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Abstract—Many fuel systems for diesel engines are developed
with the help of commercial one-dimensional computational fluid
dynamics (1D CFD) solvers that model and simulate the behavior
of fluid flow through the interconnected pipes off-line. This paper
presents a novel framework to evaluate 1D CFD models in real
time on an FPGA. This improves fuel pressure estimation and
closes the loop on fuel delivery, allowing for a cleaner and more
efficient engine. The real-time requirements of the models are
defined by the physics and geometry of the problem being solved.
In this framework, the interconnected pipes are partitioned into
individual sub-volumes that compute their pressure and flow rate
every time step based upon neighboring values. We use timing-
based synchronization and multiple Precision Timed (PRET)
processor cores to ensure the real-time constraints are met.
Leveraging the programmability of FPGAs, we use a config-
urable heterogeneous architecture to save hardware resources.
Several examples are presented along with the implementation
results after place and route for a Xilinx Virtex 6 FPGA. The
results demonstrate the resource savings and scalability of our
framework, confirming the feasibility of our approach – solving
1D CFD models in real time on FPGAs.

I. INTRODUCTION

In order to meet the ever tightening worldwide emissions

standards, diesel engines are becoming more and more com-

plex. In particular, the diesel engine’s fuel system must now

support as many as 5 injections per cylinder event [1]. The

fuel system consists of a high pressure pump, fuel injectors,

and a network of connecting pipes commonly known as the

”fuel rail”. Each time an injection event happens, pulsations

are sent through the fuel rail. The high pressure, around 2000

bar, in the fuel system, is often generated by a piston pump

that also induces pulsations. These pulses need to be damped

and/or modeled before the subsequent injection event to ensure

a correct amount of fuel injection [2].

Currently most fuel systems use an ad-hoc model of fuel

pressure for subsequent injection events [3]. Since many fuel

rails are developed using commercial one-dimensional compu-

tational fluid dynamics (1D CFD) solvers like GT-SUITE [4],

it seems a natural approach to use the same technique to

model their behavior in real time. To meet the stringent real-

time requirement, the solution obtained on-line usually ignores

second order effects such as cavitation and thermal gradients

that are taken into account in the GT-SUITE calculations. The

second order effects are small, but important for designing

a well-behaved system. However, there is a salient distinction

between an off-line research-oriented approach like GT-SUITE

and a real-time approach like the one presented here. So long

as the real-time code is sufficiently accurate to allow improved

fuel pressure estimation, it can close the loop of fuel delivery,

allowing for a more precise air/fuel ratio control and thus a

cleaner and more efficient engine.

1D CFD is used when the system to be evaluated can be

described as a network of pipes. The advantage of 1D CFD

over its 2D and 3D cousins is the greatly reduced number

of nodes to be solved, and the simplified equations in each

node. This makes it common for use in simulating transient

operation of internal combustion engines [5]. This also makes

it possible to solve these problems in real time using a highly

parallel approach. We specifically examine the area of fluid

flow, but heat transfer, mechanical dynamics, and electrical

circuit simulation all represent similar problems. In each of

these problems, it may be possible to represent the set of

equations to be solved as a graph, where each node of the

graph represents a physical quantity to be modeled, such

as a sub-volume of fluid in a pipe. The information path

communicated by nodes is represented as the interconnect of

the graph.

When an explicit fixed time step solver is used to solve

the governing equations, the time step is determined by the

modeling granularity of the application. The requirement is

that the solver must run faster than the speed of information

flow. This is expressed as

Δt

Δx
a = C,

where a is the wave speed, C is the Courant number, Δt is

the time step, and Δx is the spatial discretization step. For

stability purpose, the Courant number needs to be less than 1,

and a number below 0.8 is recommended [4]. For instance, if

a fluid has a wave speed a of 1 cm/μs and a discretization
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step Δx of 1 cm, then we require a time step Δt of less than

1 μs. The discretization step of a pipe network is dominated

by its smallest sub-volume. For a diesel fuel system, a 1 cm
discretization step is common. For our purposes in this paper,

we treat the speed of sound (wave speed) as 1500 m/s [6].

During each time step, each node reads the neighboring data

from the previous time step and computes the new data to be

sent to its neighbors. In this periodic and parallel execution of

all nodes, the performance of the system is limited by the node

with the longest execution time. We only require adequate

performance so that this slowest node can complete in Δt.
1D CFD fits into the class of problems that are het-

erogeneous and micro-parallel. The micro-parallel modifier

emphasizes small, dedicated portions of the problem being

solved in each computational element, while the heterogeneous
modifier emphasizes a number of distinct node types. This

distinguishes it from homogeneous, micro-parallel problems

often found in image processing, which lend themselves to

graphics processor unit (GPU) and SIMD solutions with large

common memories [7].

The advent of caches, out-of-order executions, branch

prediction, and other performance improvements in modern

processors improves their average execution speed at the

cost of determinism. As a result, worst-case execution time

(WCET) analysis often gives imprecise and overestimated

results. For applications that must meet the execution time

deadline requirements, this causes overprovisioning of hard-

ware resources in order to guarantee no timing violations.

The Precision Timed (PRET) architecture [8] is a processor

architecture designed to provide timing determinism and good

worst-case performance. It contains multiple hardware threads

with predictable timing, and provides timing instructions to

gate execution time of code blocks on the hardware threads.

This paper presents a novel framework for real-time exe-

cution of a 1D CFD solver on a Field Programmable Gate

Array (FPGA) using PRET cores. We map the heterogeneous

computation nodes onto the hardware threads of multiple

PRET cores. The deterministic execution time ensures that

each node completes within the specified time step and the

timing instructions ensure the synchronization of data com-

munication between threads and cores. We show that a timing

deterministic design allows us to minimize the synchronization

overhead and processor core footprint while our heterogeneous

evaluation architecture further optimizes the FPGA area and

leads to a practical and scalable solution.

II. RELATED WORK

The computing power of FPGAs has enabled accelerated

simulation in many application domains. In this paper, we

focus on real-time CFD problems. FPGAs have been used to

accelerate off-line 2D and 3D CFD computations with millions

of nodes [9]. In these examples, there is no real-time constraint

and the number of computation nodes is huge, which makes

a common practice to reuse FPGA elements for many fluid

nodes. Soft real-time CFD has been used for video games for

quite a while [10]. These cases differ from our application in

several important respects. First, they operate on the order of

milli-seconds (e.g. 25ms) as opposed to micro-seconds (e.g.

5μs) for our case. Second, the soft real-time simulation results

just need to look good to game players, so accuracy is not

all that important. Lastly, being soft real-time, they can be

allowed to miss a deadline and degrade gracefully if they

cannot complete the calculations in time.

From a hardware architecture perspective, we need to con-

sider evaluating our problem via the alternatives of traditional

processor or GPU. Traditional desktop processors, like Intel’s

Pentium, have a great deal of non-deterministic behavior

brought about by caches, out-of-order instruction executions

etc., which makes it difficult to implement deterministic hard

real-time systems. GPUs are gaining ground in scientific

computing because of the large total throughput they offer.

While in aggregate a GPU can outperform an FPGA-based

implementation, it has some disabling limitations [11]. GPUs

do well with relatively homogeneous tasks. E.g., NVIDIA’s

GTX 280 has 30 streaming multiprocessors. Each streaming

multiprocessor is effectively a 32-channel SIMD processor.

Communication to the global memory takes hundreds of

cycles. Our application has many different types of nodes

interconnected and it requires an ultra-low latency. This is why

we chose not to pursue a GPU-based approach.

Besides their powerful computing capability, FPGAs have

additional advantages. They can contain other structures un-

related to the CFD code like actuator control logic or sensor

interfaces that can be connected to the correct part of the CFD

model with a single-cycle latency.

There may exist different implementation options for our

application on FPGAs. Without leveraging the benefits from

PRET cores, we could attempt the problem in discrete FPGA

blocks. In order to make the application fit in a practical FPGA

like the one we tested, we would need to re-use the hardware

multipliers, adders, and other functional units. This would

require a state machine to run it, begins to look a great deal

like a processor. Along this line, the highly parallel property

of this application lends itself nicely to a multi-threaded

architectures that favor throughput over latency. The real-time

requirements propels us to choose a deterministic architecture,

and the configurability of FPGAs allows us to optimize for

the heterogeneity nature of our implementation. The PRET

cores, with a deterministic multi-threaded architecture and

good compiler support, offer a flexible solution, and is a

perfect architecture for the job. To the best of our knowledge,

we believe this is the first attempt to attack real-time CFD on

this time scale and complexity of problem.

III. BACKGROUND

A. One-Dimensional Computational Fluid Dynamics

Solving 1D CFD problems begins with the Navier Stokes

equations for compressible flow. We construct a library of

computational elements for the type of pipe segments we use

in the form of first order finite difference equations [12]. We



start with momentum equation (1) and continuity equation (2):

Px

ρ
+ V̇ +

fV

2D
|V | = 0, (1)

a2Vx + V

(
Px

ρ
+ g sinα

)
+

Pt

ρ
= 0, (2)

where P is pressure, ρ is fluid density, V fluid velocity, f is

the Darcy-Weisbach friction factor, D is pipe diameter, a is the

wave speed, and g sinα is the directional force of gravity. A

dot (·) over a variable indicates the total derivative with respect

to time. Subscripts x and t indicate partial differentiation along

the pipe length and with respect to time, respectively.

These equations can be expanded and simplified by leaving

out the body force and convective terms because these are

negligible given the pressure and flow regime. A method

of characteristic solution is used to explicitly evaluate the

pressure and flow at the next time step through a first order

finite difference method. The left graph in Fig. 1 shows the

evaluation of pressure and flow at point I , where I is i at

t0+Δt, based on the pressure and flow of the adjacent points

at time t0. The equations to be evaluated at each point are

VI =
1

2

[
Vi−1 + Vi+1 +

1

aρ
(Pi−1 − Pi+1)− fΔt

2D
β

]
, (3)

PI =
1

2

[
Pi−1 + Pi+1 + ρa (Vi−1 − Vi+1)− ρafΔt

2D
β

]
(4)

where β = (Vi−1|Vi−1|+ Vi+1|Vi+1|).
One critical part in evaluating the value at point I is that

there is a fixed relationship among Δx, Δt, and the wave speed

a such that a ≤ Δx/Δt. Δx is fixed by the geometry of the

problem and a is fixed by the properties of the working fluid

such as a =
√
K/ρ, where K is the bulk modulus. Therefore,

Δt is defined. All computations must complete within Δt
and the results must be posted in exactly Δt. Because the

wave speed varies and the geometry of the problem may not

work out evenly for all pipe segments, a modified method is

implemented with an interpolation step. This is shown by the

right graph in Fig. 1 and described by equations

ζR = ζi − θa(ζi − ζi+1) and ζL = ζi − θa(ζi − ζi−1),

where θ represents the amount of interpolation desired and

subscript R (resp. L) denotes the right (resp. left) point of i.
These equations are evaluated for both pressure ζ = P and

velocity ζ = V . While we use this method to give calculation

leeway, it is important to realize that this adds complexity to

every block in the system as well as decreases Δt.
Let B = aρ/A and E = ρfΔx/2DA2, where A is the pipe

cross sectional area. Plugging them into (3) and (4) and further

rearrangement give the following characteristic equations:

Cp = Pi−1 +Qi−1 (B − E|Qi−1|) ,
Cm = Pi+1 −Qi+1 (B − E|Qi+1|) ,

where Q is the flow rate along the pipe and subscript p (resp.

m) denotes the plus (resp. minus) branches of the characteristic

equation.
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Fig. 1: First Order Difference

Table I shows the equations for each of the supported

flow elements. From them we can generate a network of

flow elements that represents our fuel system. Subscript Bnd
denotes a boundary condition. CV is the flow coefficient which

is a function of the nominal open flow (Q0), the downstream

pressure (P0), and the fraction the valve is open (τ ).

TABLE I: Equations for Supported Types

Type PI = QI =

Pipe segment
(Cp+Cm)

2
(PI+Cm)

B

Imposed pressure PBnd
(PBnd−Cm)

B
Imposed flow Cm+BQBnd QBnd

Valve Cp−BQI

−BCV +
√

(BCV )2+2CV Cp

CV =
(Q0τ)2

2·P0

Cap Cp−BQI 0

Pipe “T”
Cp1
B1

+
Cm2
B2

+
Cm3
B3∑3

j=1
1

Bj

− PI
B1

+
Cp1
B1

;− PI
B2

+
Cm2
B2

;

− PI
B3

+
Cm3
B3

B. Precision Timed Architecture

For real-time applications that need timing determinism, Ed-

wards and Lee [13] propose Precision Timed (PRET) architec-

tures. These architectures are designed for timing predictability

and determinism, rather than average-case performance. Lickly

et al. [8] present a multi-threaded implementation of the PRET

architecture using a thread-interleaved pipeline and scratchpad

memories. The thread-interleaved pipeline removes data and

control hazards within the pipeline by interleaving multiple

hardware threads in a predictable round robin fashion. Scratch-

pad memories are single-cycle access on-chip memories which

are managed in software. They are used in place of a cache

to improve on predictability because the contents on the

scratchpads are controlled in software.

Along with the predictable architecture, Lickly et al. [8] also

introduce a timing instruction to control the temporal behavior

of programs. The timing instruction gives programmers a way

to specify a lower bound on execution time for a specific

code block, guaranteeing that the code block will not complete

until at least the specified execution time. [8] also outlines a

producer consumer example that synchronizes communication

through the use of timing instructions, to ensure an ordering



between shared data accesses. Our implementation of the 1D

CFD solver uses a similar mechanism to synchronize commu-

nication across computation nodes and align the computation

with real-world events.

IV. DESIGN FLOW AND ARCHITECTURE

A. System Description and Design Flow

The process of generating a system is outlined in Fig. 2.

Starting from a description of the flow system and our library

of elements, we can construct a graph to describe the system.

The flow system dictates the maximum time step of the

system. With this information we can instantiate processors

and interconnects tailored to our needs and apply the library

code to them. From there, we build and deploy our system

onto an FPGA target.

Library of computational
elements

Graph of nodes

Flow system description Worst case time step
determines allowed threading

Instantiate heterogeneous cores
and map flow elements to
compatible threads

Compile
&

deploy

Fig. 2: Design Flow

Fig. 3 shows an overview of a representative system that

models fuel rails. The 1D CFD model is bounded inside the

dashed rectangle. External to that is the real-world sensor

and actuator interfaces which provide boundary conditions or

consume model output variables. The small blue squares inside

the dashed rectangle represent the network of flow elements. In

a practical simulation of a diesel fuel system, the total number

of flow elements can range from around 50 to a few hundred.

Each pipe element is a computation node, and their graph-

ical representation is shown in Table II. The top 3 rows of

the table represent the flow elements described in Table I.

Mechanical calculation elements compute the inputs to valve,

FPGA

Pump
Model

Global
Fluid
Props

Inj.
Model

Inj.
Model

Inj.
Model

Inj.
Model

Injector
Commands

Virtual
Sensor

Physical
Pressure
Sensor

Engine
Speed &
Pos

Pump
Cmd.

Virtual
Sensor

Virtual
Sensor

Virtual
Sensor

Physical
Temperature
Sensor

Fig. 3: High Level System Diagram

TABLE II: Library of Computation Node Elements

Pipe segment

Out

L R

TG

Cap

Out

L R

TG

Imposed pressure

Out

L R

TG

P

Imposed flow

Out

L R

TG

Q

Pipe “T”

Out

L R

TG

Valve

Out

L R

TG

Mechanical calculation

Out
I1

I2

G

Mech
CalcI3 Global calculation

Out
I1

I2

G

Global
CalcI3

Global distribution
I O

Output

I1

I2

G

I2

imposed flow, and imposed pressure blocks. They serve as an

interface between the flow model and the real world. Global
calculation elements are used to compute the temperature

dependent variables of density and wave speed. They post

their data to a global distribution node, broadcasting it to all

other nodes. Blocks with white backgrounds in the last row

of Table II, i.e., Global distribution and Output, are imple-

mented directly in FPGA fabric, not mapped to a processor

thread. Global distribution elements in the graph are purely

used to show the distribution of input values to each of the

computational elements. Output elements are used when data

needs to be communicated out of the model to other parts of

the FPGA.

For illustrative purposes, we show a simplified sample

pipe network with an imposed flow input (P1) in Fig. 4.

Fluid travels through a few pipe segment nodes (P2 and P3)

to a “T” intersection (P4), where it splits off to a second

branch of the network. The “T” node is also measured by

the outside world (D1) through an output port. Flow going

up the new leg ends in a cap (P8), while flow continuing

down the original path exits the system through a valve (P6).

Temperature dependent variables of density and wave speed

are computed by global calculations (G1, G2, and G3) and

delivered by global distributions (GD1, GD2, and GD3) to

each of the computational elements every time step.

B. System Hardware Architecture

The hardware architecture of real-time 1D CFD evaluation

consists of multiple PRET cores connected through point-
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Fig. 4: Detailed System Diagram



to-point connections and a global distribution circuit. Fig. 5

shows a block-level view of the hardware architecture. The

PRET core implementation used here is slightly different from

the one presented in [8]. Instead of the SPARC ISA [14], our

PRET cores implement the ARMv4 instruction set, without

thumb mode. We switched to ARM due to its popularity in

the embedded domain and the unpredictable nature of register

windows in the SPARC ISA.

Similar to what is mentioned in Section III-B, each core

consists of hardware threads interleaved through the pipeline

in a predictable round robin fashion. This provides two major

advantages. First, multi-threaded architectures maximize the

throughput over latency, favoring highly parallel applications.

When a hardware thread is waiting on a long latency operation

(such as a floating point calculation or memory access) to

complete, other threads can continue to execute in the pipeline,

effectively hiding the latency of the operation. E.g., in our

implementation, floating-point addition and subtraction appear

as single-cycle instructions for each thread in timing analysis.

Second, the thread interleaving mechanism allows for a sim-

pler pipeline design. Since data and control hazards are no

longer present in the pipeline [8], the logic used for handling

them can be stripped out, greatly reducing the cost of the

core. Multiple threads share the same datapath, so the cost of

adding threads is far less than adding a core, further reducing

the cost of the system. We discuss in more details the trade-

offs involving adding threads later in Section V.

Instead of each being implemented as its own core, compu-

tation nodes are mapped onto hardware threads. The memory

footprint required for each node is small enough (roughly a

hundred assembly instructions) so the scratchpad is sufficient

for memory use, and no main memory is needed.

Our architectural design supports configurations which ex-

clude certain floating point units, since not all computation

nodes require all floating operations. For example, as shown

in Table I, square root is only used by the valve node, and

divide is only used by the “T” node. The floating point divide

and square root hardware are the most resource intensive units,

but the valve and “T” nodes usually represent only a few

percent of overall system. The common fuel rail system we

present later contains 234 nodes, but only 5 are “T” nodes and

4 are valves. To save on hardware resources, we could use

software emulation for the complex operations at the cost of

increasing in the execution time of the “T” and valve nodes.

As all nodes synchronize communication points at the end

of each time step, the overall performance of our system is

bounded by the slowest computational element. As a result, the

performance hit from using software emulation for these small

percent of nodes would limit the overall system performance.

Instead, by allowing different configurations of ARM-based

PRET cores within the system, we can include the hardware

implementations of complex operations only on cores that

require them, getting the performance boost without a huge

resource overhead. This leads to substantial resource savings,

which we show in Section V.

Our implementation establishes point-to-point communica-
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Fig. 5: System of PRET Cores and Interconnects

tion channels across nodes, and a global distribution circuit

to distribute temperature dependent variables. Each node in

our system has one to four input ports and one to four

output ports. One input port is always dedicated as the

global port, which receives broadcasts from the global dis-

tribution circuit. Nodes mapped to the same core (intra-core
communication) can communicate through the shared local

memory within the core. Nodes mapped to different cores

(inter-core communication) communicate through the point-

to-point interconnect, as illustrated in Fig. 5. We use shared

dual-port Block RAMs (BRAMs) to implement the inter-core

communication. This serves two purposes. First, it provides

single-cycle deterministic communication, as BRAM access is

single cycle. This allows the timing analysis to be simplified

as there is no hardware protocol that needs to be accounted

for when accessing data through the inter-core communication

channels. More importantly, the timing analysis for each node

is now independent of the node mapping because both intra-

and inter-core communication mechanisms are single cycle

via BRAMs. Second, by using the dedicated BRAM blocks

on the FPGA for interconnects, we save the logic slices to

be used for computation nodes. This is useful because the

limiting resource in our implementation is logic slices, not

BRAMs. This is justified later in Section V. Each core only

requires a small number of BRAMs to be used for registers

and scratchpads, so the BRAM utilization ratio is far less than

the logic slice utilization ratio. Our timed periodic execution

of computation nodes (described next in Section IV-C) ensures

that we only need a buffer size of one for each of the words.

Because the communication bandwidth is small, we only need

one BRAM block to establish an interconnect that allows all

threads from one core to communicate with all threads on the

other.

All of our flow elements have a dependency on density and



wave speed that are functions of temperature. Temperature

is assumed to be the same throughout the system, so these

parameters are computed in a single computational element

and broadcast to all pipe elements through the global distribu-

tion circuit, as illustrated in Fig. 4. Leveraging this, the global

distribution circuit is implemented with a single broadcaster

that writes to dedicated memories local to each core. This

broadcast receiving memory is also synthesized to a small

dual-port BRAM, with a read-only side connected to the

core, and a write-only side connected to the broadcaster. This

memory is shared amongst all threads in a core so all threads

can access the global variables. This architecture allows us

to save on the resources needed to implement a full fledged

interconnect routing system or any network protocol to be used

for broadcasting.

C. Software Design

We implement the equations in Table I in the language C,

and compile it with the GNU ARM cross compiler [15] to

run on our cores. Columns 2-6 in Table III show the number

of Multiply, Add/Subtract, Absolute Value, Square Root, and

Divide operations required by each computational element

after optimization. Each computation node is executed on a

TABLE III: Computational Intensity of Supported Types

Without Interpolation / With Interpolation

Type Mul Add/ Abs Sqrt Div Thread
Sub cycles

Pipe segment 10 / 18 5 / 13 2 / 2 0 / 0 0 / 0 81 / 51
Imposed pressure 6 / 10 3 / 7 1 / 1 0 / 0 0 / 0 50 / 38

Imposed flow 5 / 9 3 / 7 1 / 1 0 / 0 0 / 0 51 / 40
Valve 13 / 17 5 / 9 1 / 1 1 / 1 0 / 0 64 / 55
Cap 4 / 8 2 / 6 1 / 1 0 / 0 0 / 0 48 / 39

Pipe “T” 16 / 28 13 / 25 3 / 0 0 / 0 4 / 4 111 / 72

hardware thread and data is exchanged only at the boundaries

of time steps to avoid data races. Fig. 6 shows an example

timeline view of the operation for each node. The execution

for computation nodes (top of Fig. 6) during each time step

consists of three phases: (1) Read in the pressure and flow

rate value from neighbors, and global value from the global

port; (2) Compute the output values; (3) Send output values

to neighbors to be used for next time step. The global and

mechanical calculation nodes do not read data from other

nodes, but might gather data from physical sensors to be

broadcast or sent to other nodes.

Global Distribution Mechanism

Thread Execution

Read Adjacent
& Glob Data

Post
ResultsCompute Time Segment

Global Distribution WindowRead Ext.
& Compute

Single Time Step
PRET Deadlines

Fig. 6: Execution of Nodes at Each Time Step

The computation done by each node consists of only a single

path of execution, voiding the need for complex software

analysis. Data synchronization is handled by the synchronized

periodic communication points, which enforces an ordering

between the writing and reading of shared data. This voids

the need of any explicit synchronization method, preventing

any overhead or unpredictability for communication. These

properties allow us to statically obtain an exact execution time

on our predictable architecture for each computation node. We

show this in the last column of Table III. A thread cycle is

defined as a thread’s perceived clock cycle. To get the physical

execution time, multiply the thread cycles by the number of

hardware threads in the pipeline to get processor clock cycles,

then convert the clock cycles to physical time according to the

processor clock speed.

In addition to statically assuring that the worst-case exe-

cution time meets the timing constraints specified, we also

need to enforce that node executions remain synchronized. Our

approach uses specialized timing instructions provided by the

PRET architecture to enforce the synchronized communication

points for all nodes. When a timing instruction is decoded, it

first enforces the previously specified timing constraint, then

it specifies a new timing constraint for the next code block. In

the code, one timing instruction is used during initialization

to specify the first timing constraint. Then, timing instructions

are inserted within the loop iteration to separate the execution

phases. When a phase completes and the timing instruction is

reached, the processor enforces the previously specified time

bound by stalling if needed. Once code continues execution,

the next timing specification is set. Each timing instruction

takes 2 cycles because it manipulates a 64-bit value represent-

ing time. For our computational elements, 3 timing instructions

are used during each computation iteration, thus 6 cycles of

overhead are introduced per time step. The overhead is already

included in our execution time analysis presented in Table III.

Fig. 6 shows the program synchronization points that our

timing instruction enforces. The hatched area in the figure

denotes slack time that is generated by the timing instructions.

The same effect can possibly be achieved with instruction

counting and NOP insertions. This can certainly be done on

any deterministic architecture, such as PRET. However, NOP

insertions are brittle and tedious. Any change in the code

would change the timing of the software and insertions need

to be adjusted to ensure a correct number of NOPs. Designs

now are mostly written in programming languages like C and

compiled into assembly code, making it extremely difficult

to gauge the number of NOPs needed at design time. The

timing instructions allow for a much more scalable and flexible

approach. In a system with heterogeneous nodes that exhibit

different execution times, the timing instructions allow us to

set the same timing constraints for all nodes, regardless of its

contents.



V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Setup

We use three examples to evaluate our framework. Our first

example is a simple waterhammer example taken from Wylie

and Streeter [16]. Its configuration is similar to the one shown

in Fig. 4, but without the “T” element and the nodes that

branch up. This example contains an imposed pressure, 5 pipe

segments, a valve, and two mechanical input blocks which

provide both the reference pressure and the valve angle as a

function of time. We use this simply as a sanity check for the

correctness of functionality for our framework.

The second and third example cover two common diesel

injector configurations: the unit pump and common rail. The

data for configuring these cases was taken from reference

examples provided by Gamma Technologies’ GT-SUITE soft-

ware package [4]. The unit pump is much like the simple

waterhammer example in that there are no branches in the

system. The input is a defined flow specified by an electroni-

cally controlled cam driven pump. The output is a single valve.

There are a total of 73 fluid sub-volumes in this system. The

common rail example is more complex, where the topology is

roughly that described by the computational elements in Fig. 4.

It has a total of 234 sub-volumes, including 5 “T” intersections

and 4 valves. Both the GT-SUITE-based models use a 1 cm
discretization step. Using a wave speed of 1500 m/s and a

stability factor of 0.8 yields a 5.33 μs timing constraint for

the slowest computational element.

We implement all our cores and interconnects on the Xilinx

Virtex 6 xc6vlx195t [17] with speed grade 3. Each Virtex-6

FPGA logic slice contains 4 LUTs and 8 flip-flops, and this

FPGA contains 31,200 logic slices and 512 18-KB BRAMs.

Each PRET core is clocked at 150 MHz and contains 6

threads. All floating point units are generated from the Xilinx

Coregen tool [18], and are configured to use the least amount

of logic slices possible to meet the timing constraint. With

our current ARM-based PRET implementation, our C code is

compiled using the GNU ARM cross compiler [15] with the

optimization compiler flag set to level 3.

For these examples, we used a mapping heuristic that groups

nodes requiring same computation onto the same core. The

results show that this heuristic allows us to save hardware

resources by synthesizing less floating point units.

The main metric used to evaluate our approach is the

resource usage after place and route on Xilinx Virtex 6

FPGAs. The speed of the system is limited by the application

parameters, which determine the execution time constraints for

a time step. Once those constraints are met, there is no benefit

to continue to improve system speed. Instead, we focus on

optimizing resource usage to improve the scalability of our

approach.

B. Timing Requirement Validation

We need to ensure that the worst-case computational el-

ement can meet the timing requirements for our examples.

In our thread-interleaved pipeline, a hardware context switch

occurs every processor cycle and threads are scheduled in

a round robin order. Given a 150 MHz clock rate, each

thread executes at 25 Mhz, so thread cycles are 40 ns
long. Table III shows that the “T” element, which takes 111

thread cycles with interpolation, is the worst-case node. The

unit pump and common rail have a requirement of 5.33 μs,

which converts to a 133 thread cycle time step requirement.

For the simple waterhammer example, a bigger discretization

Δx is used, which leads to a longer time step than the two

complex examples. This validates that we can safely meet the

timing requirements for all three of our examples, ensuring

the correctness of functionality.

C. Resource Utilization

Table IV shows the resource usage for the different config-

urations of a core. We include the fixed point configuration

in Table IV only for reference purposes. It is not used in our

system as it does not contain any floating point units. Instead,

the baseline configuration used in our implementation is “basic

float”, which contains a floating point add/subtracter, a floating

point multiplier, and float to fix conversion units. The “sqrt”,

“div” and “sqrt & div” configurations add the corresponding

hardware units onto the “basic float” configuration respec-

tively. Besides the effect of hardware units, we also show the

area impact of adjusting the thread count on a core.

TABLE IV: Number of Occupied Slices per Core on the

Virtex 6 (xc6vlx195t) FPGA

Threads per core 6 8 9 16

Fixed point only 572 588 764 779
Basic float 820 823 1000 1022
Float with sqrt 987 992 1146 1172
Float with div 1039 1051 1231 1237
Float with div & sqrt 1237 1249 1403 1413

An interesting observation is that the area increase is ap-

proximately proportional only to the number of bits required

to represent the thread count. E.g., 6 and 8 threads, which

both require three bits to represent, have a similar area usage.

Once a 9th thread is introduced, the resource usage noticeably

increases, but remains similar for up to 16 threads. This can be

explained by the synthesis of multi-threaded processors onto

an FPGA. Multi-threaded processors maintain independent

register sets and processor states for each thread, while sharing

the datapath and ALU units amongst all threads. The size of

the multiplexers used to select thread states and registers is

determined by the number of bits encoding the thread IDs, not

the number of threads. Since the register sets are implemented

onto BRAMs, the number of bits used to encode thread IDs

is also what determines how big a BRAM is used for the

register set, not the number of threads. As a result, increasing

the thread capacity of cores can potentially reduce the number

of cores required to fit a fixed number of nodes, because it is

possible to increase the thread count with only a small increase

of area. However, since hardware threads share the processor

pipeline, adding threads slows down the running speed of the



individual threads. Thus, the number of threads used should

be tailored to each application, depending on its performance

and resource requirements. Our implementation uses 6 threads,

which is the maximum number of threads allowing us to meet

our timing constraint for flow elements.

As shown in Table IV, for 6 threads on a core, the “square

root” configuration uses 20.3% more slices than the “basic

float” configuration. The “division” configuration uses 26.7%

more. A core with both square root and division requires

50.8% more slices. These are estimates because the slices

occupied might vary slightly based on how the implementation

tool maps LUTs and flip flops to logic slices. However, they

give an intuition to the resource difference used for each

configuration.

Each core uses 7 BRAMs: 3 for the integer unit register

set (3 read and 1 write port), 2 for floating point register set

(2 read and 1 write port), 1 for the scratchpad, and 1 for the

global broadcast receiving memory.

The actual resource impact can be seen from Table V,

which shows the total slices occupied after placement and

route for the three examples implemented. In the homogeneous

(hom. suffix) configuration, all the cores contain the square

root and divide hardware. In the heterogeneous (het. suffix)

configuration, only necessary cores contain square root and

divide, the rest use the basic float configuration.

TABLE V: Total Resource Utilization of Examples Imple-

mented on the Virtex 6 (xc6vlx195t) FPGA

Example Nodes Cores / Conn.
Slices / BRAM

Absolute Relative (%)

Water het.
12 2 / 1

1805 / 15 5.7 / 2.1
Hammer hom. 2379 / 15 7.6 / 2.1

Unit het.
73 13 / 12

10566 / 103 33.0 / 15.0
Pump hom. 16635 / 103 44.0 / 15.0

Common het.
234 39 / 38

29134 / 311 93.4 / 45.0
Rail hom. N/A

For the simple waterhammer example, since only 2 cores are

used, the savings are less noticeable. But as the application size

scales up, the resource savings become more apparent. The

homogeneous approach uses roughly 1.5 times the number of

slices the heterogeneous approach uses, which is consistent

with the findings in Table IV. The results also show that our

system scales linearly with the number of nodes. This proved

to be critical for the 234-node common rail example as only

our heterogeneous architecture could implement the design on

the xc6vlx195t FPGA while the homogeneous design simply

could not fit. These results also reflect our decision to use

a heuristic that groups nodes with the same computation

together. By doing so, we can synthesize less hardware com-

putation units overall, saving hardware resources.

Table V also shows the BRAM usage for the implemented

examples. Each interconnect uses 1 BRAM and each core uses

7 BRAMs. We see that the BRAM utilization ratio is far below

the logic cell utilization, validating our design choice of using

BRAMs for interconnects and broadcasts.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel framework for solving a

class of heterogeneous micro-parallel problems. Specifically,

we showed that our approach is sufficient to model a diesel fuel

system in real time using the 1D CFD approach on FPGAs.

We use the PRET architecture to ensure timing determinism

and implement a timing based synchronization on a multi-core

system. We set up a configurable heterogeneous architecture

that leverages the programmability of FPGAs to efficiently

implement designs for efficient area usage. Our experimental

results show ample resource savings, and prove that our

approach is practical and scalable to larger and more complex

systems.

We plan to continue to extend this work along several lines.

From the application perspective, we look to add more flow

elements to our library to compare our results to more complex

flow systems. We also plan to examine more closely the

integration of mechanical and electrical nodes in our library.

For the hardware architecture, we look to explore multi-rate

timing of nodes to allow for differences in electrical, fluid,

and mechanical time steps.
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