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Abstract—We review an introductory course in embedded systems that
characterizes embedded systems not by resource constraints, but rather
by interactions with the physical world. This course teaches students
the basics of models, analysis tools, and design for embedded systems.
Traditional undergraduate courses in embedded systems focus on ad-hoc
engineering practices and the use of existing modeling techniques, often
omitting critical analysis and meta-modeling; we emphasize model-based
design of embedded and cyber-physical systems. Students learn how to
model the physical world with continuous time differential equations,
and how to model computation using logic and discrete models such
as state machines. Students evaluate these modeling techniques through
the use of meta-modeling, illuminating the interplay of practical design
with formal models of systems that incorporate both physical dynamics
and computation. Students learn formal techniques to specify and verify
desired behavior. A combination of structured labs and design projects
solidifies these concepts when applied to the design of embedded and
cyber-physical systems with real-time and concurrent behaviors.

I. INTRODUCTION

We share an interdisciplinary approach to teaching embedded
systems that deviates from the more traditional approach of character-
izing embedded systems by resource constraints [1]. While resource
constraints are an important aspect of embedded systems design,
such constraints are part of every engineering discipline and give
little insight into the interplay between computation and physical
dynamics. Our approach challenges students to draw from topics
in physics, circuits, transducers, digital signal processing, digital
communications, networking, operating systems, robotics, control
theory, algorithms, probability, and logic. Students are exposed to
the lowest levels of abstraction for programming embedded systems,
including traditional imperative programming models, to the highest
levels of abstraction, including graphical system design tools and
concurrent models of computation. Here, we focus on the hands-on
aspects of the course, partitioned into structured laboratories and a
capstone senior design project. The theoretical foundation for the
course follows Lee and Seshia, Introduction to Embedded Systems:
A Cyber-Physical Approach [6].

The course EECS 149 [2], “Introduction to Embedded Systems,”
at the University of California at Berkeley is targeted at advanced
undergraduate juniors and seniors in Electrical Engineering and Com-
puter Science. Prerequisites include an introductory course in signals
and systems, an introductory course in computer architecture (which
covers both C and assembly programming), and an introductory
course in discrete mathematics. While these prerequisites establish a
common language for the technical aspects of embedded systems, we
believe that the ubiquitous and interdisciplinary nature of embedded
systems requires students to investigate topics beyond computer
science.

Cyber-physical systems [3] are dynamic systems that integrate
physical processes with computation, often in feedback loops, where
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physical processes affect computations and vice-versa. Model-based
design [4], [5] emphasizes mathematical modeling to design, analyze,
verify, and validate dynamic systems. Mathematical models are used
to design, simulate, synthesize, and test cyber-physical systems, and
are based on system specifications and analysis of the physical context
in which the system resides. A complete model of a cyber-physical
system represents the coupling of its physical processes and embed-
ded computations. Design of these systems requires understanding of
these joint dynamics, which is the focus of our course.

II. STRUCTURED LABORATORIES

The course begins with a series of structured laboratories, spread
across weekly, three hour laboratory sessions. Each laboratory con-
sists of a pre-laboratory assignment, in-laboratory exercises, and
a formal writeup, and starts with a brief lecture that covers the
instruments used, their theory of operation, and the overall goal of the
laboratory. In teams of two or three, students follow prompts from a
laboratory guide that lead them towards developing a solution; these
solutions are not unique, and teams are encouraged to experiment
and innovate.

In addition to traditional C programming, we use LabVIEW [7]
(National Instruments) for data acquisition, simulation, and embedded
programming. As a graphical system design tool, students see em-
bedded programming at a higher level of abstraction than traditional
imperative programming models. LabVIEW supports heterogeneous
compositions of several models of computation: continuous systems
are expressed as ordinary differential equations or differential al-
gebraic equations, and discrete systems are expressed as difference
equations, in the LabVIEW Control, Design, and Simulation Module;
concurrent state machines are expressed in models created in the
LabVIEW Statechart Module; imperative expressions are expressed
as Formula Nodes (a subset of ANSI C) or MathScript Nodes
(compatible with scripts created by developers using The Mathworks,
Inc. MATLAB software and others); data acquisition and program
flow are expressed in structured dataflow, which is general enough
to allow the composition of each of these models of computation
[9]. While many graphical design tools exist, LabVIEW is attractive
because of its adoption of platform-based design [10], enabling
portability of LabVIEW applications from desktop computers to
embedded controllers, wireless sensor networks, or arbitrary targets
through synthesis of ANSI C code.

Like most graphical system design tools, LabVIEW implements
a limited number of models of computation for the purpose of
serving industry in the design, prototyping, and implementation of
embedded systems; while this enables students to quickly deploy
embedded software, it is difficult (if not impossible) to compare
and critically analyze variations of each model of computation, or



to incorporate entirely new models of computation. To better serve
the exploration and critical analysis of formal models of compu-
tation, we assign homework on the Ptolemy II [11] modeling and
simulation environment. Ptolemy II is a versatile tool for researching
heterogeneity, allowing developers to easily create and simulate new
models of computation. While we would prefer the use of a single,
all-encompassing modeling environment, we feel that many concepts
of model-based design an demonstrable through one or both of these
softwares.

A. Week 1: Introduction to LabVIEW

The first laboratory session is a hands-on introduction to the
LabVIEW graphical system design environment [8]. Students learn
the basics of structured dataflow, the concept of a virtual instrument,
and implementations of multiple models of computation, specifically
continuous systems, Statecharts, MathScript, and Formula Nodes.
Students readily grasp the text-based models, but often struggle with
representations of continuous systems if they have not taken a course
in modeling or control theory.

B. Week 2: Sensor Modeling

The goal of this laboratory is to perform computer-based measure-
ments. Students first interface to sensors in a controlled environment
using a desktop computer, an NI USB-6009 [12] USB data acquisition
device, and LabVIEW. Floating-point voltage measurements are
continuously acquired from an Analog Devices ADXL-322 [13] two-
axis analog accelerometer. Referencing the sensor datasheet, students
translate these voltage signals into meaningful units such as g-forces.
The first objective is complete when students calibrate the sensor,
convert measurements into meaningful units, produce a real-time
graph of each axis scaled to +1g, and calculate pitch and roll in
degrees.

Now familiar with the accelerometer and how it is measured,
students interface to an embedded device, the Nintendo Wii Remote
[14]. The device, part of the Nintendo Wii entertainment system,
is a handheld wireless game controller that measures acceleration
and light intensity to determine motion and position, as well as
momentary depressions of user buttons. The three types of actuators
on the Wii Remote are a speaker, LEDs, and a rumble unit that
vibrates the device. While the Wii Remote is simple, popular, and
widely available, its most compelling feature is that can serve as a
conceptual bridge from computer-based to embedded-based measure-
ment. The remote contains a three-axis version of the accelerometer
that students previously interfaced, and since its measurements may
be transmitted wirelessly to LabVIEW, the exercise isolates the
challenge of requesting a measurement from an external embedded
device and interpreting its fixed-point (integral) response. We feel
that students should be comfortable in this process before advancing
to programming of an embedded device.

An onboard embedded processor on the remote contains an analog-
to-digital converter (ADC) to sample the accelerometer and a radio
to broadcast Bluetooth messages to a host. An online community of
embedded systems hackers reverse-engineered and documented these
messages [15], and students navigate this community to learn these
messages and how to interface the remote to a desktop computer.
Students write a LabVIEW application to toggle LEDs and enable or
disable rumble. Finally, the previous accelerometer calibration and
measurement program is modified to poll accelerometer data from
the remote and display it in real-time on a desktop computer, taking
note that measurements are no longer read as floating-point voltages,
but instead as binary values output by the ADC on the remote.

Fig. 1.

Cal Climber cyber-physical system.

C. Weeks 3-4: Microcontroller Programming in C

In this exercise, students advance to programming an embedded
system. The Cal Climber [16] (Fig. 1) is a cyber-physical system
based on a commercially available robotics platform similar to the
the iRobot Roomba autonomous vacuum cleaner. The off-the-shelf
platform is capable of driving, sensing bumps and cliffs, executing
simple scripts, and communicating with an external controller. The
Cal Climber is comprised of the iRobot Create [17], a Texas Instru-
ments LM3S8962 [18] ARM microcontroller, and an Analog Devices
ADXIL-322 two-axis analog accelerometer. The Cal Climber demon-
strates the composition of cyber-physical systems, where a robotics
platform is modeled as a subsystem and treated as a collection of
sensors and actuators located beyond a network boundary.

The problem statement is as follows [19]:

Program the Cal Climber to autonomously climb a hill.
Your robot must determine the correct orientation to drive
towards the top of a hill, avoid driving off a cliff, and
navigate around obstacles that may be present along the
way.

Students begin with a template C program that implements a simple
state machine with two states, DRIVE and TURN. The template
program simply drives for a fixed distance, then turns through a
fixed angle, and repeats, where distance and angle are reported by
the iRobot Create. As a pre-laboratory exercise, students review
the template program, including the state machine architecture, a
communication queue, interrupts, and interface to the ADC. They
review datasheets for the embedded controller, the accelerometer, and
the iRobot Create.

This exercise is, for many students, their first experience pro-
gramming an embedded target, performing calculations without the
use of floating-point arithmetic, writing software to interact with
the real world (rather than process information), or executing non-
terminating software in the absence of an operating system. We
seek to reinforce the concept of model-based design by providing
a template that implements a state machine, and students generally
solve the problem through natural extensions of this state machine.
Students decide whether to periodically poll sensors on the robot, or if
the robot should be configured to stream sensor data to be processed
via interrupts; similarly, the accelerometer can be periodically polled,
or the ADC can be configured to run at a fixed rate and trigger an
interrupt when conversions are complete. Students consider the design



implications of each of these approaches.

The first objective is to program the robot to avoid obstacles while
driving in a fixed orientation. Software must respond to collisions
detected by momentary bump sensors on the front of the robot,
and to cliffs detected by infrared distance sensors on the bottom
of the robot. In the second week of this laboratory, the robot is
programmed to navigate to the top of a hill using feedback from
the accelerometer. Many students in this course have not formally
studied control theory, but the physical dynamics of this system are
straightforward and students are challenged to derive a simple control
algorithm to navigate a hill. Students complete the first objective
when their robots navigate a course of rearrangeable obstacles.

Students often do not consider that affecting the wheels of the robot
produces acceleration that is registered by the accelerometer, poten-
tially causing chattering or unexpected behavior. Students find the
cause of the undesired behavior and develop a strategy to counteract
it, such as implementing a lowpass filter, or limiting acceleration by
slowly increasing wheel speeds. This struggle emphasizes the joint-
dynamics of cyber-physical systems, and informs later discussions of
more advanced modeling and simulation techniques that are capable
of predicting this behavior.

Students are encouraged to compete for the fastest run through a
course of an incline with obstacles. Many groups stay beyond the
official laboratory session to experiment with new approaches, tune
controllers, and compare solutions.

D. Weeks 5-6: Model-Based Design for Hill Climbing

Moving to higher levels of abstraction, students use LabVIEW
to program the Cal Climber. The LabVIEW Embedded Module for
ARM Microcontrollers synthesizes C code according to structured
dataflow, Statechart, or continuous semantics, and seamlessly com-
piles and downloads an ARM binary to the embedded microcon-
troller. Debugging sessions may be established via JTAG, serial,
or ethernet, allowing students to display program data on a host
computer.

The problem statement is as follows [20]:

Use LabVIEW to simulate the control of the Cal Climber as
it climbs a hill, generate C code that targets the LM35s8962,
and program the Cal Climber to navigate and climb a hill.

Students begin with a template LabVIEW project that supports
both desktop simulation and code synthesis for the embedded target.
Sensor events from the iRobot Create are simulated, and students
verify correct state changes in software; for example, when a bump
sensor is triggered, the application should respond with a collision
avoidance algorithm. Simulations of the accelerometer and ADC
enable students to verify controller behavior. The first week of
this exercise is complete when students implement a state machine,
control algorithm, application logic, and a basic simulation test is
passed.

The solution to the laboratory is fundamentally different when
developed in LabVIEW because of the inherent concurrency of
structured dataflow. Students define parallel loops (processes) that
perform tasks at varied rates; for example, sampling and filtering the
accelerometer at 200 Hz, reading the iRobot Create sensors at 67 Hz,
and executing a control algorithm and wheel commands at 40 Hz
(Fig. 2). The higher level of abstraction focuses students on software
timing and concurrent behavior instead of low-level constructs like
system clocks and interrupts. The obvious tradeoff is that students
loose a certain visibility into the low-level aspects of software, but
we expect that the previous, C-based lab gives reasonable exposure
to traditional low-level programming.
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Fig. 2. Cal Climber LabVIEW software.

The following week, students program the Cal Climber. No modifi-
cation is needed to migrate the previous LabVIEW desktop simulation
to the embedded controller, so any necessary code modifications
relate to the fidelity of the simulation and modeling of the physi-
cal system. Having first verified software through simulation, most
students complete this exercise with relative ease.

III. CAPSTONE DESIGN

The remaining eight weeks of the course are dedicated to capstone
design projects. Each project culminates in a demonstration session
and poster presentation, and satisfies a senior design requirement
for graduation from the department of Electrical Engineering and
Computer Science. Though we encourage students to choose from
a list of suggested projects, many students opt to design their own
projects from scratch, using concepts learned throughout the course.

Capstone design projects are kicked-off with a session on project
management [21] led by an experienced project manager. The goal
is as much to buoy student success as it is to prepare them for
interactions with project managers in industry. Students submit a
one-page charter that is an overarching project specification; they
later submit a project plan of action, a timeline for milestones, and
a division of responsibilities. Projects must apply at least two of
the following concepts: concurrency, modeling of physical dynamics,
reliable real-time behavior, modal behavior governed by finite state
machines coupled with formal analysis, real-time networks, simu-
lation strategies, and design methodologies for embedded systems
design.

Team are paired with a mentor with relevant experience who is
a professor, graduate student, researcher, or industry professional.
Progress is checked weekly, alternating between in-class presen-
tations and one-page milestone reports comparing progress to the
original project charter. Halfway through the project, students are
asked to host live demonstrations during a department open-house,



which encourages students to achieve functional milestones. Students
periodically submit peer evaluation forms to identify any issues with
a particular team member; to our surprise, students are often more
critical of themselves than their teammates. Project management is a
crucial component of the capstone design project, and we refer the
reader to Koopman [22] for his complementary treatment of software
engineering practices used in embedded systems courses.

IV. RESULTS AND FURTHER RESEARCH

This is a work in progress, and the actual impact of the course
is difficult to measure objectively. Students are generally interested
and engaged, celebrating their projects as well as those from other
teams. Students are proud of what they accomplish, and even post
project presentation videos to the internet. Final project submissions
include an autonomous helicopter, a distributed autonomous network
of Cal Climbers retrofitted with custom optical emitters and sensors
for localization, a vehicle convoy, a body sensor network and robotic
emulator, interactive games, facial recognition and tracking, several
implementations of collision avoidance, and distributed music. Project
presentation videos are available on the course website [2]. Such
anecdotes give some insight into the impact of the course, but
how do we know for sure whether a particular change in the
course or laboratory design is actually an improvement? We are
pleased, at least, to witness through the course that students surprise
both themselves and their instructors, that projects demonstrate an
understanding of the theoretical concepts introduced in lecture, and
that students have received job offers from industry mentors.

A common issue faced by students is the need to localize au-
tonomous mobile robots. Significant portions of projects have dealt
with this issue, with each team attempting a different method. To
alleviate this problem, we acquired and are in the process of testing
an in-laboratory localization system. The system tracks robots that
have been fitted with optical markers whose coordinates are broadcast
wirelessly. The system will be available to students for design projects
in the next offering of the course, providing an infrastructure to aid
the study of distributed systems.

We are investigating physics-based simulators that enable full,
closed-loop simulations of the Cal Climber. National Instruments
Labs has published a robotics simulator that includes a complete
model of the Cal Climber, and we are in the process of evaluating this
pilot software. This potentially allows students to verify software in a
fully simulated environment, including ground that is not inclined but
is rough, prompting students to more carefully model the environment
and develop a strategy for noise suppression. This would contribute
to a more complete form of model-based design.

A kit-based approach to the lab that is commercially supported
and costs about the equivalent of a traditional textbook could go a
long way towards facilitating export of the laboratory curriculum.
The iRobot Create meets these requirements, and greatly influenced
laboratory development. We interfaced the internal microprocessor
on the iRobot Create with a more advanced external controller, for
better or worse, only because it was underpowered and difficult
to reprogram, though we have no reason to believe that students
benefit educationally from a more powerful processor. We seek a kit
that offers mobility, sensing, and actuation together with a suitably
powerful and adaptable embedded controller, as a platform for model-
based design of cyber-physical systems.
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