Modeling, Simulation, and Design of
Concurrent Real-Time Embedded
Systems Using Ptolemy

Edward A. Lee

Robert S. Pepper Distinguished Professor
EECS Department
UC Berkeley

Ptutorial

MODPROD, Workshop on Model-Based Product Development
Linkoping, Sweden, February 7, 2012

The Ptolemy Project

The Ptolemy project studies modeling, simulation,
and design of concurrent, real-time, embedded
systems. The focus is on assembly of concurrent
components. The key underlying principle in the
project is the use of well-defined models of
computation that govern the interaction between
components. A major problem area being
addressed is the use of heterogeneous mixtures of
models of computation. A software system called
Ptolemy Il is being constructed in Java, and serves
as the principal laboratory for experimentation.

Lee, Berkeley 2

The Ptolemy Project

[_
Demographics, 2012

Sponsors:
o Government
National Science Foundation
Army Research Lab
DARPA (MuSyC: Multiscale Systems Center)
Air Force Research Lab
o Industry
Bosch
National Instruments
SRC (MuSyC: Multiscale Systems Center)
Thales
Toyota

History:

The project was
started in 1990, though
its mission and focus
has evolved
considerably. An open-
source, extensible
software framework
(Ptolemy Il) constitutes
the principal
experimental
laboratory.

Staffing:

o 1 professor

9 graduate students
3 postdocs

2 research staff

o
o
o
o several visitors

Lee, Berkeley 3

Principal Authors
Christopher Brooks
Dai Bui
Chamberlain Fong
John Davis, Il
Patricia Derler
Thomas Huining Feng
Mudit Goel
Rowland Johnson
Bilung Lee

Edward Lee

Ben Lickly

Jie Liu

Xiaojun Liu

Lukito Muliadi
Stephen Neuendorffer
John Reekie

Neil Smyth

Jeff Tsay

Yuhong Xiong
Haiyang Zheng
Gang Zhou

O O O O OOO O OO O OO OO 0 O O O o o

Other Contributors

O O 0O OO OO OO OOO O OO0 OO0 O 00 0 0 OO0

Jim Armstrong

Vincent Arnould
Kyungmin Bae

Philip Baldwin

Chad Berkley

Frederic Boulanger
Raymond Cardillo
Jannette Cardoso
Adam Cataldo
Christine Cavanessians
Chris Chang

Albert Chen

Chihong Patrick Cheng
Elaine Cheong

Colin Cochran

Brieuc Desoutter
Pedro Domecq
William Douglas
Johan Eker

Thomas Huining Feng
Tobin Fricke

Teale Fristoe
Shanna-Shaye Forbes
Hauke Fuhrmann
Geroncio Galicia

Ben Horowitz

O O 0O OO OO OO OO OO OO O OO OO 00 O O o oo

Contributors to Ptolemy |l

Heloise Hse

Efrat Jaeger

Jorn Janneck

Zoltan Kemenczy

Bart Kienhuis
Christoph Meyer Kirsch
Sanjeev Kohli

Vinay Krishnan

Robert Kroeger

Daniel Lazaro Cuadrado
David Lee

Man-kit (Jackie) Leung
Michael Leung

John Li

Isaac Liu

Andrew Mihal
Eleftherios Matsikoudis
Aleksandar Necakov
Mike Kofi Okyere
Sarah Packman
Shankar Rao

Bert Rodiers

Rakesh Reddy
Adriana Ricchiuti
Sonia Sachs

Ismael M. Sarmiento
Michael Shilman

O O 0O OO OO OO OOOO OO0 OO O O 00 O O o o oo

Sean Simmons
Mandeep Singh
Miro Spoenemann
Peter N. Steinmetz
Dick Stevens
Mary Stewart
Ned Stoffel
Manda Sutijono
Stavros Tripakis
Neil Turner
Guillaume Vibert
Kees Vissers
Brian K. Vogel
Yuke Wang
Xavier Warzee
Scott Weber

Paul Whitaker
Winthrop Williams
Ed Willink
Michael Wirthlin
Michael Wetter
William Wu
Xiaowen Xin

Paul Yang

James Yeh

Nick Zamora
Charlie Zhong

Lee, Berkeley 4

O References

o Ptolemy project home page:
http://ptolemy.org

o Tutorial: Building Ptolemy Il Models Graphically:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-129.html

o Latest release:
http://ptolemy.org/ptolemyll/ptlllatest/

o Latest version in the SVN repository:
http://chess.eecs.berkeley.edu/ptexternal/

Lee, Berkeley 5

Forthcoming

®
Book

Chapters

1. Heterogeneous Modeling

2. Building Graphical Models

3. Dataflow

4. Process Networks and Rendezvous
5. Synchronous/Reactive Models
6. Finite State Machines

7. Discrete Event Models

8. Modal Models

9. Continuous Time Models

10. Cyber-Physical Systems

Appendices
A. Expressions
Signal Display

B.
c. The Type System
pD. Creating Web Pages

Getting More Information: Documentation
«« PTOLEMY II

HETEROGENEOUS
CONCURRENT
MODELING AND
DESIGN IN JAVA

PTOLEMY II

HETEROGENEOUS
CONCURRENT
MODELING AND
DESIGN IN JATA

PTOLEMY IT

HETEROGENEOUS
CONCURRENT
MODELING AND
DESIGN IN JAVA

Edited by :

" -) Edited by Edited by
Choistopher Hylands, Edward A Lee, Jie Liv, Xiagjun Christopher Hylands, Bdward A Lee, Jis Lin, Xiacjun Christopher Hylands, Edward A Lee, Jie Liu, Xiaojun
Liu, Steve Nousndorfisr, Yuhong Xiong. Haiyang Zheng Ly, Steve Neuendorffer, Yuhong Xiong Hajyang Zheng Liy, Steve Neuendorffer, Yuhong Xiong Hajyang Zheng
74 Ti . \ T N 4 . - - . - . - -
VOLUME 1: INTRODUCTION TO PTOLEMY IT VOLUME 2: PTOLEMY Il SOFTWARE ARCHITECTURE VOLUME 3: PTOLEMY IT DOMAINS
Authors: , N - . : :
Shuva . Bhatacharya | DoV of Blectrical Engineering and Computer Sciences ducthors: . I of Blectrical Engineering and Computer Sciences ducthors: Dep of Blectrical Engineering and Computer Sciences
persi i Shuvra 5. Bh o P £ P Shuvra 5. Bh .
Elaine Cheong Universiy of California at Berkeley i Flaine Cheong University of Cakifornia at Berkeley Flaine Cheong Usiversity of California at Berkeley
g;h: D;:.; I http:Hiptolemp.eeos.berkelay.edu g %) Toin Daviy, 1T htwp: Hptolemy. secs. berkeley. edu Jokn Davis, IT Rt Hptolemp. secs berkeley.edu
udit Goel . 3 \ N Mudit Goel
Bart Fienhuis Documsn.t Version 5.0 :é /c; ﬁ:’;ﬁf:;iix Document Version 3.0 B:n’;}‘sn:euis Document Version 3.0
Christopher Hylands ﬁ;:f:? “;’Dho?o"sw 30 Chistopher Hylands for use with Prolemy II 3.0 Christopher Hylands for use with Prolemy I 5.0
ffi\}a.rdd Lee - Faward A Lee June 8, 2003 Bdward A Lee June 8 2003
e L " a Fie Li
Yiagjun Liu Memorandum UCH/ERL MOY/T5A p Memorandum UCE/ZRL MOS/TEA Yiocgin Li Memorandum UCH/ERL MOY/TEA
Lukdto Muliadi Earlier versions: s o 2 Earlier versions: s g Earlier versions:
ILukdto Muliadi Lukdto Muliadi
Steve Neuendorgier + UCHERLM0I/23 Steve Newendorer « UCH/ERL M02/23 Steve Newendorler + UCH/ERLM02/23
John Reckie + UCHERL M990 John Reekis « UCB/ERL MO9/40 John Reekie + UCH/ERL MO9/40
Nedl Smpth = UCH/ERL M0I/i2 Neil Simpth . UCH/ERL M0I/i2 Neil Simpth = UCH/ERL MOVI2
Jeff Tsay Jeff Tiay Jeff Tsay
Brian Vogel) This project is supported By the Defense Advanced Research Projects Brian Vogel This project is supp by the Dafense A R k Projects Brian Vogel This project is supp by the Defense A Research Projects
Winthrop Williams Agency (DARPA), the National Science Foundation, Chess (the Center Wanthrop Williams Agency (DARPA), the National Seience Foundation, Chess (the Center Winthvop Williams Agency (DARPA), the National Science Foundation, Chess (the Center
Yuhong Xiong for Hybrid and Embedded Software Systems), the State of California Yuhong Xiong for Hybrid and Embedded Software Systems), the State of California Yuhong Xiong for Hybrid and Embedded Software Systems), the State of California
Yang Zhao MICROp and the following ies: Agilent, Ammel Yang Zhao MICRO program, and the follows ies: Agilent, Ammel Yang Zhao MICRO program, and the following companies: Agilens, Ammel.
Hajyang Zheng Cadence, Hitachi, Honeywell National icond? ., Philips, and Hajyang Theng Cadence, Hitachi Honey National iconds . Philips, and Hajpang Zheng Cadence, Hitachi He Il National Semicond: , Philips, and
Wind River Spstems.. Wind River Systems.. Wind River Systems..

Volume 1: Volume 2: Volume 3:
User-Oriented Developer-Oriented Researcher-Oriented

Tutorial information: http://ptolemy/conferences/07/tutorial.htm
Lee, Berkeley 7

The Ptolemy Pteam

Jackie Elefterios
Mankit Matsikoudis

it
lllllllllllllll |

Huining
Feng

Outline

o Building models

o Models of computation (MoCs)
o Creating actors

o Creating directors

o Software architecture

o Miscellaneous topics

Building Models — Hello World

600

file:/ptll/bar/InteractiveShell.xml

File View Edit Graph Debug Help

Bolelearea

A I U0 [@|=p = mu|c> [5|5n

*

(L] Utilities

(L] Directors

[Actors

¥ | Sources
» [] GenericSources
» [] TimedSources
¥ | SequenceSources

@ interactiveShell

[»] Interpolator

[»=] Pulse
Ramp
E_ Sequence A
Sinewave v

SDF Direcior

SampkeDelay
[.':nrr works e B

Imeraciveshe

Donplay

P

SDF Director

InteractiveShell

SampleDelay

{"Hello world"}

Display

=

execution finished.

Lee, Berkeley 10

A Unnamed
File View Edit Graph Debug Help

Building more interesting models

>Ne-

DE Director specifies that this
will be a discrete-event model

e

=6

Ho@aakaaAa
) Utilities ~
Directors

----- == SDF Director

----- == DDF Director

----- B3 HDF Director

----- = p Director

----- o b J
----- =3 SR Director

----- E= Rendezvous Director

----- =1 FSM Director

----- = CT Director

----- = CTEmbedded Diractor

----- B3 pirector

[#-{_7) ExperimentalDirectors

Actors
f:—l [Cavxeans

DE Director

v

DE Director \A

J

Lee, Berkeley 11

File View Edit Graph Debug Help

Gd@@l@Ambnm» S e

Building more interesting models

Model of reqularly spaced

events (e.g., a clock signal).

=6

) Utilities ~
Jj Directors DE Director
=) Sources

[+-|7) GenericSources

=1 TimedSources

bl

5 CurrentTime

i PoissonClock

- [E=] TimedSinewave
£ [7] TriggeredClock

L_} uj SequenceSources

[#-47) Sinks

#-) Array

EJ{[j Conversions

B N | Y)

DE Director

Clock

D@

Av

J

Lee, Berkeley 12

File View Edit Graph Debug Help

E:ﬂ@@l@AEPII\.M

Building more interesting models

) Utilities
) Directors
Actors
[=-C) Sources
#-.) GenericSources
L} @ TimedSources

- [Be] TimedSinewave
= [7] TriggeredClock
L_} uj SequenceSources
G t-{7) Sinks

[+ Array

8 | Conver5|ons

1_;‘1 (=% Elasa

DE Dimclor

FoissonClock
%

v

DE Director

Clock
D@
PoissonClock

G

Av

Model of irregularly spaced
events (e.q., a failure event).

e e

=6

J

Lee, Berkeley 13

Building more interesting models

¥4 file:/C:/eal/talks/08/models/DEexample.xml

File View Edit Graph Debug Help

HocaBa AP IO [e

Model of a subsystem that
changes modes at random
(event-triggered) times H=1E3

) Utilities

) Directors

) Actors

) MoreLibraries
) UserLibrary

DE Diractor

u@’_L..n, . o -

DE Director

guard: clock_isPresant && lemor_isPresent
output; status = 1 guard: clock_isPresent
Clock output: tatus =0
Bt/
e alModel
Db
sthe
PoissonClock guard: error_isPresent
- output: gtatus =0
ot

J

Lee, Berkeley 14

Building more interesting models

Model of an observer
¥4 file:/C:/eal/talks/08/models/DEexample.xml sub SyStem Q@@
File View Edit Graph Debug Help

HocaRa AP @) ho

Actors

— DE Director

[#-{C3) Sources

- #-) GenericSinks

- 2+ Timedsinks
oo
N T TimedScope

. #-09) SequenceSinks Clock
@ i) Array >
@{l:j Conversions B
[#-{2) FlowControl .
EJ{[j HigherQrderActors

ModalModel TimedPlotter

N

w3 I0 PoissonClock
(#-{3) Logic
#3) Math = B
G [A akwise
i =
L1 TimedPlotter I 2
10F 2 2 % % % 3 ¥ ¥ % ¥ ¥ ¥ * ¥ ¥ ® N] L
: Moo TmecPirse 0ar .
e - _
Potes oriCock 06
£5 : -
0.4
02f .
00L L — —
Ie"“”t'“‘ finished. 0o 2 4 6 & 10 12 14 16 18 20

Lee, Berkeley 15

¥4 file:/C:/eal/talks/08/models/DEexample.xml
File View Edit Graph Debug Help

Building more interesting models

Events on the two input
Streams must be seen in
time stamp order.

HoeaRaABPNO

Actors = DE Director

[#-{C3) Sources

- #-) GenericSinks

- 2+ Timedsinks
T
N T TimedScope

. #-09) SequenceSinks Clock
@ i) Array >
@{l:j Conversions B
[#-{2) FlowControl .
EJ{[j HigherQrderActors

w10

- Logic

#-{C3) Math >

Ll =% B akxise

OF Cirecior

PoissonClock

=6

ModalModel

TimedPlotter

Iexecution finished.

J

Lee, Berkeley 16

® Ptolemy uses Superdense Time

can have a sequence of

Discrete event signals ’ Index
o . | . . o .
distinct events at a time | ¢ / | /
. I) I e | 4
instant. | i Y, . -
(] | ’ |/ | |7
— — — _I_ _I_ _ﬁ — — _I — 7.& _3 _____
. P LTE. A 1
) S VN S
Values V < | I Y
4 N A VAR
| SR RS
- ' Ve -
0.0,0 t, 0 t, 0 _
_ ! /2 Time

Initial segment I C R, x N:Mhere the signal is defined

)

Absent: s(7) = < for almost all 7 = I.

P

Lee, Berkeley 17

This is a Component Technology

Model of a subsystem given

¥4 file:/C:/eal/talks/08/models/DEexample.xml as an imperative program. Q@@
File View Edit Graph Debug Help

Hoea@aA>N@=») SHhoe

gl __ DE Director

[+-{7) Sources

. [#-0) GenericSinks M Unnamed
Eg File Help

/** Output the current value.
* [@exception IllegallActionException If there is no director.
*/

public void fire() throws IllegalActionException {

-2 TimedSinks
I TimedScope
#-|5) SequenceSinks
#-47) Array
EJ@ Conversions >
(#-{2) FlowControl
i) HigherOrderActors

Do
#-{C3) Math B

Ll =% B akxise
OF Cirwcse

Av

super.fire();

// Get the current time and period.
Time currentTime = getDirector () .getMod=lTime () ;

// Indicator whether we've reached the next esvent.
_boundaryCrossed = false;

_tentativeCurrentOutputIndex = _currentOutputlIndex;

output.send (0, _getValue(_tentativeCurrentOutputlIndex));

// In case current tims has resached or crossed a boundary to tl

// next output, update it.

if (currentTime.compareTo(_nextFiringTime) == 0) {
_tentativeCurrentOutput Index++; —

if (_tentativeCurrentOutputIndex >= _length) {
_tentativeCurrentOutputIndex = 0;

execution finished. \ _boundaryCrosssd = trus;

This is a Component Technology

Model of a subsystem given
¥4 file:/C:/eal/talks/08/models/DEexample.xml as a state machine. Q@@

File View Edit Graph Debug Help
HoceaBgaABZ>NO» IR

Actors

— DE Director

Elifj Sources
- #-) GenericSinks

E}@ TimedSinks
P TimedPlotter guard: clock_isPresent && lerror_isPresent _

.. TimedScope output; status = 1 guard:‘clock_u-dz)resanl
. ¥ SequenceSinks Clock opo Sate
t-{2) Array B

() Conversions M
1) FlowControl o

guard: error_isPresent
output: gtatus =0

PoissonClock

Iexecution finished. |

Lee, Berkeley 19

¥4 file:/C:/eal/talks/08/models/DEexample.xml
File View Edit Graph Debug Help

HoeeR

This is a Component Technology

AC>NO»

Model of a subsystem given =
as a modal model.

Actors
#-{C) Sources
=42 Sinks
- #-) GenericSinks
- 2+ Timedsinks
B
N T TimedScope
. #-09) SequenceSinks
#-) Array
#-{_3) Conversions
#-{C3) FlowControl
EJ{j HigherQrderActors
#3310
- Logic
#-{2) Math

Ll =% B akxise
OF Cirwcse

DE Director

Clock

More types of components:
 Modal models

PoissonClock

&K E|

TimedPlotter

10
08
06
04
02

0.0

S

Lok S

6

8 10 12 14 16 18 20

guard: clock_isPresent && lerror_isPresent

or_isPresent
output: staxus = 0

guard: clock_isPresent
output: status = 0

F Director

clock

Expression

° Functional eXpreSSionS. H in + 0.1 * random() +—-

e Submodels in DE

error

« Submodels in other MoCs ﬂé »

status

]

L

ce, Berkeley 20

® Time
Example

Continuous-

Continuous Director

PoissonClock

.ModalModel.TimedPlotter

File Edit Special Help

TimedPlotter

20
1.8
1.6
14
2

=] ol

L :

3 4 5 6 7 8 9 10

guand: out > 2.0

Continuous Director

Integrator

Hybrid systems are particularly
clean with superdense time. The
above signal has multiple values at
the times of the transitions.

Continuous Director

Integrator

Integrator2

Lee, Berkeley 21

® Superdense Time for
Continuous-Time Signals

0.0,0 1.0,0 2.

At each tag, the signal has exactly one value. At each time point, the
signal has an infinite number of values. The red arrows indicate value

changes between tags, which correspond to discontinuities. Signals are
piecewise continuous, in a well-defined technical sense. 22

Lee, Berkeley 22

Contrast with Simulink/Stateflow

In Simulink, a signal can only have one value at a given
time. Hence Simulink introduces solver-dependent behavior.

eu.aﬁon S The simulator engine of Simulink introduces
DS S b0l | > ufoma =S | 5 a non-zero delay‘to consecutive transitions.
]
Scope1
]
Scope
Ready
s1
entry:y = x
during: ¥y = %
entry:y = -2
Transient States Lee, Berkeley 23

Outline

o Building models

o Models of computation (MoCs)

o Creating actors

o Creating directors

o Software architecture
o Miscellaneous topics

MoC Example 1:
Discrete Events (DE)

DE Director

PoissonClock

16 o

DE Director implements
timed semantics using an
event queue

In DE, actors send time-
Stamped events to one
another, and events are

processed in chronological
order.

Event source

Signal

put() method inserts a token

into the event queue.

T

1]

5 10 15 20 25 30

Time line

Lee, Berkeley 25

MoC Example 2:
Kahn Process Networks (PN)

PN Director

Scaleb

=

This model, whose structure is due to Kahn and MacQueen, calculate
integers whose prime factors are only 2, 3, and 5, with no redundanci
It uses the OrderedMerge actor, which takes two monotonically increag

actor == thread

input sequences and merges them into one monotonically increasinggbutput sequence.

SampleDelay

{5}

¢

Boo

Limit on powers of 5

1000000 &

Comparator

]

EnSwitch This BooleanSwitch is used
to starve the model after

a power of 5 greater than
1000000 is produced. This
results in deterministically
stopping the execution.

-

OrderedMerge

Scale3d

In the PN domain, each actor executes

in its own Java thread. That thread

iteratively reads inputs, performs
computation, and produces outputs.

Kahn, MacQueen, 1977

SampleDelay3 | Slgna/ —_— Stream

OrderedMerge2

SampleDelay2

\In PN, every

actor runs in
a thread,
with blocking
reads of
input ports
and non-
blocking
writes to
outputs.

reads block

-

writes don’ t

The output is an ordered sequence of integers of the form
2" * 3"m * 5%, where n, m and k are non-negative integers.

ee, Berkeley 26

° MoC Example 3:

In SDF, actors “fire,” and in each firing, consume a
fixed number of tokens from the input streams, and

produce a fixed number of tokens on the output
streams.

SDE Synchronous Dataflow Modeling
Estimate the spectrum of three sinusoids in noise
Sinewave by three different techniques.

Spectrum

AddSubtract SmoothedPeriododram SequencePlotter

Maximum EntropySpgctrum

This example illustrates SDF modeling, which

is well-suited to signal processing. In SDF,
components communicate using streams, but their
production and consumption rates are fixed.
Because of these fixed rates, extensive static
analysis of the model is possible, enabling
efficient code generation and optimization.

Synchronous Dataflow (SDF)

SDF is a special case of PN
where deadlock and
boundedness are decidable. It is
well suited to static scheduling
and code generation. It can also
be automatically parallelized.

Lee, Berkeley 27

° MoC Example 4:

At each tick of a global “clock,” every
signal has a value or is absent.

Synchronous/Reactive (SR)

File Help

SR Director NonStrictDisplay2

(=

NonStrictDelay

v v
L 2
VAR i

&

[=%

w

c

(=2

8

Q

NonStrictDisplay

=

This model demonstrates that a NonStrictDelay actor
breaks a feedback loop in a SR model.

0
1

6

10
15
21

Like SDF, SR is decidable and suitable for
code generation. It is harder to parallelize
than SDF, however.

SR languages: Esterel, SyncCharts, Lustre,
SCADE, Signal.

[
o

Lee, Berkeley 28

MoC Example 5:
Rendezvous

RendezwousDirector

- llustration of Barrier Synchronization using Rendezvous

This model illustrates a design pattern with rendezvous
called a "barrier synchronization." In this example, the
two Ramps are sending increasing sequences of integers
to the Displays. However, the transfer is constrained to
occur only when both the Barrier actor and the Sleep
actor read inputs. Thus, a multi-way rendezvous between
the two Ramp actors, the two Display actors, the Barrier
actor, and the Sleep actor constrains the two transfers

to the Display actors to occur simultaneously. The

Sleep actor will sleep a random amount of time after
reading its input, and during that time will not accept
additional inputs. Thus, after the first two (why two?)
transfers to the Display actors the time between
transfers is controlled by the Sleep actor.

trigger o]
lowerBound K]
upparBound £

Relation results
Ramp in multi-way Display
of rendezvous.
\ 2 £
o il E
Ramp2 Display2
>
&t
o A} E
Barrier

Random wait time.

In Rendezvous, every
actor runs in a thread,
with blocking reads of
input ports and blocking
writes to outputs. Every
communication is a
(possibly multi-way)
rendezvous.

writes block

CSP (Hoare), SCCS (Milner),

Reo (Arbab)

actor == thread

reads block

Lee, Berkeley 29

MoC Example 6:

@
Continuous Time (CT)

Continuous-Time (CT) Solver
- This model shows a nonlinear feedback | 11 CI actors Operal‘e on
i :10.0 system that exhibits chaotic behavior. . :
:;g:l;:a: 25.0 It):s modeled in continuous time. The continuous-time and/or
XYI:I-c:tter eb:20 CT ‘directo_r usesg sophis'ticated dlscrete_e vent Slgnals_ An
> ordinary differential equation solver
. to execute the model. This particular ODE solver governs the
model is known as a Lorenz attractor. .
¢ execution.
& |
~
Expression 1 Integratof 1
sgmarvc-x) Strange Attractor | et 2

Integratof 2 ’sr I l I I I I i
Expression 2] ; 20F _
L—_E(Iambda-)a)'x1-)0 S/gna/ IS a i i
| Integrator 3 continuous-time 10 1
I Expression 3 i = i
X1*32-b*x3 j function. = o i
i |
101 7]
Director includes an ODE solver. g .

15 10 5 0] 10 15

¥1

Lee, Berkeley 30

o Ptolemy |l Hierarchy Supports Heterogeneity

Sticky Mass model PlotPasiions vs Time | Concurrent actors governed by one model of
@— 'Iil computation (e.g., Discrete Events).
The sticky masses system has two modes of operation, Modal behavior given in another MoC.

"Separate" and "Together," corresponding to Ref Sol . , . , ,

the point masses are stuck together. The "jrfit" efinement Solver Thjs model gives two separate ordinary differential

has a transition that is used to initialize thé "Se - equations, one for each point mass attached to a spring.
model (double click on that transition 16 see its The ZeroCrossingDetector actor detects the collision

of the point masses and emits the "touched" event.

abs(Force) > Stickfiess
Separate.p1 = P1,; Separate.p2 =

Vi
) V1 integrator P1 integrator
Expression

[arm —1: 0°1.0-1.0°P1
\ * r' J

touched_lsRresent && (V1-V2) > 0. V2 integrator V2 P2 integrator
Together.p =\P1; Together.v = (V1 Expression2 :-

— 2.0°2.0-2.0'P2 I
Detailed dynamics'given

in a third MoC (e.g. T_f;
ContinUOUS TI e) AddSubtract ZeroCrossingDetector V1 and V2 are velocities,

e+ touched and P1 and P2 are positions
— — of the two masses.

This requires a composable abstract semantics.
Lee, Berkeley 31

true
P1=p1;P2=p2

Outline

o Building models
o Models of computation (MoCs)

o Creating actors

o Creating directors
o Software architecture
o Miscellaneous topics

Actors

Lee, Berkeley 33

Ptolemy Components are Actors and Objects

class name

data

The established: Object-oriented:
What flows through
an object is

p methods 1 sequential control

call return Things happen to objects

The alternative: Actor oriented:

Actors make things happen
actor name g PP

data (state) What flows through

—— [cters | an object is

evolving data

ports

Input data Output data
Lee, Berkeley 34

Actors

- Ptolemy has a library of predefined actors
- Java classes that implement the “executable” interface

ArrayPlotter

DiscreteClock Ramp Display
d I Const ooo I
» M ‘] E = g —

g g

Scal

BooleanSelect BooleanSwitch Equals Accumulator AddSubtract =e
L > D g
D—F —Fl> >

lterateOverArray ArrayToElements

ptegetor VariableDelay TimeDelay Pre
O 00 delay of initialValue l: :|
B [* =i
A

1

Lee, Berkeley 35

¢ and MATLAB

Actors can be defined in Java, C, Python, Cal,

Cal, developed by Joern Janneck (now 'UEd

at Lund) is a language for defining otor PSS (| e E
actors that are analyzable for key filcer - Labds () : false et

behavioral properties. Cbueda-o

SDF Director

- action [a] ==> [0] guard filter(a) end

action [a] ==> [a] guard not filteria)
var £ = filter

do
filter := lambhda(Integer b): £(b) or dividesia, b) end;
Ramp rimeSieve sequef]
ooo
action [a] ==> [-1] end
 Cal]» Cal l..:
Kl ja

This model demonstrates the use of function closures inside a CAL actor.

The PrimeSieve actor uses nested function closures to realize the Sieve of Eratosthenes,
a method for finding prime numbers. Its state variable, "filter," contains the current filter
function. If it is "false" a new prime number has been found, and a new filter function

will be generated.

The PrimeSieve actor expects an ascending sequence of natural numbers, starting from 2,
as input.

Lee, Berkeley 36

Approach: Concurrent Composition of Software
Components, which are themselves designed
with Conventional Languages

S[(=]e3

e D DIole data pDe/demo/Ro : 0 < File Help
File View Edit Graph Debug Help public class Gaussian extends RandomSource { =
. [y /%% Construct an actor with the given container and name.
@ @ Q ’ II ‘. ’ » - * $ m ¢ * [@param container The container.
‘ _ * [@param name The name of this actor.
" | Utilities ~ . * [exception IllegallctionException If the actor cannot be contained
= DE Director This model - :
irectors v the proposed container.
_J Record AS * [@exception NameDuplicationException If the container already has an
e a record to * actor with this name.
(= _§ Sources w/
[+] GenericSources has randor . ‘ . . . ,
: - public Gaussian(CompositeEntity container, String name)
(=) JTimedSources Ofder. The throws NameDuplicationException, IllegaliActionException {
Clock from the sd super (container, namwe);
CurrentTime received (N
) output.setTypeEquals (BaseType.DOUBLE) ;
PoissonClock Sequencer|
TimEdSinewave dernonstra‘ mean = new PortParawmeter (this, "mean", new DoubleToken(0.0)):
TriggeredClock and decom nean.setTypeEquals (BaseType . DOUBLE) ;
B variableClock
E|'“;] SequenceSources Master Clock Smng Sequence StandardDev?at%on = new Porcl?arameter(ch:.s, "standardDeviation®);
i Sinks standardDeviation.setExpression("1.0");
I‘;ﬂ —I In — standardDeviation.setTypeEquals (BaseType.DOUELE) ;
[+] Array »)
[+] Conversions
#-__) FlowContral Sequence Count FEEEPEEEEEETEEFEEE I EEEE 8T EE 8T FFEE R EEE 0 EE 8800000008011
El_] HigherOrderActors i ports and parameters Iyee
if‘—l to X B /%% The mean of the random nuber.
(#-_] Logic - . s meio nas ot double, initially with value O
L v - ype do e, initially wi value 0.
T T T T T o~ Gaussian | c\stomize » B
A\ Documentation » ‘tParameter mean;
-
Appearance P landard deviation of the random number.
Save Actor In Library 1as double, initially with wvalue 1.
Listen to Actor 't eter standardDeviation;
Set Breakpoints
! kp EEEPEEEETETEiddddiiddididddididdddiidddiiiddidiiiididiiiiiiiiy
Convert to Class public methods Iz
Authors: Edward A| Open Actor Chrl+L))

Open Istance) |Berkeley 37

Simple String Manipulation Actor in Java

public class Ptolemnizer extends TypedAtomicActor {
public Ptolemnizer (CompositeEntity container, String name)
throws IllegalActionException, NameDuplicationException {
super (container, name);
input = new TypedIOPort (this, "input");
input.setTypeEquals (BaseType.STRING) ;
input.setInput (true);
output = new TypedIOPort (this, "output");
output.setTypeEquals (BaseType.STRING) ;
output.setOutput (true) ;
}
public TypedIOPort input;
public TypedIOPort output;
public void fire() throws IllegalActionException {
if (input.hasToken (0)) {
Token token = input.get (0);
String result = ((StringToken)token) .stringValue();
result = result.replaceAll ("t", "pt");
output.send (0, new StringToken (result));

Lee, Berkeley 38

Object Model for
Executable Components

«Interface»
Executable

SR

«Interface»

Actor

+fire()

+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

ComponentEntity

+getDirector() : Director

+getExecutiveDirector() : Director]
+getManager() : Manager

CompositeEntity

+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

-

Director

AtomicActor

CompositeActor

Lee, Berkeley 39

® Definition of the Register Actor (Sketch)

class Register extends TypedAtomicActor {
private Object state;

~

boolean prefire () ({
Canﬁp if (trigger is known) { return true; }
actor fire? \
([void fire () { Register
1f (trigger 1s present) {
React to send state to output; 6 v
trigger 9 }oelse | | data input port trigger
input. assert output 1s absent; input
} port
.
[void postfire () {
Read the if (trigger is present) {
data input) state = value read from data input;
and update)
the state. }

Lee, Berkeley 40

Outline

o Building models
o Models of computation (MoCs)
o Creating actors

o Creating directors

o Software architecture
o Miscellaneous topics

Object Model (Simplified) for
Communication Infrastructure

IOPort
>

0.1

NoRoomException

«Interface»

throws

Receiver

+get() : Token

+hasRoom() : boolean
+hasToken() : boolean

,,, = +put(t : Token)

+getContainer() : IOPort

+setContainer(port : IOPort)

il Al

Mailbox

«Interface»
ProcessReceiver

QueueReceiver

CTReceiver

T

CSPReceiver

PNReceiver

1.

A

,,,,,,,

1

1

throws

NoTokenException

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

DEReceiver

SDFReceiver

FIFOQueue

1.1
1.1

ArrayFIFOQueue

Lee, Berkeley 43

Recall: Behavioral polymorphism
IS the idea that components can be
defined to operate with multiple
models of computation and multiple
middleware frameworks.

Object-Oriented Approach to Achieving

IOPort

Behavioral Polymorphism
«Interface These polymorphic methods
Receiver implement the communication
semantics of a domain in Ptolemy

+gel() - Token IT. The {"ece.ive{" /'nsfan.ce used in
+getContainer() : IOPort communication is supplied by the
thasRoom() : boolean director, not by the component.
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort) -

producer
actor

Receiver

consumer
actor

Lee, Berkeley 44

Extension Exercise

Build a director that subclasses PNDirector to allow ports
to alter the “blocking read” behavior. In particular, if a port
has a parameter named “tellTheTruth” then the receivers
that your director creates should “tell the truth” when
hasToken() is called. That is, instead of always returning
true, they should return true only if there is a token in the
receiver.

Parameterizing the behavior of a receiver is a simple form
of communication refinement, a key principle in, for
example, Metropolis.

Lee, Berkeley 45

Implementation of the
NondogmaticPNDirector

package doc.tutorial;
import ..
public class NondogmaticPNDirector extends PNDirector {
public NondogmaticPNDirector (CompositeEntity container, String name)
throws IllegalActionException, NameDuplicationException {
super (container, name);
}
public Receiver newReceiver () {
return new FlexibleReceiver () ;
}
public class FlexibleReceiver extends PNQueueReceiver {
public boolean hasToken () {
IOPort port = getContainer();
Attribute attribute = port.getAttribute ("tellTheTruth");
if (attribute == null) {
return super.hasToken() ;
}
// Tell the truth...
return queue.size() > 0;

Lee, Berkeley 46

With NondogmaticPNDirector:

SequencePlotter EE@E
® Using It -
1.0
051
NondogmaticPNDirector 00r
-1.0L
SensorModel
AddSubtract SequencePlotter With PNDirector:
- oon| "g
> SequencePlotter EIEED
_ 20> Tt T A~
151 b
— T 1
. a8 _
SOF Direchr Model of a sensor sensing a sinusoidal signal with efre{ | |
- the specified frequency and phase at the specified ephi{ "°
sampling frequency. This composite actor simulates esal 03[.
real-time behavior by sleeping the amount of time given by enol 10} | E— o\
the samplingPeriod (in seconds) before producing an output. 00 04 02 03 04 05 06 07 08 08 10 14
Ramp o

-

AddSubtract TrigFunction

AddSubtract2 Sleep T

b+ - s
J—é roundToInt(samp‘LlngPenod 1000) H

hvi

Lee, Berkeley 47

Designing a Sensible MoC is not so easy!
Consider Kahn Process Networks (PN)

A set of components called actors.
Each representing a sequential procedure.

Where steps in these procedures receive or send messages
to other actors (or perform local operations).

Messages are communicated asynchronously with
unbounded buffers.

A procedure can always send a message. It does not need
to wait for the recipient to be ready to receive.

Messages are delivered reliably and in order.

When a procedure attempts to receive a message, that
attempt blocks the procedure until a message is available.

Lee, Berkeley 48

Coarse History

Semantics given by Gilles Kahn in 1974.
Fixed points of continuous and monotonic functions

More limited form given by Kahn and MacQueen in 1977.
Blocking reads and nonblocking writes.

Generalizations to nondeterministic systems
Kosinski [1978], Stark [1980s], ...

Bounded memory execution given by Parks in 1995.
Solves an undecidable problem.

Debate over validity of this policy, Geilen and Basten 2003.
Relationship between denotational and operational semantics.

Many related models intertwined.

Actors (Hewitt, Agha), CSP (Hoare), CCS (Milner), Interaction (Wegner),
Streams (Broy, ...), Dataflow (Dennis, Arvind, ...)...

Lee, Berkeley 49

Dataflow

Dataflow models are similar to PN models except
that actor behavior is given in terms of discrete
“firings” rather than processes. A firing occurs in
response to inputs.

Lee, Berkeley 52

O OO0 0O 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0ODO0

A few variants of dataflow MoCs

Computation graphs [Karp and Miller, 1966]

Static dataflow [Dennis, 1974]

Dynamic dataflow [Arvind, 1981]

Structured dataflow [Matwin & Pietrzykowski 1985]
K-bounded loops [Culler, 1986]

Synchronous dataflow [Lee & Messerschmitt, 1986]
Structured dataflow and LabVIEW [Kodosky, 1986]
PGM: Processing Graph Method [Kaplan, 1987]
Synchronous languages [Lustre, Signal, 1980°s]
Well-behaved dataflow [Gao, 1992]

Boolean dataflow [Buck and Lee, 1993]
Multidimensional SDF [Lee, 1993]

Cyclo-static dataflow [Lauwereins, 1994]

Integer dataflow [Buck, 1994]

Bounded dynamic dataflow [Lee & Parks, 1995]
Heterochronous dataflow [Girault, Lee, & Lee, 1997]
Scenatrios [Geilen & Stuijk, 2010]

Lee, Berkeley 53

Some Subtleties

Termination, deadlock, and livelock (halting)
Bounding the buffers.

Fairness

Parallelism

Data structures and shared data
Determinism

Real-time constraints

Syntax

O O O 0O 0O 0O O O

Lee, Berkeley 54

Question 1:

Is “Fair” Scheduling a Good Idea?

In the following model, what happens if every
actor is given an equal opportunity to run?

PN Director

Ramp

Av

Ramp2

o]

Av

Const

BooleanSelect
o il H 3

FA

Display

>3

=

Lee, Berkeley 55

Question 2:

Is “Data-Driven” Execution a Good Idea?

In the following model, if actors are allowed to
run when they have input data on connected
inputs, what will happen?

PN Director

Ramp

Av

Ramp2

o]

v

Const

FA

BooleanSelect
o il H 3

Display

>3

=

Lee, Berkeley 56

Question 3:
When are Outputs Required?

Is the execution shown for the following model
the “right” execution?

L|@|» b] > 15 |25 @
PN Director 10907
L] Lo

10910
Ramp 10911

of 10912
> ‘ BooleanSelect Display [[10913
I 10914

*‘_’_"'E 10915

Ramp2 E
D> A
ch;:;;: i .unbounded.Display2 Q@@
I File Help
= :

Lee, Berkeley 57

Question 4: Is “Demand-Driven”
Execution a Good Idea?

In the following model, if actors are allowed to

run when another actor requires their outputs,
what will happen?

PN Director

Ramp Bool;_-:anSwilch Display
{ dp—]
o ‘ -

Display2
Const EI

Lee, Berkeley 58

Question 5: What is the “Correct”
Execution of This Program?

PN Director

Ramp Bool;-zanSwitch AddSubtract Display

- —E

0 Capacity of a queue exceeds maximum capacity. Perhaps you have an unbounded queue?
in .inconsistent.PN Director

Dismiss il Display Stack Trace

Lee, Berkeley 59

Question 6: What is the Correct Behavior
of this Program??

PN Director

Ramp BooleanSwitch
T Display2

o | —t]

F

Const

e

Exception [g]

0 Capacity of a queue exceeds maximum capacity. Perhaps you have an unbounded queue?
in .inconsistent.PN Director

Dismiss il Display Stack Trace

Lee, Berkeley 60

Naive Schedulers Falil

o Fair

o Demand driven

o Data driven

o Most mixtures of demand and data driven

If people insist on building their own MoCs from scratch,
what will keep them from repeating the mistakes that
have been made by top experts in the field?

Lee, Berkeley 61

Programmers should not have to figure out
how to solve these problems!
Undecidability and Turing Completeness [Buck 93]

Given the following four actors and Boolean streams, you
can construct a universal Turing machine:

BooleanSelect BooleanSwitch
SampleDelay [>_T _T{>
Boolgan > (0} 3> >
function [>_F _F{>

Hence, the following questions are undecidable:

Will a model deadlock (terminate)?
Can a model be executed with bounded buffers?

Lee, Berkeley 62

Question 7:
How to support nondeterminism?

PN Director
Value Producer 1 H NondeterministicMerge
Value Consumer
Value Producer 2 *—J
Observer

Merging of streams is needed for some
applications. Does this require fairness?
What does fairness mean?

Lee, Berkeley 63

These problems have been solved!
® Let’s not make programmers re-solve
them for every program.

Library of Program using actor-oriented
directors components and a PN MoC

¥ file:/C:/eal/talks/08/models/ObserverPatterninPN.xml

File View Edit Graph Debug Help DIreCtorS ShOUId be

HocaRaQAZDIN@» mguc> - e designed by

= e experts in

=i T languages and
D DN el concurrency, not by
----- =3 DE Director L . .

NondeterministicMerge appllcatlon model

----- =3 R Director | Value Producer 1
Value Consumer | b u | I d ers

----- = Rendezvous Director

----- E=3 FSM Director
..... == T Director | Value Producer 2

----- B3 CTEmbedded Director

v

Lee, Berkeley 64

The PN Director solves the above
problems by implementing a “useful
execution”

Define a correct execution to be any execution
for which after any finite time every signal is a
prefix of the signal given by the (Kahn) least-
fixed-point semantics.

Define a useful execution to be a correct
execution that satisfies the following criteria:

For every non-terminating model, after any finite
time, a useful execution will extend at least one
stream in finite (additional) time.

If a correct execution satisfying criterion (1) exists
that executes with bounded buffers, then a useful

execution will execute with bounded buffers.
Lee, Berkeley 65

Our solution:
Parks™ Strategy [Parks 95]

This “solves” the undecidable problems:
Start with an arbitrary bound on the capacity of all buffers.

Execute as much as possible.

If deadlock occurs and at least one actor is blocked on a write,
increase the capacity of at least one buffer to unblock at least one
write.

Continue executing, repeatedly checking for deadlock.

This delivers a useful execution (possibly taking infinite
time to tell you whether a model deadlocks and how
much buffer memory it requires).

Lee, Berkeley 66

There are many more subtleties!
We need disciplined concurrent models of
computation, not arbitrarily flexible libraries.

Some principles:

o

Do not use nondeterministic programming models to
accomplish deterministic ends.

Use concurrency models that have analogies in the
physical world (actors, not threads).

Provide these in the form of models of computation
(MoCs) with well-developed semantics and tools.

Use specialized MoCs to exploit semantic properties
(avoid excess generality).

Leave the choice of shared memory or message
passing to the compiler.

Lee, Berkeley 67

Extension Exercise 2

Build a director that subclasses Director and allows
different receiver classes to be used on different
connections. This is a form of what we call “amorphous

heterogeneity.”

We will not do this today.
See $PTIl/doc/tutorial/domains

Lee, Berkeley 68

Extension Exercise 3

Build a director that fires actors in left-to-right order, as
they are laid out on the screen.

We will not do this today.
See $PTIll/doc/tutorial/domains

Lee, Berkeley 71

Outline

o Building models

o Models of computation (MoCs)
o Creating actors

o Creating directors

o Software architecture

o Miscellaneous topics

Ptolemy Il Software Architecture

¢ Built for Extensibility

Ptolemy |l packages
have carefully
constructed
dependencies and
interfaces

Lee, Berkeley 74

Hierarchy - Composite Components

o ® N
é danglingﬁ
Relation Port)
E:'ntity
opaque Por
Port)
transparent or opaque
Gomp ESHIATY ~_J toplevel CompositeEntity
-

_J

Lee, Berkeley 75

Separable Tool Architecture

o Abstract Syntax
o Concrete Syntax

o Abstract Semantics
o Concrete Semantics

Lee, Berkeley 76

The Basic Abstract Syntax for
Composition

4 connection >
Entity Relation Entity

Port Link ’ Link Port

Attributes

Attributes

 Entities

* Attributes on entities (parameters)
Entity » Ports in entities

 Links between ports

» Width on links (channels)

» Hierarchy

Attributes

Concrete syntaxes:

« XML

» Visual pictures

» Actor languages (Cal, StreamlT, ...)

Lee, Berkeley 77

Meta Model: Kernel Classes
Supporting the Abstract Syntax

: NamedObj :
_______________________ =] i CrossRefList
1.1 ¢ :
Port 1.1 L
-_container : Entity 1.1
-_relationsList : CrossRefList 11
tai +Port()
Entity container +Port(w : Workspace)
0.1 0.n +Port(container : Entity, name : String) link Relation
-_portList : NamedList +connectedPorts() : Enumeration
containee |*isLinked(r : Relation) : boolean 0..n -_portList : CrossRefList

+Entity()

+Entity(name : String)

+Entity(w : Workspace, name : String)
+connectedPorts() : Enumeration
+connectionsChanged(p : Port)
+getPort(name : String) : Port
+getPorts() : Enumeration
+linkedRelations() : Enumeration
+newPort(name : String) : Port
+removeAllPorts()

addPort(p : Port)

removePort(p : Port)

+isOpaque() : boolean
+linkedRelations() : Enumeration
+link(r : Relation)

+numLinks() : int
+setContainer(c : Entity)
+unlink(r : Relation)

+unlinkAll()

#_link(r : Relation)

link

These get subclassed for specific purposes.

+Relation()

+Relation(name : String)

+Relation(w : Workspace, name : String)
+linkedPorts() : Enumeration
+linkedPorts(except : Port) : Enumeration
+numLinks() : int

+unlinkAll()

checkPort(p : Port)

getPortList() : CrossRefList

Lee, Berkeley 78

Separable Tool Archictecture

o Abstract Syntax
o Concrete Syntax

o Abstract Semantics
o Concrete Semantics

Lee, Berkeley 79

MoML
XML Schema for this Abstract Syntax

Ptolemy |l designs are represented in XML.:

<entity name="FFT" class="ptolemy.domains.sdf.lib.FFT">
<property name="order" class="ptolemy.data.expr.Parameter" value="order">
</property>
<port name="input" class="ptolemy.domains.sdf.kernel.SDFIOPort'">
</port>
</entity>
<link port="FFT.input" relation="relation"/>
<link port="AbsoluteValuelZ.output'" relation="relation"/>

Lee, Berkeley 80

Separable Tool Archictecture

o Abstract Syntax
o Concrete Syntax

o Abstract Semantics
o Concrete Semantics

Lee, Berkeley 81

execution control

|

Abstract Semantics (Informally)
of Actor-Oriented Models of Computation

data transport

(| send(0,t get(0))
init() 6 E2
fire() P1

E1 R token t
> ~ '\ 10Port S g

) receiver.put(t) / 4

[Actor

IORelation Receiver
(inside port)

Actor-Oriented Models of
Computation that we have
implemented:

» dataflow (several variants)

* process networks

* distributed process networks
* Click (push/pull)
 continuous-time

» CSP (rendezvous)

* discrete events

* distributed discrete events

» synchronous/reactive

* time-driven (several variants)

Lee, Berkeley 82

Implemented as a Java interface

Interface “Executable”

Method Summary

void|fire ()
Fire the actor.

boolean|isFireFunctional ()
Return true if this executable does not change state in either the prefire() or the fire() method.

boolean|isStrict ()
Return true if this executable 1s strict, meaning all mputs must be known before iteration.

int|iterate(int count)
Invoke a specified number of iterations of the actor.

boolean|postfire ()
This method should be invoked once per iteration, after the last invocation of fire() in that iteration.

boolean|prefire ()
Thig method should be invoked prior to each mvocation of fire().

void|stop ()
Request that execution of this Executable stop as soon as possible.

void|stopFire ()
Request that execution of the current iteration complete.

volid|terminate ()
Terminate any currently executing model with extreme prejudice.

Lee, Berkeley 83

Example execution sequence

Execution Sequence: Manager.run()

initialization execution wrapup
] 1
] no 1
] no i
. 1 ¢ 1 L
n,%,’ initialize L process check prefire 88 fire postfire &5 I| wrapup
é top level : mutations types "] top level 4 top level top level 4 : top level
n: -~ A 4 :
i / e i
: ’ i
=2] 4 H
QG . 5 g] 1
206 initialize fire postfire wrapup
B ; 1 : : > 1 :
g g <« director | director director director 1 director
] | iy = 1
1 P e N [}
I . - T T I
] / / _'-’____/ - \\\\M i
] o — = T
Wl = S el |
1 __*,_.i‘no rea y—l ~., . I
=] = ~, H
195 initialize : prefife select an prefire L~ fire L postfire transfer posifire : wrapup
_52 actors 1 actor actor actor actor outputs 1 actors
[} g]
] [Tl ot LY e~ atil]
: / . /::f = no more actors “-)\:.\’/;_’__,/ :
- i o g
] - o R e ™~]
1 ""."’/ ,::F::"' 3 L e ._._/ ““‘\\ N 1
[] : -~ e e /'.-.- .—"/" :
o=
29 » s g i 1 request request 1
g 5] |n_|t|a||ze H p_reﬁre transfor |-o» _ﬁre [st e p_ostﬁre H wrapup
SR director director : director director director
°8 : inputs outputs :
A A A
1 T—— I
{ \ N I
1 e .Y 1
1 N ‘ 1
] 1o \\]
\ 4 : 4 y v _ Y : 4
<) R
S initialize |1 transfer prefire fire postfire | 1 wrapup
'r% actors : preline inputs actor actor v actor poatiny : actors
1 1
1 1
1 1

FIGURE 2.14. Example execution sequence implemented by run() method of the Director class.

Lee, Berkeley 84

Register

How Does This Work? jF
Execution of Ptolemy |l Actors

Flow of control:
o Initialization

o Execution

o Finalization

Lee, Berkeley 85

Register

How Does This Work? j
Execution of Ptolemy |l Actors

Flow of control:

O E.g., in DE: Post tags on the event

o Execution queue corresponding to any initial
events the actor wants to

o Finalization produce.

Lee, Berkeley 86

How Does This Work?

Execution of Ptolemy |l Actors

Flow of control:
o Initialization

o Execution

o Finalization

Register

Yy

Iterate

If (prefire()) {
fire();

& postfire();
}

Only the postfire() method
should change the state of the
actor.

Lee, Berkeley 87

Register

How Does This Work? j
Execution of Ptolemy |l Actors

Flow of control:
o Initialization

o Execution

o Finalization

Lee, Berkeley 88

® Definition of the Register Actor (Sketch)

class Register extends TypedAtomicActor {
private Object state;

~

boolean prefire () ({
Canﬁp if (trigger is known) { return true; }
actor fire? \
([void fire () { Register
1f (trigger 1s present) {
React to send state to output; 6 v
trigger 9 }oelse | | data input port trigger
input. assert output 1s absent; input
} port
.
[void postfire () {
Read the if (trigger is present) {
data input) state = value read from data input;
and update)
the state. }

Lee, Berkeley 89

Separable Tool Archictecture

o Abstract Syntax
o Concrete Syntax

o Abstract Semantics
o Concrete Semantics

Lee, Berkeley 90

O OO0 0O 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0ODO0

Models of Computation
Implemented in Ptolemy Il

Cl — Push/pull component interaction

Click — Push/pull with method invocation
CSP - concurrent threads with rendezvous
Continuous — continuous-time modeling with fixed-point semantics
CT — continuous-time modeling
DDF — Dynamic dataflow

DE — discrete-event systems Most of
DDE — distributed discrete events these are
DPN — distributed process networks actor
FSM — finite state machines oriented.

DT — discrete time (cycle driven)
Giotto — synchronous periodic
GR — 3-D graphics

PN — process networks
Rendezvous — extension of CSP
SDF — synchronous dataflow
SR — synchronous/reactive

TM — timed multitasking

Lee, Berkeley 91

Outline

o Building models

o Models of computation (MoCs)
o Creating actors

o Creating directors

o Software architecture

o Miscellaneous topics

° Example Extensions

S0E This model illustrates the use of a "run composite actor"
- component. That component contains another Ptolemy Il model.
Each time it fires, it performs a complete execution of

that other Ptolemy Il model, rather than just one firing
as would be typical of a composite actor.s

Ramp run composite actor

| t—={85

Look inside this actor
to see the model that is
repeatedly executed.

Using Models to Control Models

SDF
This model generates Lissajous figures,
which are plots of one sinusoid vs. another.

On each execution, it generates one figure.

[>> cun: 1 Sinewave2

This "port parameter”
provides a wayto get
inputs to the model
where the value differs
on each run,

MultipleRuns SDF demo

B| .| ||

10 ¢
0.8[
06[
0.4
0.2
-0.0[
021
040 ¢
-06[

081 |
1.0 S

-0 -08 -06 -0.4 -0.2 -00 02 04 06 08 1.0

This is an example of a “higher-
order component,” or an actor that
references one or more other actors.

Lee, Berkeley 93

Examples of Extensions
Mobile Models

Model-based distributed task management:

Z

PushConsumer

L

DE Director

TimedDelay
Const

e order:

MobileModel

Display2

=

1

PushConsumer actor receives pushed

data provided via CORBA, where the data

is an XML model of a signal analysis

algorithm.

Authors:

Yang Zhao

Steve Neuendorffer
Xiaojun Liu

MobileModel actor accepts a StringToken
containing an XML description of a model.
It then executes that model on a stream of

input data.

Lee, Berkeley 94

Ptolemy Il Extension Points

Define actors

Interface to foreign tools (e.g. Python, MATLAB)
Interface to verification tools (e.g. Chic)

Define actor definition languages

Define directors (and models of computation)
Define visual editors

Define textual syntaxes and editors

Packaged, branded configurations

O O 0O O 0O 0O O O

All of our “domains” are extensions built on a core
infrastructure.

Lee, Berkeley 95

3
Ca)

e /@] e

i | file:/C:/ptll/ptolemy/domainsfwireless/demo/SmallWorld/SmallWorld.xml
File View Edit Graph Debug Help

4

Extension of Discrete-Event
Modeling for Wireless Sensor Nets

NSRS

[#-__] ImageProcessing

-] Interactivelcons

[] Joystick

| Matlab

[+~] Python

-__| RegressionTest

¥] Security

= 4 Wireless

B \wirelessDirector

(=} 4 WirelessActors

- [B=] ColiisionDetector
D4 GetProperties

O GraphicallLocator
|E] Locator

E NodeRandomizer

- B2 TerrainProperty
<X TransmitPropertyTre
|E] Triangulator

@ WirelessComposite
X WiredTowireless
X WirelessTowired
[=}+ 4 WirelessChannels
"% AtomicWirelessChal
"% DelayChannel

< | imitedRangeChann
+“® ErasureChannel

Sl vl ossChannel

-

WirelessDirector e range: 110

@ probability: min(1.0, (PI"sureRange”2)/(PI*'range”2))

e sureRange: 55

e nodePropagationDelay: 0.5
e visualDensity: 0.25

e randomize: true

NodeRandomizer

»

Channel

100 meters

This channel has range given by the
“range" parameter and probability of
delivery given by the "probability"
parameter.

prope

VWreIessToXI\gged

AverageNumberOfHops|

f> 2.59574468...

NumberOfLinks

Counter

o -

Data analysis module.

This demo shows a sensor network where
each node rebroadcasts the first message

it receives. An "initiator" component
broadcasts a message, and the model keeps
track of the number of nodes that receive
the message after one hop, after two

hops, etc., and plots a histogram.

If you increase the range above the
"sureRange", then the probability of
delivery drops according to the formula
shown, which keeps the expected number
of recipients roughly constant. It was
shown by Franceschetti et al. (2003)

that on average, fewer hops are

needed when the range increases.

When you run the demo, the initiator

will broadcast a message. A node turns to be
red if it receives the message in one hop;

it turn to be green if it receives it

more than one hop. It stays white if

it never receives the message.

Author: Edward Lee, Yang Zhao

execution finished.

VisualSense extends
the Ptolemy Il discrete-
event domain with
communication between
actors representing
sensor nodes being
mediated by a channel,
which is another actor.

The example at the left
shows a grid of nodes
that relay messages
from an initiator (center)
via a channel that
models a low (but non-
zero) probability of long
range links being viable.

Lee, Berkeley 96

Viptos demo:
Multihop routing (Surge)

Hardware

File View Edit Graph

e alal

I ptinyOSDirector
™= DE Director
b Utilities
b WirelessChannels
~ Actors
= PtinyOSActors
[E MicaCompositeA

Deb
>

ug Help

IN® = j=c>nch e

Wireless Director

MicaBoard1

LimitedRangeChannel

choose it: tl
de 0) periodically sends out a
e their position in the network

nnnnn

Viptos: Extension of VisualSense with
o Programming of TinyOS node

Physical environment

Simulation
(with visualization of

routing tree)

@ nodelD: MicaCompositeActor::P§nyOSDirector::nodelD

® range: range

Viptos extends VisualSense
with programming of TinyOS
nodes in a wireless network.

See the Ph.D. thesis of

Elaine Cheong (Aug 2007).

SSSSS

Software

Code generation:
Models to nesC.

Lee, Berkeley 97

Another Extension: HyVisual — Hybrid System

® Modeling Tool Based on Ptolemy ||

el
i
]
]
i
]
i
i

bump_isPresent
free.initialVelocity = -elagicity * velocity; free.initialPosition = position

Refinement Solver ThIS models the dynamics Of a ba" ‘ ﬁ:C:IhyzhenglptIllptnlemylconﬁgslhyv'isuauintrn.him
;- - . - - e elp
falling in a gravitational field. velocity B
_ HyVisual 2.2-beta - Hybrid System Visual
5 Modeler
Velocity 5
Const 5 ZeroCross ing Detegtor Block-diagream editor and simulator for hpbrid spstems.
um
* Co t
Position - To start immediately by creating a hybrid system, select File, New, Graph
s pos ition Editor from the menu bar. Select Help from the Help menu for instructions on
‘ - creating a model.
[r— [re—— Lybrid systems are systems with continuous-time dynamics, discrete events, and discrete mo% changes. This visual
};, modeler supports construction of hierarchical hybrid systems. It uses a block-diagram representation of ordinary
] A-_ differential equations (ODEs) to define continuous dynamics. It uses a bubble-and-arc diagram representation of finite
File Edit Special Help
7\
EHEEREDTEORNEEe E Gl
- A anhotation loci 10 ; ! ! ! ! ! - enthey |
O’ state velocity
» Al |
o
bump 2 | |
= 6
. abs{position) < stoppedj %
2 4 1
position
» o :
‘.__.—-/ O n
true ' L ' L L L L
free i} 5 10 15
e HyVisual was

first released in
January 2003.

Lee, Berkeley 98

Another Extension:
® Kepler: Aimed at Scientific Workflows

T T T T Key capabilities added by Kepler:

QeaBadP O mED> e Database interfaces
cmoets] 2 |] S Data and actor ontologies
[aaos | Web service wrappers

I Search][Reset]

Grid service wrappers
Semantic types
Provenance tracking
Authentication framework

Datos gteorologioos XY Plotter

B>

Datos Meteorologicos

hydatoscia ategua

hydatoscia stegua subsp- ategua
hydatoscia callas

nerita undatostriata

speiropsis pedatospora

Vv yy

O 0O OO0 OO

A simple example of using EML data. First, a search is done in the Data
pane to locate an EML-described data set, which is dragged onto the
workflow canvas. The EML data source is added to the workflow, and then it
contacts the EcoGrid server to download the data and configure the ports.
After being configured, it displays the ports from the EML data source,

which are then mapped into an XY scatterplot.
& Services List Q@@

I .eml-simple-plot.XY Plotter :
. . . | Current Data Source(s):
File Edit Special Help
|
¥1 02 XY Plotter Service Name Document Type
iy : [[Ecological Metadata Language 2.0.0
95851 | T 1M KNB Metacat EcoGrid Queryinterface
e ‘ ” ‘ Ecological Metadata Language 2.0.1
6 results returned. ' 12.” .))
é, 953k - - !l 2 = KU Digir EcoGrid Queryinterface Darwin Core 1.0
N a5zt » .y L A GEON Search Queryinterface WDEPT/DLESE/NASA 0.6.50
e %:@ . ; » Al
951 * . F
. 950, L L j * | L N
< 2 4 B 8 10 12 14 16 18§
execution finished.
This example shows the use of data ontologies and
Add ok | [canca |
database wrappers.

Kepler as an Interface to the Grid

CPES Fusion Simulation Workflow
Fusion Simulation Codes: (a) GTC; (b) XGC with M3D

e.g. (a) currently 4,800 (soon: 9,600) nodes Cray XT3; 9.6TB RAM; 1.5TB simulation data/run
GOAL:

o

o

automate remote simulation job submission

continuous file movement to analysis cluster f
or dynamic visualization & simulation control

... with runtime-configurable observables

&

.JobSubmitAndStatus.LogDisplay

SIS

File

Tools

Help

JobSubmitActor: submit job job4..

'3

file:/usr/home/pnorbert/Kepler/kepler. . .kflow-scottdemo/

JobSubmitActor: submit job job5...

JobSubmitActor: Job job4 is submitted, it's real jobID is: 69721.nid00004

JobStatusActor: Status of job jobd: Wait

@@ K| QLI |1l @ = p=mu o> [N, &

JobStatusActor:
JobStatusActor:
JobStatusActor:

PN

eCioe

locallobDie: fusr/home /pnorbernt).hpocicpes

Submit

JobStatusActor:
JobStatusActor:
JobStatusActor:
JobStatusActor:
JobStatusActor:

Status of job jobS:
Status of job job4:
Status of job jobS:
Status of job job4:
Status of job job5:
Status of job job4:
Status of job job5:
Status of job job4:

JobSubmitActor: Job jobS is submitted, it's real jobID is: 69722.nid00004

Wait
Wait
Wait
Wait
Wait
Running
Wait
Running

Submit . WaitForSimFinish
Simulation b e
; Job =
bmESm
JOb Su mr&"llo'!:r

Select)

cbManager

}

LogDsplay
-

Select
JobMgr

Execution Log
(=> Data Provenance)

;[||

4

Overall architect (& prototypical user): Scott Klasky (ORNL)

WF design & implementation: Norbert Podhorszki (UC Davis)

| Griddles

The Geosciences Network

SRB

Other contributors: C ipl’

o \x SKIDL
Resurgence
es

NLADR

- Chesire (UK Text Mining Center)
- DART (Great Barrier Reef, Australia)
- National Digital Archives + UCSD-TV (US)

LOOKING

Contributor names and
funding info are at the
Kepler website: http.//
kepler-project.org

Lee, Berkeley 101

P Graph Transformation

Model transformation workflow specifies iterative
graph rewriting to transform the top-right model
into the bottom-left model.

DDF Director Model Size Reduction

- Click the run button to observe the behavior reflected in the popup windows. The

new window to the left shows the original model. The one to the right shows the
result of static evaluation step by step.

SDF Director This is the model for transformation. It has a
number of Const actors connected to arithmetic
operators, which can be statically evaluated.

C1 See ConstOptimization.xml.
£ Author: Thomas Huining Feng
c2 +
D —
Multiply3
x L
>
Max Display
Multiply1 =t [—
c6 X
B+
Add3
+
Multiply2 i _ —
X

FileReader ModelG
- \e enerator OriginalModel
j l >() oo DO
pte--D) 2
B> e
QDFBooleanSelect
—p— _
= OptimizeOnce Bool:_eanSwitch
F P Const
Const2 SampleDelay F’
false {true} Sleep
f> 800L 2
. OptimizedModel
. T B,
> [T

This model demonstrates how one can possibly optimize a model. The original input is the model in
BaseModel.xml, which the FileReader actor reads in. The contents of this model are then converted
into an ActorToken by the ModelGenerator. OptimizeOnce is a transformation rule that gets
repeatedly applied to this model until no further optimization is possible (i.e., a fixpoint is reached).
In each application, two Consts that are wired to an AddSubtract actor, a MultiplyDivide actor, or a
Maximum actor are replaced by a single Const with the statically computed value.

Author: Thomas Huining Feng (Inspired by Thomas Mandl)

Executing the
model at the left
transforms the top
model into the

bottom model. \/

Display

C7

218

Lee, Berkeley 102

DE Director Model Size Reduction
WO rkfl OWS Click the run to execute. The new window to the left shows the original
model. The right one shows the result of static evaluation step by step.

SingleEvent

FileReader ModelGenerator

}— - OriginalModel
I | e (o N

B> title

’ O: Infinity <. ¢
(IthOStMOdeI O Infinky es how one can ationController OptimizedModel

briginal input is the ;

I, which the Q‘--\@D
(lnputHostModel » contents of this model > Title

an ActorToken by the ModelGengrator.

formation rule that gets repeatgdly

htil no further optimization is possible
5:0.8 d). In each application, two Zonsts that
tract actor, a MultiplyDivide/actor, or a Maximum
single Const with the statjcally computed value.

guard: Matched
5:0.8 j xml in the same directgry contains a DDF model that has exactly

Transform Finish put has a much more £Lomplicated design for not using an ERG
inished = true }

modellnput

»

guard: 'Matched e00 file:/ptll/ptolemy/actor/gt/demo/Cons. . .ransformationController.Transformation

File View Edit Rule Help

Hol@@RealAlET =m0 e 0=

AtomicActorMatcher [Pattern Replacement Correspondence

CompositeActorMatcher

FSMMatcher

(OUtpUtHOStMOdel) Ed ModalModelMatcher
[& PtalonMatcher

(L] TransformationAttributes 1

(] utilities A

e DefaultModel: BaseModel.xml

(] Directors = matchj
(] Actors g

Here we have used Event- | weee .
Relationship graphs

[Schruben 83] to spec
the workflow logic.

e Constraint: A.input.getWidth() ==

e Constraint2:
A.getClassName().equals("ptolemy.actor.lib.AddSubtract”) && A.input.getName().equals("plus”) ||
A.getClassName().equals("ptolemy.actor.lib.MultiplyDivide") && A.input.getName().equals("multiply”)
A.getClassName().equals("ptolemy.actor.lib.Maximum®)

’_L,' e Constraint3: A.output.getWidth() ==
—

Some Current Research Thrusts in the
Ptolemy Project

Precision-timed (PRET) machines: Introduce timing into the core
abstractions of computing, beginning with instruction set architectures,
using configurable hardware as an experimental platform.

Distributed real-time computing (PTIDES): Models of computation
based on distributed discrete events, embedded OS (PtidyOS), analysis
and synthesis techniques.

Model engineering: Modeling and design of large scale systems, those
that include networking, database, grid computing, and information
subsystems.

Semantics of concurrent and real-time systems: Mathematical
models of programs in conjunction with models of their physical
environment.

Lee, Berkeley 104

Forthcoming

®
Book

Chapters

1. Heterogeneous Modeling

2. Building Graphical Models

3. Dataflow

4. Process Networks and Rendezvous
5. Synchronous/Reactive Models
6. Finite State Machines

7. Discrete Event Models

8. Modal Models

9. Continuous Time Models

10. Cyber-Physical Systems

Appendices
A. Expressions
Signal Display

B.
c. The Type System
pD. Creating Web Pages

