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The Ptolemy Project 

The Ptolemy project studies modeling, simulation, 
and design of concurrent, real-time, embedded 
systems. The focus is on assembly of concurrent 
components. The key underlying principle in the 
project is the use of well-defined models of 
computation that govern the interaction between 
components. A major problem area being 
addressed is the use of heterogeneous mixtures of 
models of computation. A software system called 
Ptolemy II is being constructed in Java, and serves 
as the principal laboratory for experimentation. 
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The Ptolemy Project 
Demographics, 2012 

Staffing: 
¢  1 professor 
¢  9 graduate students 
¢  3 postdocs 
¢  2 research staff 
¢  several visitors 

Sponsors: 
¢  Government 

l  National Science Foundation 
l  Army Research Lab 
l  DARPA (MuSyC: Multiscale Systems Center) 
l  Air Force Research Lab 

¢  Industry 
l  Bosch 
l  National Instruments 
l  SRC (MuSyC: Multiscale Systems Center) 
l  Thales 
l  Toyota 

History: 
The project was 
started in 1990, though 
its mission and focus 
has evolved 
considerably. An open-
source, extensible 
software framework 
(Ptolemy II) constitutes 
the principal 
experimental 
laboratory. 



Lee, Berkeley 4 

Contributors to Ptolemy II 

Principal Authors 
¢  Christopher Brooks 
¢  Dai Bui 
¢  Chamberlain Fong 
¢  John Davis, II 
¢  Patricia Derler 
¢  Thomas Huining Feng 
¢  Mudit Goel 
¢  Rowland Johnson 
¢  Bilung Lee 
¢  Edward Lee 
¢  Ben Lickly 
¢  Jie Liu 
¢  Xiaojun Liu 
¢  Lukito Muliadi 
¢  Stephen Neuendorffer 
¢  John Reekie 
¢  Neil Smyth 
¢  Jeff Tsay 
¢  Yuhong Xiong 
¢  Haiyang Zheng 
¢  Gang Zhou 

Other Contributors 
¢  Jim Armstrong 
¢  Vincent Arnould 
¢  Kyungmin Bae 
¢  Philip Baldwin 
¢  Chad Berkley 
¢  Frederic Boulanger 
¢  Raymond Cardillo 
¢  Jannette Cardoso 
¢  Adam Cataldo 
¢  Christine Cavanessians 
¢  Chris Chang 
¢  Albert Chen 
¢  Chihong Patrick Cheng 
¢  Elaine Cheong 
¢  Colin Cochran 
¢  Brieuc Desoutter 
¢  Pedro Domecq 
¢  William Douglas 
¢  Johan Eker 
¢  Thomas Huining Feng 
¢  Tobin Fricke 
¢  Teale Fristoe 
¢  Shanna-Shaye Forbes 
¢  Hauke Fuhrmann 
¢  Geroncio Galicia 
¢  Ben Horowitz 

¢  Heloise Hse 
¢  Efrat Jaeger 
¢  Jörn Janneck 
¢  Zoltan Kemenczy 
¢  Bart Kienhuis 
¢  Christoph Meyer Kirsch 
¢  Sanjeev Kohli 
¢  Vinay Krishnan 
¢  Robert Kroeger 
¢  Daniel Lázaro Cuadrado 
¢  David Lee 
¢  Man-kit (Jackie) Leung 
¢  Michael Leung 
¢  John Li 
¢  Isaac Liu 
¢  Andrew Mihal 
¢  Eleftherios Matsikoudis 
¢  Aleksandar Necakov 
¢  Mike Kofi Okyere 
¢  Sarah Packman 
¢  Shankar Rao 
¢  Bert Rodiers 
¢  Rakesh Reddy 
¢  Adriana Ricchiuti 
¢  Sonia Sachs 
¢  Ismael M. Sarmiento 
¢  Michael Shilman 

¢  Sean Simmons 
¢  Mandeep Singh 
¢  Miro Spoenemann 
¢  Peter N. Steinmetz 
¢  Dick Stevens 
¢  Mary Stewart 
¢  Ned Stoffel 
¢  Manda Sutijono 
¢  Stavros Tripakis 
¢  Neil Turner 
¢  Guillaume Vibert 
¢  Kees Vissers 
¢  Brian K. Vogel 
¢  Yuke Wang 
¢  Xavier Warzee 
¢  Scott Weber 
¢  Paul Whitaker 
¢  Winthrop Williams 
¢  Ed Willink 
¢  Michael Wirthlin 
¢  Michael Wetter 
¢  William Wu 
¢  Xiaowen Xin 
¢  Paul Yang 
¢  James Yeh 
¢  Nick Zamora 
¢  Charlie Zhong 



Lee, Berkeley 5 

References 

¢  Ptolemy project home page: 
http://ptolemy.org  

¢  Tutorial: Building Ptolemy II Models Graphically:   
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-129.html  

¢  Latest release: 
http://ptolemy.org/ptolemyII/ptIIlatest/ 

¢  Latest version in the SVN repository: 
http://chess.eecs.berkeley.edu/ptexternal/   



Lee, Berkeley 6 

Forthcoming 
Book 

Chapters 
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3.  Dataflow 
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5.  Synchronous/Reactive Models 
6.  Finite State Machines 
7.  Discrete Event Models 
8.  Modal Models 
9.  Continuous Time Models 
10.  Cyber-Physical Systems 
 
Appendices 
A.  Expressions 
B.  Signal Display 
C.  The Type System 
D.  Creating Web Pages 
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Getting More Information: Documentation 

Volume 1: 
User-Oriented 

Volume 2: 
Developer-Oriented 

Volume 3: 
Researcher-Oriented 

Tutorial information: http://ptolemy/conferences/07/tutorial.htm 
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Outline 

¢  Building models 
¢  Models of computation (MoCs) 
¢  Creating actors 
¢  Creating directors 
¢  Software architecture 
¢  Miscellaneous topics 
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Building Models – Hello World 
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Building more interesting models 
DE Director specifies that this 
will be a discrete-event model 
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Building more interesting models 
Model of regularly spaced 
events (e.g., a clock signal). 
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Building more interesting models 
Model of irregularly spaced 
events (e.g., a failure event). 
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Building more interesting models 
Model of a subsystem that 
changes modes at random 
(event-triggered) times 
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Building more interesting models 
Model of an observer 
subsystem 
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Building more interesting models 
Events on the two input 
streams must be seen in 
time stamp order. 
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Ptolemy uses Superdense Time 

Discrete event signals 
can have a sequence of 
distinct events at a time 
instant. 
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This is a Component Technology 
Model of a subsystem given 
as an imperative program. 
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This is a Component Technology 
Model of a subsystem given 
as a state machine. 
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This is a Component Technology 
Model of a subsystem given 
as a modal model. 

More types of components: 
•  Modal models 
•  Functional expressions. 
•  Submodels in DE 
•  Submodels in other MoCs 
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Continuous- 
Time 
Example 

Hybrid systems are particularly 
clean with superdense time. The 
above signal has multiple values at 
the times of the transitions. 
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Superdense Time for  
Continuous-Time Signals 

At each tag, the signal has exactly one value. At each time point, the 
signal has an infinite number of values. The red arrows indicate value 
changes between tags, which correspond to discontinuities. Signals are 
piecewise continuous, in a well-defined technical sense. 
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Contrast with Simulink/Stateflow 

Transient States 

The simulator engine of Simulink introduces 
a non-zero delay to consecutive transitions.  

In Simulink, a signal can only have one value at a given 
time. Hence Simulink introduces solver-dependent behavior. 
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Outline 

¢  Building models 
¢  Models of computation (MoCs) 
¢  Creating actors 
¢  Creating directors 
¢  Software architecture 
¢  Miscellaneous topics 
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MoC Example 1:  
Discrete Events (DE) 

DE Director implements 
timed semantics using an 
event queue 

Event source 

Time line 
Signal 

put() method inserts a token 
into the event queue. 

In DE, actors send time-
stamped events to one 
another, and events are 
processed in chronological 
order. 
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MoC Example 2:  
Kahn Process Networks (PN) 

actor == thread 

signal == stream 

reads block 

writes don’t Kahn, MacQueen, 1977 

In PN, every 
actor runs in 
a thread, 
with blocking 
reads of 
input ports 
and non-
blocking 
writes to 
outputs. 
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MoC Example 3:  
Synchronous Dataflow (SDF) 

In SDF, actors “fire,” and in each firing, consume a 
fixed number of tokens from the input streams, and 
produce a fixed number of tokens on the output 
streams. 

SDF is a special case of PN 
where deadlock and 
boundedness are decidable. It is 
well suited to static scheduling 
and code generation. It can also 
be automatically parallelized. 
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MoC Example 4:  
Synchronous/Reactive (SR) 

At each tick of a global “clock,” every 
signal has a value or is absent. 

Like SDF, SR is decidable and suitable for 
code generation. It is harder to parallelize 
than SDF, however. 
 

SR languages: Esterel, SyncCharts, Lustre, 
SCADE, Signal. 
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MoC Example 5:  
Rendezvous 

actor == thread 

writes block 

CSP (Hoare), SCCS (Milner), 
Reo (Arbab) 

In Rendezvous, every 
actor runs in a thread, 
with blocking reads of 
input ports and blocking 
writes to outputs. Every 
communication is a 
(possibly multi-way) 
rendezvous. 

reads block 
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MoC Example 6:  
Continuous Time (CT) 

Director includes an ODE solver. 

In CT, actors operate on 
continuous-time and/or 
discrete-event signals. An 
ODE solver governs the 
execution. 

Signal is a 
continuous-time 
function. 
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Ptolemy II Hierarchy Supports Heterogeneity 

This requires a composable abstract semantics. 

Concurrent actors governed by one model of 
computation (e.g., Discrete Events). 

Modal behavior given in another MoC. 

Detailed dynamics given 
in a third MoC (e.g. 

Continuous Time) 
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Outline 

¢  Building models 
¢  Models of computation (MoCs) 
¢  Creating actors 
¢  Creating directors 
¢  Software architecture 
¢  Miscellaneous topics 
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Actors  
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Ptolemy Components are Actors and Objects 

 

The alternative: Actor oriented: 

actor name 

data (state) 

ports 

Input data 

parameters 

   Output data 

What flows through 
an object is 

evolving data 

class name 

data 

methods 

call return 

What flows through 
an object is 

sequential control 

The established: Object-oriented: 

Things happen to objects 

Actors make things happen 
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Actors  

•  Ptolemy has a library of predefined actors 
•  Java classes that implement the “executable” interface 
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Actors can be defined in Java, C, Python, Cal, 
and MATLAB 

Cal, developed by Joern Janneck (now 
at Lund) is a language  for defining 
actors that are analyzable for key 
behavioral properties. 
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Approach: Concurrent Composition of Software 
Components, which are themselves designed 
with Conventional Languages 
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Simple String Manipulation Actor in Java 

public class Ptolemnizer extends TypedAtomicActor { 
    public Ptolemnizer(CompositeEntity container, String name) 
            throws IllegalActionException, NameDuplicationException { 
        super(container, name); 
        input = new TypedIOPort(this, "input"); 
        input.setTypeEquals(BaseType.STRING); 
        input.setInput(true); 
        output = new TypedIOPort(this, "output"); 
        output.setTypeEquals(BaseType.STRING); 
        output.setOutput(true); 
    } 
    public TypedIOPort input; 
    public TypedIOPort output; 
    public void fire() throws IllegalActionException { 
        if (input.hasToken(0)) { 
            Token token = input.get(0); 
            String result = ((StringToken)token).stringValue(); 
            result = result.replaceAll("t", "pt"); 
            output.send(0, new StringToken(result)); 
        } 
    } 
} 
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Object Model for 
Executable Components 

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director
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Definition of the Register Actor (Sketch) 

class Register extends TypedAtomicActor { 
  private Object state; 
  boolean prefire() { 
    if (trigger is known) { return true; } 
  } 
  void fire() { 
    if (trigger is present) { 
      send state to output; 
    } else { 
      assert output is absent; 
    } 
  } 
  void postfire() { 
    if (trigger is present) { 
      state = value read from data input; 
    } 
  } 

Can the 
actor fire? 

React to 
trigger 
input. 

Read the 
data input 
and update 
the state. 

trigger 
input 
port 

data input port 
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Outline 

¢  Building models 
¢  Models of computation (MoCs) 
¢  Creating actors 
¢  Creating directors 
¢  Software architecture 
¢  Miscellaneous topics 
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Directors  
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Object Model (Simplified) for 
Communication Infrastructure 

IOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

  

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver
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Object-Oriented Approach to Achieving 
Behavioral Polymorphism 

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods 
implement the communication 
semantics of a domain in Ptolemy 
II. The receiver instance used in 
communication is supplied by the 
director, not by the component. 

producer
actor

consumer
actor

IOPort

Receiver

Director

Recall: Behavioral polymorphism 
is the idea that components can be 
defined to operate with multiple 
models of computation and multiple 
middleware frameworks. 
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Extension Exercise 

Build a director that subclasses PNDirector to allow ports 
to alter the “blocking read” behavior. In particular, if a port 
has a parameter named “tellTheTruth” then the receivers 
that your director creates should “tell the truth” when 
hasToken() is called. That is, instead of always returning 
true, they should return true only if there is a token in the 
receiver. 
 
Parameterizing the behavior of a receiver is a simple form 
of communication refinement, a key principle in, for 
example, Metropolis. 
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Implementation of the 
NondogmaticPNDirector 

package doc.tutorial; 
import … 
public class NondogmaticPNDirector extends PNDirector { 
    public NondogmaticPNDirector(CompositeEntity container, String name) 
            throws IllegalActionException, NameDuplicationException { 
        super(container, name); 
    } 
    public Receiver newReceiver() { 
        return new FlexibleReceiver(); 
    } 
    public class FlexibleReceiver extends PNQueueReceiver { 
        public boolean hasToken() { 
            IOPort port = getContainer(); 
            Attribute attribute = port.getAttribute("tellTheTruth"); 
            if (attribute == null) { 
             return super.hasToken(); 
            } 
            // Tell the truth... 
            return _queue.size() > 0; 
        } 
    } 
} 
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Using It 

With NondogmaticPNDirector: 

With PNDirector: 
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Designing a Sensible MoC is not so easy! 
Consider Kahn Process Networks (PN) 

•  A set of components called actors. 
•  Each representing a sequential procedure. 
•  Where steps in these procedures receive or send messages 

to other actors (or perform local operations). 
•  Messages are communicated asynchronously with 

unbounded buffers. 
•  A procedure can always send a message. It does not need 

to wait for the recipient to be ready to receive. 
•  Messages are delivered reliably and in order. 
•  When a procedure attempts to receive a message, that 

attempt blocks the procedure until a message is available. 
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Coarse History 

¢  Semantics given by Gilles Kahn in 1974. 
l  Fixed points of continuous and monotonic functions 

¢  More limited form given by Kahn and MacQueen in 1977. 
l  Blocking reads and nonblocking writes. 

¢  Generalizations to nondeterministic systems 
l  Kosinski [1978], Stark [1980s], … 

¢  Bounded memory execution given by Parks in 1995. 
l  Solves an undecidable problem. 

¢  Debate over validity of this policy, Geilen and Basten 2003. 
l  Relationship between denotational and operational semantics. 

¢  Many related models intertwined. 
l  Actors (Hewitt, Agha), CSP (Hoare), CCS (Milner), Interaction (Wegner), 

Streams (Broy, …), Dataflow (Dennis, Arvind, …)... 
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Dataflow 

Dataflow models are similar to PN models except 
that actor behavior is given in terms of discrete 
“firings” rather than processes. A firing occurs in 
response to inputs. 
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A few variants of dataflow MoCs 

¢  Computation graphs [Karp and Miller, 1966] 
¢  Static dataflow [Dennis, 1974] 
¢  Dynamic dataflow [Arvind, 1981] 
¢  Structured dataflow [Matwin & Pietrzykowski 1985] 
¢  K-bounded loops [Culler, 1986] 
¢  Synchronous dataflow [Lee & Messerschmitt, 1986] 
¢  Structured dataflow and LabVIEW [Kodosky, 1986] 
¢  PGM: Processing Graph Method [Kaplan, 1987] 
¢  Synchronous languages [Lustre, Signal, 1980’s] 
¢  Well-behaved dataflow [Gao, 1992] 
¢  Boolean dataflow [Buck and Lee, 1993] 
¢  Multidimensional SDF [Lee, 1993] 
¢  Cyclo-static dataflow [Lauwereins, 1994] 
¢  Integer dataflow [Buck, 1994] 
¢  Bounded dynamic dataflow [Lee & Parks, 1995] 
¢  Heterochronous dataflow [Girault, Lee, & Lee, 1997] 
¢  Scenarios [Geilen & Stuijk, 2010] 
¢  … 
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Some Subtleties 

¢  Termination, deadlock, and livelock (halting) 
¢  Bounding the buffers. 
¢  Fairness 
¢  Parallelism 
¢  Data structures and shared data 
¢  Determinism 
¢  Real-time constraints 
¢  Syntax 
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Question 1: 
Is “Fair” Scheduling a Good Idea? 

In the following model, what happens if every 
actor is given an equal opportunity to run? 
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Question 2: 
Is “Data-Driven” Execution a Good Idea? 

In the following model, if actors are allowed to 
run when they have input data on connected 
inputs, what will happen? 
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Question 3: 
When are Outputs Required? 

Is the execution shown for the following model 
the “right” execution? 
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Question 4: Is “Demand-Driven” 
Execution a Good Idea? 

In the following model, if actors are allowed to 
run when another actor requires their outputs, 
what will happen? 
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Question 5: What is the “Correct” 
Execution of This Program? 
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Question 6: What is the Correct Behavior 
of this Program? 
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Naïve Schedulers Fail 

¢  Fair 
¢  Demand driven 
¢  Data driven 
¢  Most mixtures of demand and data driven 

If people insist on building their own MoCs from scratch, 
what will keep them from repeating the mistakes that 
have been made by top experts in the field? 
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Programmers should not have to figure out 
how to solve these problems! 
Undecidability and Turing Completeness [Buck 93] 

Given the following four actors and Boolean streams, you 
can construct a universal Turing machine: 
 

Hence, the following questions are undecidable: 
l  Will a model deadlock (terminate)? 
l  Can a model be executed with bounded buffers? 



Lee, Berkeley 63 

Question 7: 
How to support nondeterminism? 

Merging of streams is needed for some 
applications. Does this require fairness? 
What does fairness mean? 
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These problems have been solved! 
Let’s not make programmers re-solve 
them for every program. 

Directors should be 
designed by 
experts in 
languages and 
concurrency, not by 
application model 
builders. 

Library of 
directors 

Program using actor-oriented 
components and a PN MoC 
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The PN Director solves the above 
problems by implementing a “useful 
execution” 

Define a correct execution to be any execution 
for which after any finite time every signal is a 
prefix of the signal given by the (Kahn) least-
fixed-point semantics. 

Define a useful execution to be a correct 
execution that satisfies the following criteria: 
1.  For every non-terminating model, after any finite 

time, a useful execution will extend at least one 
stream in finite (additional) time. 

2.  If a correct execution satisfying criterion (1) exists 
that executes with bounded buffers, then a useful 
execution will execute with bounded buffers. 
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Our solution: 
Parks’ Strategy [Parks 95] 

This “solves” the undecidable problems: 
l  Start with an arbitrary bound on the capacity of all buffers. 
l  Execute as much as possible. 
l  If deadlock occurs and at least one actor is blocked on a write, 

increase the capacity of at least one buffer to unblock at least one 
write. 

l  Continue executing, repeatedly checking for deadlock. 

This delivers a useful execution (possibly taking infinite 
time to tell you whether a model deadlocks and how 
much buffer memory it requires). 
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There are many more subtleties! 
We need disciplined concurrent models of 
computation, not arbitrarily flexible libraries. 

Some principles: 
¢  Do not use nondeterministic programming models to 

accomplish deterministic ends. 

¢  Use concurrency models that have analogies in the 
physical world (actors, not threads). 

¢  Provide these in the form of models of computation 
(MoCs) with well-developed semantics and tools. 

¢  Use specialized MoCs to exploit semantic properties 
(avoid excess generality). 

¢  Leave the choice of shared memory or message 
passing to the compiler. 



Lee, Berkeley 68 

Extension Exercise 2 

Build a director that subclasses Director and allows 
different receiver classes to be used on different 
connections. This is a form of what we call “amorphous 
heterogeneity.” 
 
 
We will not do this today. 
See $PTII/doc/tutorial/domains 
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Extension Exercise 3 

Build a director that fires actors in left-to-right order, as 
they are laid out on the screen. 
 
 
We will not do this today. 
See $PTII/doc/tutorial/domains 
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Outline 

¢  Building models 
¢  Models of computation (MoCs) 
¢  Creating actors 
¢  Creating directors 
¢  Software architecture 
¢  Miscellaneous topics 
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Ptolemy II Software Architecture 
Built for Extensibility 

Ptolemy II packages 
have carefully 
constructed 
dependencies and 
interfaces 

PN 

Rendezvous 

Continuous Kernel 

Data 

Actor Math 

Graph 
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Hierarchy - Composite Components 

toplevel CompositeEntity 
transparent or opaque 
CompositeEntity 

Entity 
Relation dangling 

Port 

Port 
opaque Port 
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Separable Tool Architecture 

¢ Abstract Syntax 
¢ Concrete Syntax 
¢ Abstract Semantics 
¢ Concrete Semantics 
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The Basic Abstract Syntax for 
Composition 

PortPort

Entity Entity
Link

Relation

Entity
Port

connection

connection

co
nn
ec
tio
n

Link

Li
nk

Attributes Attributes

Attributes

•  Entities 
•  Attributes on entities (parameters) 
•  Ports in entities 
•  Links between ports 
•  Width on links (channels) 
•  Hierarchy 

Concrete syntaxes: 
•  XML 
•  Visual pictures 
•  Actor languages (Cal, StreamIT, …) 
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Meta Model: Kernel Classes 
Supporting the Abstract Syntax 

NamedObj

Entity

+Entity()
+Entity(name : String)
+Entity(w : Workspace, name : String)
+connectedPorts() : Enumeration
+connectionsChanged(p : Port)
+getPort(name : String) : Port
+getPorts() : Enumeration
+linkedRelations() : Enumeration
+newPort(name : String) : Port
+removeAllPorts()
#_addPort(p : Port)
#_removePort(p : Port)

-_portList : NamedList

Port

+Port()
+Port(w : Workspace)
+Port(container : Entity, name : String)
+connectedPorts() : Enumeration
+isLinked(r : Relation) : boolean
+isOpaque() : boolean
+linkedRelations() : Enumeration
+link(r : Relation)
+numLinks() : int
+setContainer(c : Entity)
+unlink(r : Relation)
+unlinkAll()
#_link(r : Relation)

-_container : Entity
-_relationsList : CrossRefList

0..n0..1

containee

container

Relation

+Relation()
+Relation(name : String)
+Relation(w : Workspace, name : String)
+linkedPorts() : Enumeration
+linkedPorts(except : Port) : Enumeration
+numLinks() : int
+unlinkAll()
#_checkPort(p : Port)
#_getPortList() : CrossRefList

-_portList : CrossRefList0..n

0..n

link

link

CrossRefList

1..1

1..1

1..1
1..1

These get subclassed for specific purposes. 
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Separable Tool Archictecture 

¢ Abstract Syntax 
¢ Concrete Syntax 
¢ Abstract Semantics 
¢ Concrete Semantics 
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MoML 
XML Schema for this Abstract Syntax 

Ptolemy II designs are represented in XML: 

    ... 
    <entity name="FFT" class="ptolemy.domains.sdf.lib.FFT"> 
        <property name="order" class="ptolemy.data.expr.Parameter" value="order"> 
        </property> 
        <port name="input" class="ptolemy.domains.sdf.kernel.SDFIOPort"> 
           ... 
        </port> 
        ... 
    </entity> 
    ... 
    <link port="FFT.input" relation="relation"/> 
    <link port="AbsoluteValue2.output" relation="relation"/> 
    ... 
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Separable Tool Archictecture 

¢ Abstract Syntax 
¢ Concrete Syntax 
¢ Abstract Semantics 
¢ Concrete Semantics 
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Abstract Semantics (Informally) 
of Actor-Oriented Models of Computation 

Actor-Oriented Models of 
Computation that we have 
implemented: 
 
•  dataflow (several variants) 
•  process networks 
•  distributed process networks 
•  Click (push/pull) 
•  continuous-time 
•  CSP (rendezvous) 
•  discrete events 
•  distributed discrete events 
•  synchronous/reactive 
•  time-driven (several variants) 
•  … 

  Actor

  IOPort
  IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

  Receiver
(inside port)

execution control data transport 

init() 
fire() 
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Implemented as a Java interface 

Interface “Executable” 
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Example execution sequence 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 
¢  Initialization 
¢  Execution 
¢  Finalization 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 
¢  Initialization 
¢  Execution 
¢  Finalization 
 

E.g., in DE: Post tags on the event 
queue corresponding to any initial 
events the actor wants to 
produce. 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 
¢  Initialization 
¢  Execution 
¢  Finalization 
 

 
 
Iterate 

If (prefire()) { 
     fire(); 
     postfire(); 
} 

Only the postfire() method 
should change the state of the 
actor. 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 
¢  Initialization 
¢  Execution 
¢  Finalization 
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Definition of the Register Actor (Sketch) 

class Register extends TypedAtomicActor { 
  private Object state; 
  boolean prefire() { 
    if (trigger is known) { return true; } 
  } 
  void fire() { 
    if (trigger is present) { 
      send state to output; 
    } else { 
      assert output is absent; 
    } 
  } 
  void postfire() { 
    if (trigger is present) { 
      state = value read from data input; 
    } 
  } 

Can the 
actor fire? 

React to 
trigger 
input. 

Read the 
data input 
and update 
the state. 

trigger 
input 
port 

data input port 
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Separable Tool Archictecture 

¢ Abstract Syntax 
¢ Concrete Syntax 
¢ Abstract Semantics 
¢ Concrete Semantics 
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Models of Computation 
Implemented in Ptolemy II 

¢  CI – Push/pull component interaction 
¢  Click – Push/pull with method invocation 
¢  CSP – concurrent threads with rendezvous 
¢  Continuous – continuous-time modeling with fixed-point semantics 
¢  CT – continuous-time modeling 
¢  DDF – Dynamic dataflow 
¢  DE – discrete-event systems 
¢  DDE – distributed discrete events 
¢  DPN – distributed process networks 
¢  FSM – finite state machines 
¢  DT – discrete time (cycle driven)  
¢  Giotto – synchronous periodic 
¢  GR – 3-D graphics 
¢  PN – process networks 
¢  Rendezvous – extension of CSP 
¢  SDF – synchronous dataflow 
¢  SR – synchronous/reactive 
¢  TM – timed multitasking 

Most of 
these are 
actor 
oriented. 
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Outline 

¢  Building models 
¢  Models of computation (MoCs) 
¢  Creating actors 
¢  Creating directors 
¢  Software architecture 
¢  Miscellaneous topics 
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Example Extensions 
Using Models to Control Models 

This is an example of a “higher-
order component,” or an actor that 
references one or more other actors. 

MultipleRuns SDF demo 
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Examples of Extensions 
Mobile Models 

Model-based distributed task management: 

MobileModel actor accepts a StringToken 
containing an XML description of a model. 
It then executes that model on a stream of 
input data. 

PushConsumer actor receives pushed 
data provided via CORBA, where the data 
is an XML model of a signal analysis 
algorithm.  

Authors: 
Yang Zhao 
Steve Neuendorffer 
Xiaojun Liu 
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Ptolemy II Extension Points 

¢  Define actors 
¢  Interface to foreign tools (e.g. Python, MATLAB) 
¢  Interface to verification tools (e.g. Chic) 
¢  Define actor definition languages 
¢  Define directors (and models of computation) 
¢  Define visual editors 
¢  Define textual syntaxes and editors 
¢  Packaged, branded configurations 

 All of our “domains” are extensions built on a core 
infrastructure. 
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Extension of Discrete-Event 
Modeling for  Wireless Sensor Nets 

VisualSense extends 
the Ptolemy II discrete-
event domain with 
communication between 
actors representing 
sensor nodes being 
mediated by a channel, 
which is another actor. 

The example at the left 
shows a grid of nodes 
that relay messages 
from an initiator (center) 
via a channel that 
models a low (but non-
zero) probability of long 
range links being viable. 
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Viptos: Extension of VisualSense with 
Programming of TinyOS nodes 

Physical environment 

Hardware 
Software 

Simulation 
(with visualization of  
routing tree) 

Code generation: 
Models to nesC. Viptos extends VisualSense 

with programming of TinyOS 
nodes in a wireless network. 
See the Ph.D. thesis of 
Elaine Cheong (Aug 2007). 

Viptos demo:  
Multihop routing (Surge) 
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Another Extension: HyVisual – Hybrid System 
Modeling Tool Based on Ptolemy II 

HyVisual was 
first released in 
January 2003. 
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Another Extension:  
Kepler: Aimed at Scientific Workflows 

Key capabilities added by Kepler: 
¢  Database interfaces 
¢  Data and actor ontologies 
¢  Web service wrappers 
¢  Grid service wrappers 
¢  Semantic types 
¢  Provenance tracking 
¢  Authentication framework 

This example shows the use of data ontologies and 
database wrappers. 
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CPES Fusion Simulation Workflow 
¢  Fusion Simulation Codes: (a) GTC; (b) XGC with M3D 

l  e.g. (a) currently 4,800 (soon: 9,600) nodes Cray XT3; 9.6TB RAM; 1.5TB simulation data/run 
¢  GOAL:  

l  automate remote simulation job submission  
l  continuous file movement to analysis cluster f 

or dynamic visualization & simulation control  
l  … with runtime-configurable observables  

Select 
JobMgr 

Submit 
Simulation 

Job 

Submit 
FileMover 

Job 

Execution Log  
(=> Data Provenance)  

Overall architect (& prototypical user): Scott Klasky (ORNL) 
WF design & implementation: Norbert Podhorszki (UC Davis) 

Kepler as an Interface to the Grid 
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Leverage: Kepler is a Team Effort 

Ptolemy II 

Resurgence 

Griddles 

SRB 

LOOKING 

SKIDL 

Cipres NLADR Contributor names and 
funding info are at the 
Kepler website: http://
kepler-project.org 

Other contributors: 
  - Chesire (UK Text Mining Center) 
  - DART (Great Barrier Reef, Australia) 
  - National Digital Archives + UCSD-TV (US) 
  - … 
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Graph Transformation 

Model transformation workflow specifies iterative 
graph rewriting to transform the top-right model 
into the bottom-left model. 

Executing the 
model at the left 
transforms the top 
model into the 
bottom model. 
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Workflows  
 
 

Here we have used Event-
Relationship graphs 
[Schruben 83] to specify 
the workflow logic. 
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Some Current Research Thrusts in the  
Ptolemy Project 

¢  Precision-timed (PRET) machines: Introduce timing into the core 
abstractions of computing, beginning with instruction set architectures, 
using configurable hardware as an experimental platform. 

¢  Distributed real-time computing (PTIDES): Models of computation 
based on distributed discrete events, embedded OS (PtidyOS), analysis 
and synthesis techniques. 

¢  Model engineering: Modeling and design of large scale systems, those 
that include networking, database, grid computing, and information 
subsystems. 

¢  Semantics of concurrent and real-time systems: Mathematical 
models of programs in conjunction with models of their physical 
environment. 
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Forthcoming 
Book 

Chapters 
1.  Heterogeneous Modeling 
2.  Building Graphical Models 
3.  Dataflow 
4.  Process Networks and Rendezvous 
5.  Synchronous/Reactive Models 
6.  Finite State Machines 
7.  Discrete Event Models 
8.  Modal Models 
9.  Continuous Time Models 
10.  Cyber-Physical Systems 
 
Appendices 
A.  Expressions 
B.  Signal Display 
C.  The Type System 
D.  Creating Web Pages 


