
Modeling, Simulation, and Design of
Concurrent Real-Time Embedded
Systems Using Ptolemy

Edward A. Lee

Robert S. Pepper Distinguished Professor
EECS Department
UC Berkeley

Ptutorial

MODPROD, Workshop on Model-Based Product Development
Linköping, Sweden, February 7, 2012

Lee, Berkeley 2

The Ptolemy Project

The Ptolemy project studies modeling, simulation,
and design of concurrent, real-time, embedded
systems. The focus is on assembly of concurrent
components. The key underlying principle in the
project is the use of well-defined models of
computation that govern the interaction between
components. A major problem area being
addressed is the use of heterogeneous mixtures of
models of computation. A software system called
Ptolemy II is being constructed in Java, and serves
as the principal laboratory for experimentation.

Lee, Berkeley 3

The Ptolemy Project
Demographics, 2012

Staffing:
¢  1 professor
¢  9 graduate students
¢  3 postdocs
¢  2 research staff
¢  several visitors

Sponsors:
¢  Government

l  National Science Foundation
l  Army Research Lab
l  DARPA (MuSyC: Multiscale Systems Center)
l  Air Force Research Lab

¢  Industry
l  Bosch
l  National Instruments
l  SRC (MuSyC: Multiscale Systems Center)
l  Thales
l  Toyota

History:
The project was
started in 1990, though
its mission and focus
has evolved
considerably. An open-
source, extensible
software framework
(Ptolemy II) constitutes
the principal
experimental
laboratory.

Lee, Berkeley 4

Contributors to Ptolemy II

Principal Authors
¢  Christopher Brooks
¢  Dai Bui
¢  Chamberlain Fong
¢  John Davis, II
¢  Patricia Derler
¢  Thomas Huining Feng
¢  Mudit Goel
¢  Rowland Johnson
¢  Bilung Lee
¢  Edward Lee
¢  Ben Lickly
¢  Jie Liu
¢  Xiaojun Liu
¢  Lukito Muliadi
¢  Stephen Neuendorffer
¢  John Reekie
¢  Neil Smyth
¢  Jeff Tsay
¢  Yuhong Xiong
¢  Haiyang Zheng
¢  Gang Zhou

Other Contributors
¢  Jim Armstrong
¢  Vincent Arnould
¢  Kyungmin Bae
¢  Philip Baldwin
¢  Chad Berkley
¢  Frederic Boulanger
¢  Raymond Cardillo
¢  Jannette Cardoso
¢  Adam Cataldo
¢  Christine Cavanessians
¢  Chris Chang
¢  Albert Chen
¢  Chihong Patrick Cheng
¢  Elaine Cheong
¢  Colin Cochran
¢  Brieuc Desoutter
¢  Pedro Domecq
¢  William Douglas
¢  Johan Eker
¢  Thomas Huining Feng
¢  Tobin Fricke
¢  Teale Fristoe
¢  Shanna-Shaye Forbes
¢  Hauke Fuhrmann
¢  Geroncio Galicia
¢  Ben Horowitz

¢  Heloise Hse
¢  Efrat Jaeger
¢  Jörn Janneck
¢  Zoltan Kemenczy
¢  Bart Kienhuis
¢  Christoph Meyer Kirsch
¢  Sanjeev Kohli
¢  Vinay Krishnan
¢  Robert Kroeger
¢  Daniel Lázaro Cuadrado
¢  David Lee
¢  Man-kit (Jackie) Leung
¢  Michael Leung
¢  John Li
¢  Isaac Liu
¢  Andrew Mihal
¢  Eleftherios Matsikoudis
¢  Aleksandar Necakov
¢  Mike Kofi Okyere
¢  Sarah Packman
¢  Shankar Rao
¢  Bert Rodiers
¢  Rakesh Reddy
¢  Adriana Ricchiuti
¢  Sonia Sachs
¢  Ismael M. Sarmiento
¢  Michael Shilman

¢  Sean Simmons
¢  Mandeep Singh
¢  Miro Spoenemann
¢  Peter N. Steinmetz
¢  Dick Stevens
¢  Mary Stewart
¢  Ned Stoffel
¢  Manda Sutijono
¢  Stavros Tripakis
¢  Neil Turner
¢  Guillaume Vibert
¢  Kees Vissers
¢  Brian K. Vogel
¢  Yuke Wang
¢  Xavier Warzee
¢  Scott Weber
¢  Paul Whitaker
¢  Winthrop Williams
¢  Ed Willink
¢  Michael Wirthlin
¢  Michael Wetter
¢  William Wu
¢  Xiaowen Xin
¢  Paul Yang
¢  James Yeh
¢  Nick Zamora
¢  Charlie Zhong

Lee, Berkeley 5

References

¢  Ptolemy project home page:
http://ptolemy.org

¢  Tutorial: Building Ptolemy II Models Graphically:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-129.html

¢  Latest release:
http://ptolemy.org/ptolemyII/ptIIlatest/

¢  Latest version in the SVN repository:
http://chess.eecs.berkeley.edu/ptexternal/

Lee, Berkeley 6

Forthcoming
Book

Chapters
1.  Heterogeneous Modeling
2.  Building Graphical Models
3.  Dataflow
4.  Process Networks and Rendezvous
5.  Synchronous/Reactive Models
6.  Finite State Machines
7.  Discrete Event Models
8.  Modal Models
9.  Continuous Time Models
10.  Cyber-Physical Systems

Appendices
A.  Expressions
B.  Signal Display
C.  The Type System
D.  Creating Web Pages

Lee, Berkeley 7

Getting More Information: Documentation

Volume 1:
User-Oriented

Volume 2:
Developer-Oriented

Volume 3:
Researcher-Oriented

Tutorial information: http://ptolemy/conferences/07/tutorial.htm

Lee, Berkeley 8

The Ptolemy Pteam

John
Eidson

Isaac Liu

Christopher Brooks

Jia Zou

Edward
Lee

Ben
Lickly

Thomas
Huining

Feng

Jackie
Mankit
Leung

Jeff
Jensen

Bert Rodiers Hiren Patel

Yasemin
Demir

Shanna-
Shaye
Forbes

Thomas
Mandl

Elefterios
Matsikoudis

Patricia
Derler

Hugo
Andrade

Stefan
Resmerita

Slobodan
Matic

Lee, Berkeley 9

Outline

¢  Building models
¢  Models of computation (MoCs)
¢  Creating actors
¢  Creating directors
¢  Software architecture
¢  Miscellaneous topics

Lee, Berkeley 10

Building Models – Hello World

Lee, Berkeley 11

Building more interesting models
DE Director specifies that this
will be a discrete-event model

Lee, Berkeley 12

Building more interesting models
Model of regularly spaced
events (e.g., a clock signal).

Lee, Berkeley 13

Building more interesting models
Model of irregularly spaced
events (e.g., a failure event).

Lee, Berkeley 14

Building more interesting models
Model of a subsystem that
changes modes at random
(event-triggered) times

Lee, Berkeley 15

Building more interesting models
Model of an observer
subsystem

Lee, Berkeley 16

Building more interesting models
Events on the two input
streams must be seen in
time stamp order.

Lee, Berkeley 17

Ptolemy uses Superdense Time

Discrete event signals
can have a sequence of
distinct events at a time
instant.

Lee, Berkeley 18

This is a Component Technology
Model of a subsystem given
as an imperative program.

Lee, Berkeley 19

This is a Component Technology
Model of a subsystem given
as a state machine.

Lee, Berkeley 20

This is a Component Technology
Model of a subsystem given
as a modal model.

More types of components:
•  Modal models
•  Functional expressions.
•  Submodels in DE
•  Submodels in other MoCs

Lee, Berkeley 21

Continuous-
Time
Example

Hybrid systems are particularly
clean with superdense time. The
above signal has multiple values at
the times of the transitions.

Lee, Berkeley 22
 22

Superdense Time for
Continuous-Time Signals

At each tag, the signal has exactly one value. At each time point, the
signal has an infinite number of values. The red arrows indicate value
changes between tags, which correspond to discontinuities. Signals are
piecewise continuous, in a well-defined technical sense.

Lee, Berkeley 23

Contrast with Simulink/Stateflow

Transient States

The simulator engine of Simulink introduces
a non-zero delay to consecutive transitions.

In Simulink, a signal can only have one value at a given
time. Hence Simulink introduces solver-dependent behavior.

Lee, Berkeley 24

Outline

¢  Building models
¢  Models of computation (MoCs)
¢  Creating actors
¢  Creating directors
¢  Software architecture
¢  Miscellaneous topics

Lee, Berkeley 25

MoC Example 1:
Discrete Events (DE)

DE Director implements
timed semantics using an
event queue

Event source

Time line
Signal

put() method inserts a token
into the event queue.

In DE, actors send time-
stamped events to one
another, and events are
processed in chronological
order.

Lee, Berkeley 26

MoC Example 2:
Kahn Process Networks (PN)

actor == thread

signal == stream

reads block

writes don’t Kahn, MacQueen, 1977

In PN, every
actor runs in
a thread,
with blocking
reads of
input ports
and non-
blocking
writes to
outputs.

Lee, Berkeley 27

MoC Example 3:
Synchronous Dataflow (SDF)

In SDF, actors “fire,” and in each firing, consume a
fixed number of tokens from the input streams, and
produce a fixed number of tokens on the output
streams.

SDF is a special case of PN
where deadlock and
boundedness are decidable. It is
well suited to static scheduling
and code generation. It can also
be automatically parallelized.

Lee, Berkeley 28

MoC Example 4:
Synchronous/Reactive (SR)

At each tick of a global “clock,” every
signal has a value or is absent.

Like SDF, SR is decidable and suitable for
code generation. It is harder to parallelize
than SDF, however.

SR languages: Esterel, SyncCharts, Lustre,
SCADE, Signal.

Lee, Berkeley 29

MoC Example 5:
Rendezvous

actor == thread

writes block

CSP (Hoare), SCCS (Milner),
Reo (Arbab)

In Rendezvous, every
actor runs in a thread,
with blocking reads of
input ports and blocking
writes to outputs. Every
communication is a
(possibly multi-way)
rendezvous.

reads block

Lee, Berkeley 30

MoC Example 6:
Continuous Time (CT)

Director includes an ODE solver.

In CT, actors operate on
continuous-time and/or
discrete-event signals. An
ODE solver governs the
execution.

Signal is a
continuous-time
function.

Lee, Berkeley 31

Ptolemy II Hierarchy Supports Heterogeneity

This requires a composable abstract semantics.

Concurrent actors governed by one model of
computation (e.g., Discrete Events).

Modal behavior given in another MoC.

Detailed dynamics given
in a third MoC (e.g.

Continuous Time)

Lee, Berkeley 32

Outline

¢  Building models
¢  Models of computation (MoCs)
¢  Creating actors
¢  Creating directors
¢  Software architecture
¢  Miscellaneous topics

Lee, Berkeley 33

Actors

Lee, Berkeley 34

Ptolemy Components are Actors and Objects

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

 Output data

What flows through
an object is

evolving data

class name

data

methods

call return

What flows through
an object is

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

Lee, Berkeley 35

Actors

•  Ptolemy has a library of predefined actors
•  Java classes that implement the “executable” interface

Lee, Berkeley 36

Actors can be defined in Java, C, Python, Cal,
and MATLAB

Cal, developed by Joern Janneck (now
at Lund) is a language for defining
actors that are analyzable for key
behavioral properties.

Lee, Berkeley 37

Approach: Concurrent Composition of Software
Components, which are themselves designed
with Conventional Languages

Lee, Berkeley 38

Simple String Manipulation Actor in Java

public class Ptolemnizer extends TypedAtomicActor {
 public Ptolemnizer(CompositeEntity container, String name)
 throws IllegalActionException, NameDuplicationException {
 super(container, name);
 input = new TypedIOPort(this, "input");
 input.setTypeEquals(BaseType.STRING);
 input.setInput(true);
 output = new TypedIOPort(this, "output");
 output.setTypeEquals(BaseType.STRING);
 output.setOutput(true);
 }
 public TypedIOPort input;
 public TypedIOPort output;
 public void fire() throws IllegalActionException {
 if (input.hasToken(0)) {
 Token token = input.get(0);
 String result = ((StringToken)token).stringValue();
 result = result.replaceAll("t", "pt");
 output.send(0, new StringToken(result));
 }
 }
}

Lee, Berkeley 39

Object Model for
Executable Components

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

Lee, Berkeley 40

Definition of the Register Actor (Sketch)

class Register extends TypedAtomicActor {
 private Object state;
 boolean prefire() {
 if (trigger is known) { return true; }
 }
 void fire() {
 if (trigger is present) {
 send state to output;
 } else {
 assert output is absent;
 }
 }
 void postfire() {
 if (trigger is present) {
 state = value read from data input;
 }
 }

Can the
actor fire?

React to
trigger
input.

Read the
data input
and update
the state.

trigger
input
port

data input port

Lee, Berkeley 41

Outline

¢  Building models
¢  Models of computation (MoCs)
¢  Creating actors
¢  Creating directors
¢  Software architecture
¢  Miscellaneous topics

Lee, Berkeley 42

Directors

Lee, Berkeley 43

Object Model (Simplified) for
Communication Infrastructure

IOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

Lee, Berkeley 44

Object-Oriented Approach to Achieving
Behavioral Polymorphism

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods
implement the communication
semantics of a domain in Ptolemy
II. The receiver instance used in
communication is supplied by the
director, not by the component.

producer
actor

consumer
actor

IOPort

Receiver

Director

Recall: Behavioral polymorphism
is the idea that components can be
defined to operate with multiple
models of computation and multiple
middleware frameworks.

Lee, Berkeley 45

Extension Exercise

Build a director that subclasses PNDirector to allow ports
to alter the “blocking read” behavior. In particular, if a port
has a parameter named “tellTheTruth” then the receivers
that your director creates should “tell the truth” when
hasToken() is called. That is, instead of always returning
true, they should return true only if there is a token in the
receiver.

Parameterizing the behavior of a receiver is a simple form
of communication refinement, a key principle in, for
example, Metropolis.

Lee, Berkeley 46

Implementation of the
NondogmaticPNDirector

package doc.tutorial;
import …
public class NondogmaticPNDirector extends PNDirector {
 public NondogmaticPNDirector(CompositeEntity container, String name)
 throws IllegalActionException, NameDuplicationException {
 super(container, name);
 }
 public Receiver newReceiver() {
 return new FlexibleReceiver();
 }
 public class FlexibleReceiver extends PNQueueReceiver {
 public boolean hasToken() {
 IOPort port = getContainer();
 Attribute attribute = port.getAttribute("tellTheTruth");
 if (attribute == null) {
 return super.hasToken();
 }
 // Tell the truth...
 return _queue.size() > 0;
 }
 }
}

Lee, Berkeley 47

Using It

With NondogmaticPNDirector:

With PNDirector:

Lee, Berkeley 48

Designing a Sensible MoC is not so easy!
Consider Kahn Process Networks (PN)

•  A set of components called actors.
•  Each representing a sequential procedure.
•  Where steps in these procedures receive or send messages

to other actors (or perform local operations).
•  Messages are communicated asynchronously with

unbounded buffers.
•  A procedure can always send a message. It does not need

to wait for the recipient to be ready to receive.
•  Messages are delivered reliably and in order.
•  When a procedure attempts to receive a message, that

attempt blocks the procedure until a message is available.

Lee, Berkeley 49

Coarse History

¢  Semantics given by Gilles Kahn in 1974.
l  Fixed points of continuous and monotonic functions

¢  More limited form given by Kahn and MacQueen in 1977.
l  Blocking reads and nonblocking writes.

¢  Generalizations to nondeterministic systems
l  Kosinski [1978], Stark [1980s], …

¢  Bounded memory execution given by Parks in 1995.
l  Solves an undecidable problem.

¢  Debate over validity of this policy, Geilen and Basten 2003.
l  Relationship between denotational and operational semantics.

¢  Many related models intertwined.
l  Actors (Hewitt, Agha), CSP (Hoare), CCS (Milner), Interaction (Wegner),

Streams (Broy, …), Dataflow (Dennis, Arvind, …)...

Lee, Berkeley 52

Dataflow

Dataflow models are similar to PN models except
that actor behavior is given in terms of discrete
“firings” rather than processes. A firing occurs in
response to inputs.

Lee, Berkeley 53

A few variants of dataflow MoCs

¢  Computation graphs [Karp and Miller, 1966]
¢  Static dataflow [Dennis, 1974]
¢  Dynamic dataflow [Arvind, 1981]
¢  Structured dataflow [Matwin & Pietrzykowski 1985]
¢  K-bounded loops [Culler, 1986]
¢  Synchronous dataflow [Lee & Messerschmitt, 1986]
¢  Structured dataflow and LabVIEW [Kodosky, 1986]
¢  PGM: Processing Graph Method [Kaplan, 1987]
¢  Synchronous languages [Lustre, Signal, 1980’s]
¢  Well-behaved dataflow [Gao, 1992]
¢  Boolean dataflow [Buck and Lee, 1993]
¢  Multidimensional SDF [Lee, 1993]
¢  Cyclo-static dataflow [Lauwereins, 1994]
¢  Integer dataflow [Buck, 1994]
¢  Bounded dynamic dataflow [Lee & Parks, 1995]
¢  Heterochronous dataflow [Girault, Lee, & Lee, 1997]
¢  Scenarios [Geilen & Stuijk, 2010]
¢  …

Lee, Berkeley 54

Some Subtleties

¢  Termination, deadlock, and livelock (halting)
¢  Bounding the buffers.
¢  Fairness
¢  Parallelism
¢  Data structures and shared data
¢  Determinism
¢  Real-time constraints
¢  Syntax

Lee, Berkeley 55

Question 1:
Is “Fair” Scheduling a Good Idea?

In the following model, what happens if every
actor is given an equal opportunity to run?

Lee, Berkeley 56

Question 2:
Is “Data-Driven” Execution a Good Idea?

In the following model, if actors are allowed to
run when they have input data on connected
inputs, what will happen?

Lee, Berkeley 57

Question 3:
When are Outputs Required?

Is the execution shown for the following model
the “right” execution?

Lee, Berkeley 58

Question 4: Is “Demand-Driven”
Execution a Good Idea?

In the following model, if actors are allowed to
run when another actor requires their outputs,
what will happen?

Lee, Berkeley 59

Question 5: What is the “Correct”
Execution of This Program?

Lee, Berkeley 60

Question 6: What is the Correct Behavior
of this Program?

Lee, Berkeley 61

Naïve Schedulers Fail

¢  Fair
¢  Demand driven
¢  Data driven
¢  Most mixtures of demand and data driven

If people insist on building their own MoCs from scratch,
what will keep them from repeating the mistakes that
have been made by top experts in the field?

Lee, Berkeley 62

Programmers should not have to figure out
how to solve these problems!
Undecidability and Turing Completeness [Buck 93]

Given the following four actors and Boolean streams, you
can construct a universal Turing machine:

Hence, the following questions are undecidable:
l  Will a model deadlock (terminate)?
l  Can a model be executed with bounded buffers?

Lee, Berkeley 63

Question 7:
How to support nondeterminism?

Merging of streams is needed for some
applications. Does this require fairness?
What does fairness mean?

Lee, Berkeley 64

These problems have been solved!
Let’s not make programmers re-solve
them for every program.

Directors should be
designed by
experts in
languages and
concurrency, not by
application model
builders.

Library of
directors

Program using actor-oriented
components and a PN MoC

Lee, Berkeley 65

The PN Director solves the above
problems by implementing a “useful
execution”

Define a correct execution to be any execution
for which after any finite time every signal is a
prefix of the signal given by the (Kahn) least-
fixed-point semantics.

Define a useful execution to be a correct
execution that satisfies the following criteria:
1.  For every non-terminating model, after any finite

time, a useful execution will extend at least one
stream in finite (additional) time.

2.  If a correct execution satisfying criterion (1) exists
that executes with bounded buffers, then a useful
execution will execute with bounded buffers.

Lee, Berkeley 66

Our solution:
Parks’ Strategy [Parks 95]

This “solves” the undecidable problems:
l  Start with an arbitrary bound on the capacity of all buffers.
l  Execute as much as possible.
l  If deadlock occurs and at least one actor is blocked on a write,

increase the capacity of at least one buffer to unblock at least one
write.

l  Continue executing, repeatedly checking for deadlock.

This delivers a useful execution (possibly taking infinite
time to tell you whether a model deadlocks and how
much buffer memory it requires).

Lee, Berkeley 67

There are many more subtleties!
We need disciplined concurrent models of
computation, not arbitrarily flexible libraries.

Some principles:
¢  Do not use nondeterministic programming models to

accomplish deterministic ends.

¢  Use concurrency models that have analogies in the
physical world (actors, not threads).

¢  Provide these in the form of models of computation
(MoCs) with well-developed semantics and tools.

¢  Use specialized MoCs to exploit semantic properties
(avoid excess generality).

¢  Leave the choice of shared memory or message
passing to the compiler.

Lee, Berkeley 68

Extension Exercise 2

Build a director that subclasses Director and allows
different receiver classes to be used on different
connections. This is a form of what we call “amorphous
heterogeneity.”

We will not do this today.
See $PTII/doc/tutorial/domains

Lee, Berkeley 71

Extension Exercise 3

Build a director that fires actors in left-to-right order, as
they are laid out on the screen.

We will not do this today.
See $PTII/doc/tutorial/domains

Lee, Berkeley 73

Outline

¢  Building models
¢  Models of computation (MoCs)
¢  Creating actors
¢  Creating directors
¢  Software architecture
¢  Miscellaneous topics

Lee, Berkeley 74

Ptolemy II Software Architecture
Built for Extensibility

Ptolemy II packages
have carefully
constructed
dependencies and
interfaces

PN

Rendezvous

Continuous Kernel

Data

Actor Math

Graph

Lee, Berkeley 75

Hierarchy - Composite Components

toplevel CompositeEntity
transparent or opaque
CompositeEntity

Entity
Relation dangling

Port

Port
opaque Port

Lee, Berkeley 76

Separable Tool Architecture

¢ Abstract Syntax
¢ Concrete Syntax
¢ Abstract Semantics
¢ Concrete Semantics

Lee, Berkeley 77

The Basic Abstract Syntax for
Composition

PortPort

Entity Entity
Link

Relation

Entity
Port

connection

connection

co
nn
ec
tio
n

Link

Li
nk

Attributes Attributes

Attributes

•  Entities
•  Attributes on entities (parameters)
•  Ports in entities
•  Links between ports
•  Width on links (channels)
•  Hierarchy

Concrete syntaxes:
•  XML
•  Visual pictures
•  Actor languages (Cal, StreamIT, …)

Lee, Berkeley 78

Meta Model: Kernel Classes
Supporting the Abstract Syntax

NamedObj

Entity

+Entity()
+Entity(name : String)
+Entity(w : Workspace, name : String)
+connectedPorts() : Enumeration
+connectionsChanged(p : Port)
+getPort(name : String) : Port
+getPorts() : Enumeration
+linkedRelations() : Enumeration
+newPort(name : String) : Port
+removeAllPorts()
#_addPort(p : Port)
#_removePort(p : Port)

-_portList : NamedList

Port

+Port()
+Port(w : Workspace)
+Port(container : Entity, name : String)
+connectedPorts() : Enumeration
+isLinked(r : Relation) : boolean
+isOpaque() : boolean
+linkedRelations() : Enumeration
+link(r : Relation)
+numLinks() : int
+setContainer(c : Entity)
+unlink(r : Relation)
+unlinkAll()
#_link(r : Relation)

-_container : Entity
-_relationsList : CrossRefList

0..n0..1

containee

container

Relation

+Relation()
+Relation(name : String)
+Relation(w : Workspace, name : String)
+linkedPorts() : Enumeration
+linkedPorts(except : Port) : Enumeration
+numLinks() : int
+unlinkAll()
#_checkPort(p : Port)
#_getPortList() : CrossRefList

-_portList : CrossRefList0..n

0..n

link

link

CrossRefList

1..1

1..1

1..1
1..1

These get subclassed for specific purposes.

Lee, Berkeley 79

Separable Tool Archictecture

¢ Abstract Syntax
¢ Concrete Syntax
¢ Abstract Semantics
¢ Concrete Semantics

Lee, Berkeley 80

MoML
XML Schema for this Abstract Syntax

Ptolemy II designs are represented in XML:

 ...
 <entity name="FFT" class="ptolemy.domains.sdf.lib.FFT">
 <property name="order" class="ptolemy.data.expr.Parameter" value="order">
 </property>
 <port name="input" class="ptolemy.domains.sdf.kernel.SDFIOPort">
 ...
 </port>
 ...
 </entity>
 ...
 <link port="FFT.input" relation="relation"/>
 <link port="AbsoluteValue2.output" relation="relation"/>
 ...

Lee, Berkeley 81

Separable Tool Archictecture

¢ Abstract Syntax
¢ Concrete Syntax
¢ Abstract Semantics
¢ Concrete Semantics

Lee, Berkeley 82

Abstract Semantics (Informally)
of Actor-Oriented Models of Computation

Actor-Oriented Models of
Computation that we have
implemented:

•  dataflow (several variants)
•  process networks
•  distributed process networks
•  Click (push/pull)
•  continuous-time
•  CSP (rendezvous)
•  discrete events
•  distributed discrete events
•  synchronous/reactive
•  time-driven (several variants)
•  …

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

execution control data transport

init()
fire()

Lee, Berkeley 83

Implemented as a Java interface

Interface “Executable”

Lee, Berkeley 84

Example execution sequence

Lee, Berkeley 85

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
¢  Initialization
¢  Execution
¢  Finalization

Lee, Berkeley 86

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
¢  Initialization
¢  Execution
¢  Finalization

E.g., in DE: Post tags on the event
queue corresponding to any initial
events the actor wants to
produce.

Lee, Berkeley 87

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
¢  Initialization
¢  Execution
¢  Finalization

Iterate

If (prefire()) {
 fire();
 postfire();
}

Only the postfire() method
should change the state of the
actor.

Lee, Berkeley 88

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
¢  Initialization
¢  Execution
¢  Finalization

Lee, Berkeley 89

Definition of the Register Actor (Sketch)

class Register extends TypedAtomicActor {
 private Object state;
 boolean prefire() {
 if (trigger is known) { return true; }
 }
 void fire() {
 if (trigger is present) {
 send state to output;
 } else {
 assert output is absent;
 }
 }
 void postfire() {
 if (trigger is present) {
 state = value read from data input;
 }
 }

Can the
actor fire?

React to
trigger
input.

Read the
data input
and update
the state.

trigger
input
port

data input port

Lee, Berkeley 90

Separable Tool Archictecture

¢ Abstract Syntax
¢ Concrete Syntax
¢ Abstract Semantics
¢ Concrete Semantics

Lee, Berkeley 91

Models of Computation
Implemented in Ptolemy II

¢  CI – Push/pull component interaction
¢  Click – Push/pull with method invocation
¢  CSP – concurrent threads with rendezvous
¢  Continuous – continuous-time modeling with fixed-point semantics
¢  CT – continuous-time modeling
¢  DDF – Dynamic dataflow
¢  DE – discrete-event systems
¢  DDE – distributed discrete events
¢  DPN – distributed process networks
¢  FSM – finite state machines
¢  DT – discrete time (cycle driven)
¢  Giotto – synchronous periodic
¢  GR – 3-D graphics
¢  PN – process networks
¢  Rendezvous – extension of CSP
¢  SDF – synchronous dataflow
¢  SR – synchronous/reactive
¢  TM – timed multitasking

Most of
these are
actor
oriented.

Lee, Berkeley 92

Outline

¢  Building models
¢  Models of computation (MoCs)
¢  Creating actors
¢  Creating directors
¢  Software architecture
¢  Miscellaneous topics

Lee, Berkeley 93

Example Extensions
Using Models to Control Models

This is an example of a “higher-
order component,” or an actor that
references one or more other actors.

MultipleRuns SDF demo

Lee, Berkeley 94

Examples of Extensions
Mobile Models

Model-based distributed task management:

MobileModel actor accepts a StringToken
containing an XML description of a model.
It then executes that model on a stream of
input data.

PushConsumer actor receives pushed
data provided via CORBA, where the data
is an XML model of a signal analysis
algorithm.

Authors:
Yang Zhao
Steve Neuendorffer
Xiaojun Liu

Lee, Berkeley 95

Ptolemy II Extension Points

¢  Define actors
¢  Interface to foreign tools (e.g. Python, MATLAB)
¢  Interface to verification tools (e.g. Chic)
¢  Define actor definition languages
¢  Define directors (and models of computation)
¢  Define visual editors
¢  Define textual syntaxes and editors
¢  Packaged, branded configurations

 All of our “domains” are extensions built on a core
infrastructure.

Lee, Berkeley 96

Extension of Discrete-Event
Modeling for Wireless Sensor Nets

VisualSense extends
the Ptolemy II discrete-
event domain with
communication between
actors representing
sensor nodes being
mediated by a channel,
which is another actor.

The example at the left
shows a grid of nodes
that relay messages
from an initiator (center)
via a channel that
models a low (but non-
zero) probability of long
range links being viable.

Lee, Berkeley 97

Viptos: Extension of VisualSense with
Programming of TinyOS nodes

Physical environment

Hardware
Software

Simulation
(with visualization of
routing tree)

Code generation:
Models to nesC. Viptos extends VisualSense

with programming of TinyOS
nodes in a wireless network.
See the Ph.D. thesis of
Elaine Cheong (Aug 2007).

Viptos demo:
Multihop routing (Surge)

Lee, Berkeley 98

Another Extension: HyVisual – Hybrid System
Modeling Tool Based on Ptolemy II

HyVisual was
first released in
January 2003.

Lee, Berkeley 99

Another Extension:
Kepler: Aimed at Scientific Workflows

Key capabilities added by Kepler:
¢  Database interfaces
¢  Data and actor ontologies
¢  Web service wrappers
¢  Grid service wrappers
¢  Semantic types
¢  Provenance tracking
¢  Authentication framework

This example shows the use of data ontologies and
database wrappers.

Lee, Berkeley 100

CPES Fusion Simulation Workflow
¢  Fusion Simulation Codes: (a) GTC; (b) XGC with M3D

l  e.g. (a) currently 4,800 (soon: 9,600) nodes Cray XT3; 9.6TB RAM; 1.5TB simulation data/run
¢  GOAL:

l  automate remote simulation job submission
l  continuous file movement to analysis cluster f

or dynamic visualization & simulation control
l  … with runtime-configurable observables

Select
JobMgr

Submit
Simulation

Job

Submit
FileMover

Job

Execution Log
(=> Data Provenance)

Overall architect (& prototypical user): Scott Klasky (ORNL)
WF design & implementation: Norbert Podhorszki (UC Davis)

Kepler as an Interface to the Grid

Lee, Berkeley 101

Leverage: Kepler is a Team Effort

Ptolemy II

Resurgence

Griddles

SRB

LOOKING

SKIDL

Cipres NLADR Contributor names and
funding info are at the
Kepler website: http://
kepler-project.org

Other contributors:
 - Chesire (UK Text Mining Center)
 - DART (Great Barrier Reef, Australia)
 - National Digital Archives + UCSD-TV (US)
 - …

Lee, Berkeley 102

Graph Transformation

Model transformation workflow specifies iterative
graph rewriting to transform the top-right model
into the bottom-left model.

Executing the
model at the left
transforms the top
model into the
bottom model.

Lee, Berkeley 103

Workflows

Here we have used Event-
Relationship graphs
[Schruben 83] to specify
the workflow logic.

Lee, Berkeley 104

Some Current Research Thrusts in the
Ptolemy Project

¢  Precision-timed (PRET) machines: Introduce timing into the core
abstractions of computing, beginning with instruction set architectures,
using configurable hardware as an experimental platform.

¢  Distributed real-time computing (PTIDES): Models of computation
based on distributed discrete events, embedded OS (PtidyOS), analysis
and synthesis techniques.

¢  Model engineering: Modeling and design of large scale systems, those
that include networking, database, grid computing, and information
subsystems.

¢  Semantics of concurrent and real-time systems: Mathematical
models of programs in conjunction with models of their physical
environment.

Lee, Berkeley 105

Forthcoming
Book

Chapters
1.  Heterogeneous Modeling
2.  Building Graphical Models
3.  Dataflow
4.  Process Networks and Rendezvous
5.  Synchronous/Reactive Models
6.  Finite State Machines
7.  Discrete Event Models
8.  Modal Models
9.  Continuous Time Models
10.  Cyber-Physical Systems

Appendices
A.  Expressions
B.  Signal Display
C.  The Type System
D.  Creating Web Pages

