designed to interpret
P:\I/;'ncf' input time stamps as

the time at which to

Feedback through the physical world |

take action.




Ptides: Fifth step

Safe-to-process analysis (ensures determinacy)

Safe-to-process analysis guarantees that the generated code obeys time-stamp
semantics (events are processed in time-stamp order), given some assumptions.

Assume bounded
sensor delay s

Assume bounded
network delay d

=
ST
[

Application
specification of
latency d2

Platform 2 l

A

v |

An earliest event with
time stamp t here can
be safely merged when
real time exceeds
t+s+d+e—-d?

phﬁica
interfac

Assume bounded
clock error e
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Ptides Schedulability Analysis

Determine whether deadlines can be met

Schedulability analysis incorporates computation times to determine

whether we can guarantee that deadlines are met.

Deadline for delivery of

event with time stamp t

here ist—c3 - dZ\\j\T\i;
Computation
| Sensorl

yd

Platform 3

Assume bounded

]

I Computation3 §

computation time c1

2 |

'M* Sensc{rZ H Computation2 *

Al —~
L

model ti
delay d3

Assume bounded
computation time c2

Local
Event
Source

network
fabric

model time
delay d1

model time
delay d2

here is t

physical
interface
———

Deadline for delivery

Assume bounded
computation time c3
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PtidyOS: A lightweight microkernel supporting

Pt' d €S S€ma ntl CS An interesting property of

PtidyOS is that despite being
highly concurrent, preemptive,

. and EDF-based, it does not
PtldyOS runs on require threads.
o Arm (Lumin ary MiCI’O) A single stack is sufficient!
o Renesas
o XMOS
Occupies about 16 kbytes of
memory.
XMOS
development Luminary
board with 4 Micro M
XCores. 8962 | iy

The name “PtidyOS” is a bow to TinyOS,
which is a similar style of runtime kernel. Lee, Berkeley 30



e Analysis Schedulability
WO rkﬂ ow ) Analysis
Stru CtU re Causality Program

| Analysis | Analysis

k " 4

PtidesBasicDirector

minDelay =
TimedDelay2 1.0

AddSubtract

' Ptides Model Code
WoET=05 oerost Gen erator

.

WCET =0.4

PtidyOS

Ptolemy Il Ptides domain

Software
Component

HW Platform

CCodeGenerator lerary
DE Director Double click to ,‘l-
(= antMace] 0) . HW In the
o ,; o Mixed
. L
. Platform - Platform2 L. Slm ula tor P/ant Model . Oop
s I [gron Networkbodel 510 Lo Simulator
1) S}D ‘
0} \_/—
Ptolemy Il Discrete-event, , .
Conﬁnuous’ and Network Model Lumln'ary
Wireless domains - — Micro |HES
8962 &
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A Typical Cyber-Physical System
Printing Press

= . Application aspects

. * Jlocal (control)

e distributed (coordination)

e global (modes)

'y’  Open standards (Ethernet)

gi= * Synchronous, Time-Triggered

-  |EEE 1588 time-sync protocol
i High-speed, high precision

: * Speed: 1inch/ms

 Precision: 0.01 inch

Bosch-Rexroth

-> Time accuracy: 10us

Goal: Orchestrated networked resources built with

sound design principles on suitable abstractions

32
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Example — Flying Paster

Sensor top dead center Drive roller
Dancer

-

G Idle roller *

@.

Idle roller

Reserve
paper feed

Source: http.//offsetpressman.blogspot.com/2011/03/how-flying-paster-works.hti
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.

Source: http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html

Flying Paster
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Printing Press — Model in Ptolemy I

This design demonstrates DC motors driving a feed roller and a drive roller. The PID-based motor controllers minimize

the error between the paper velocity produced by the roller and the target profile
velocity produced by the Target Profile actor. The tracking error input allows one such roller to
track the other to remove small differences in paper velocity.

The target profile is either a profile from 0 to maxPaperVelocity starting at time 0 and

reaching the maximum value at time Interval seconds. The profile and its derivative are continuous.

SENSOR, ACTUATOR and NETWORK ACTORS STILL NEED TO BE ADDED
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T
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DE Director
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efullRollRadius: 0.7
epaperThickness: 0.000075

paperVelocityCONT

Model by Patricia Derler
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Model by Patricia Derler

Printing Press — Model in Ptolemy I

DE Director @ maxPaperVelocity: 35.0
This design demonstrates DC motors driving a feed roller and a drive roller. The PID-based motor controllers minimize - ’ztas:;un‘:'s'::qwﬁ‘rl; Iln%(g:\(/)al' 0.40
the error between the paper velocity produced by the roller and the target profile :sttemsmrfo% o
velocity produced by the Target Profile actor. The tracking error input allows one such roller to T

. . i ecoreRadius: 0.07
track the other to remove small differences in paper velocity.

efullRollRadius: 0.7

The target profile is either a profile from 0 to maxPaperVelocity starting at time 0 and epaperThickness: 0.000075
reaching the maximum value at time Interval seconds. The profile and its derivative are continuous.

SENSOR, ACTUATOR and NETWORK ACTORS STILL NEED TO BE ADDED
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Printing Press — Model in Ptolemy I

This design demonstrates DC motors driving a feed roller and a drive roller. The PID-based motor controllers minimize

the error between the paper velocity produced by the roller and the target profile

velocity produced by the Target Profile actor. The tracking error input allows one such roller to

track the other to remove small differences in paper velocity.

The target profile is either a profile from 0 to maxPaperVelocity starting at time 0 and

reaching the maximum value at time Interval seconds. The profile and its derivative are continuous.

SENSOR, ACTUATOR and NETWORK ACTORS STILL NEED TO BE ADDED
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Model by Patricia Derler

@ maxPaperVelocity: 35.0
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Determinate timing at sensors and actuators

Platform independent
model of functional and
timing behavior

Simulation

Reserve Velocity (red), Target Velocity (green) and Tracking Error

Contact (red), Top Dead Center (green), Cut (blue) and Arm (black)

Same I/O behavior
w.r.t. value and timing

board with 4
XCores.

Code Generation
to multiple target
platforms

'f‘-'-:-.‘:w; I it LS
e.g.. Renesas 7216
Demonstration Kit
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Velocity m/s

N
S

Determinate timing at sensors and actuators

> o o

Platform independent
model of functional and
timing behavior

Simulation

Reserve Velocity (red), Target Vel

locity (green) and Tracking Error

Contact (red), Top Dead Center (green), Cut (blue) and Arm (black)

LT

1.997 1998 1.999 2000 2001 2002 2003 2004 2005 2006

Time in seconds x10°

Same I/O behavior
w.r.t. value and timing

L] B0 It

XMOS

Predictable timing
Multiple cores

No analog I/0O

No FPU

No hardware clock

XCores.

Code Generation
to multiple target
platforms

Renesas
PHY chip for accurate
timestamping of

-~ inputs,

Analog 1I/0O

e.g.: Renesas 7216
Demonstration Kit
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Renesas vs. XMOS: Measured 1I/O timing

Contact (red), Top Dead Center (green), Cut (blue) and Arm (black)

0.30 ® -

0.25 - n

Simulation | 5oz} -

0.15 - n
0.10 n
0.05 L -

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
4 .. Time in seconds x1073
3.

Oscilloscope traces
Renesas ] on GPIO pins

O~MMWMWW

| r

200 0 200 400 600 800 1000 1200 1400 1600 1800

—topDeadCenter
—armContact
—tapeDetector

XMOS

—contact

—cut

-01 0 010203040506070809 1 111213141516 17 1819 2

Time (m
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Renesas vs.
XMOS: input

output input

. . . 20, . .entelr (@ I.)Iue) alnd Arml (black)l
/O timing | _
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Renesas vs.
XMOS: Busy
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Today, timing behavior is a property only of realizations of
software systems.

Tomorrow, timing behavior will be a semantic property of
programs and models.

Raffaello Sanzio da Urbino — The Athens School
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A Test Case
for PtidyOS

This device, designed by Jeff Jensen,
mixes periodic, quasi-periodic, and
sporadic real-time events.

Tunneling Ball Device
— sense ball
— track disk
— adjust trajectory
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Tunneling Ball Device in Action
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Tunneling Ball Device
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Distributed PTIDES Relies on Network Time
Synchronization with Bounded Error

Press Release October 1, 2007

National
Semiconductor

The Sight & Sound of Information

For More Information Contact

Media Contact

Naomi Mitchell

National Semiconductor
(408) 721-2142
naomi.mitchell@nsc.com

Reader Information
Design Support Group
(800) 272-9959

www.national.com o |EEE 158811 & v2 compliant

## % o Sub 10 WS accuracy
412 GP10s for event trigger or capture

Industry’s First Ethernet
Transceiver with IEEE 1588 PTP
Hardware Support from National Semiconductor Delivers
Outstanding Clock Accuracy

Using DP83640, Designers May Choose Any Microcontroller, FPGA or ASIC to
Achieve 8- Nanosecond Precision with Maximum System Flexibility

This may become
routine!

With this PHY, clocks
on a LAN agree on the
current time of day to
within 8ns, far more
precise than older
techniques like NTP.

A question we are
addressing at
Berkeley: How does
this change how we
develop distributed
CPS software?
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An Extreme Example: The Large Hadron Collider

The WhiteRabbit project at CERN is synchronizing the clocks of computers
10 km apart to within about 80 psec using a combination of IEEE 1588 PTP
and synchronous ethernet.

LARGE HADRON COLLIDER

Four detectors around the 27-km-long accelerator will hunt for new particles, including the
Higgs boson or “God particle”

O Particle detectors
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