
Time and Schedulability Analysis of Stateflow Models

Marco Di Natale Haibo Zeng

Scuola Superiore S. Anna Mc Gill University

Outline

• Context: MBD of Embedded Systems

– Relationship with PBD

• An Introduction to Schedulability Analysis

– Independent tasks – demand-based function analysis

– Tasks with offsets

– Task graphs

• An Introduction to Stateflow Semantics

• Tasking Model

• The Scheduling Problem

• Speeding up the analysis with max-plus algebra

• Future steps

Context and relationship with MBD

Platform

instance

Application

instance

Platform API
(OSEK/AUTOSAR)

Refinement into a set
of concurrent tasks
exchanging messages

Single-
processor w.
priority-based
RTOS

Single-
processor w.
priority-based
RTOS

SR modeling
(Simulink)

SR modeling
(Simulink)

Task and
communication model

AnalysisAnalysisAnalysisAnalysis

Schedulability analysis: Independent periodic tasks

• Activation events are periodic
(period=T),

• Deadlines are timing contraints on
the execution of tasks (D=T)

• Tasks are independent

• The execution time of each task is
modeled by the worst case execution
time (worst-case scenario)

• First model (Late 70s/80s)

• Study of ADA programs

• Developments into early RTOS
systems

• n tasks τ1, τ2, … τn

• Task periods T1, T2, ... Tn

• Execution times are C1,

C2, ... Cn

Scheduling algorithm

• Preemptive & priority driven
– task have priorities

• statically (design time) assigned

– at each time the highest priority task is executed

• if a higher piority task becomes ready, the execution of the
running task is interrupted and the CPU given to the new task

• In this case, scheduling algorithm = priority
assignment + priority queue management

Critical instant and Worst-case response time

• Critical instant of a task = time instant t0 such that, if the
task instance is released in t0, it has the worst possible

response (completion) time (Critical instant of the system)

• Theorem: the critical instant for each task is when the

task instance is released together with (at the same time)

all the other higher priority instances

• The critical instant may be used to check if a priority

assignment results in a feasible scheduling

– if all requests at the critical instant complete before their
deadlines

Response Time Analysis (contd.)

Priority
order

IiCiRi = +

Tj

τi

τ1

C1

Ci

Cj

Response
time

Interference

Response Time Analysis (contd.)

Priority
order

IiCiRi = +

τi

τ1

jijji CRnI)(, =

∑
∈

=
)(

,

ihpj

jii II












=

j

i
ij

T

R
Rn)(

Response Time Analysis (contd.)

IiCiRi = +

τi

j

ihpj j

i
ii C

T

R
CR ∑

∈ 










+=

)(

j

ihpj j

ii C
T

t
Ctrbf ∑

∈ 










+=

)(

)(

j

j

ji C
T

t
trbf












=)(,

∑=
j

jii tdbftrbf)()(,

Request bound
function of level i

Response Time Analysis (contd.)

τj

j

j

ji C
T

t
trbf












=)(,

Response Time Analysis (contd.)

τj

j

j

ji C
T

t
trbf












=)(,

)(trbf i

Scheduling with Offsets

• Offset free model: the values of the Oi are not defined
(analysis in the worst-case/critical instant)

• Synchronous model: Oi may be ≠ 0, but the values
are given
– Critical instant may never happen (pessimistic assumption)

Scheduling with Offsets

• Example: consider the case (C, D, T)

τ1=(3, 8, 8), τ2=(6, 12, 12), τ3=(1, 12, 12)

• Not schedulable in the offset-free model (not even with
RM assignment), given that task 3 misses its deadline.

• But is schedulable with O1=0, O2=0, O3=10 !

Scheduling with Offsets

Feasibility test for task sets with offsets:

• Given a set of offsets O1, O2, ... On

• [Leung82] a task set is feasible if all deadlines are met in [s, 2P],
where s=max{O1, O2, ... On} and P = lcm {T1, T2, ... Tn}

– in practice it is sufficient to build the schedule and check all the busy

periods originating from a task release time in [s, 2P)

• For fixed priority tasks and D≤T it is possible to further restrict the
interval [Audsley91]

• Theorem: Let Si be inductively defined by

Then, if the task set is ordered by decreasing priorities and has a feasible
schedule, it is periodic from Sn with period P = lcm{Ti st: i=1, 2, …, n}

It is sufficient to check al the busy periods in the interval [Sn, Sn+P])

i

i

ii
ii T

T

OS
OS

OS








 −
+=

=

−1

11

max{

Synchronous FSM vs digraph task models

<2,6>

8

30

Minimum
interrelease time /
period

NodeNodeNodeNode labelslabelslabelslabels:
<WCET, Dline>

EdgeEdgeEdgeEdge labelslabelslabelslabels:
minimum interrelase

OutgoingOutgoingOutgoingOutgoing edgesedgesedgesedges:
possible executions
triggered by
completion

Additional minimum
interrelase constraints

Synchronous FSM vs digraph task models

• The request bound function (or rbf) and demand bound function (or
dbf) are a general tool for the analysis of task graphs.

• See the analysis in
M. Stigge, P. Ekberg, N. Guan, , and W. Yi, “The digraph real-time task

model,” in Proc. the 16th IEEE Real-Time and Embedded Technology

and Applications Symposium, 2011.

Functional representation: SR Simulink modeling

• Functional model: “zero-logical-time” execution or (no
notion of platform or computation time)

– The output update and state update functions are computed

immediately at the time the block is triggered/activated

– “the system response or reaction is guaranteed to be

completed before the next system event”.

– The only significant references to time are the sampling times

(or trigger events) of blocks

– Also, the partial order in the execution of blocks because of

feedthrough behavior must be considered.

Regular type blocks

Stateflow (state

machine)-type blocks

Functional representation: SR Simulink modeling

• Simulink system = networks of blocks

{ }nbbbS ,...,, 21=

• Blocks can be Regular or Stateflow blocks

• Regular blocks can be Continuous of Discrete type.

• All types operate on (right)continuous type signals.

• Blocks may have a state Sj or may be stateless.

bj
ij,p

ji
oj,p

jo

Functional representation: SR Simulink modeling

• Continuous-type blocks are defined by a set of differential

equations

• Discrete-type blocks are activated at events ej belonging

to a periodic sequence with 0 offset and period Tj

• When a model generates code, continuous blocks must
be implemented by a fixed-step solver, with period Tb

• Tb (base period) must be a divisor of any other Tj in the

system

bj
ij,p

ji
oj,p

jo

je

Functional representation: SR Simulink modeling

• At each ej the block computes its out update and state

update functions, updating the values on its output signals

bj
ij,p

ji
oj,p

jo

je

),(, jjj

new

j iSfoS =

Simulink models (execution order - feedthrough)

Stateflow (or state machine)
blocks react to a set of events
ej,v, derived from signals
(generated at each rising or
falling edge).
As such, events belong to a set
of discrete time bases kTjv

Simulink models (execution order - feedthrough)

Stateflow machines are extended (synchronous) FSMs with
hierarchical and parallel states

Simulink models (execution order - feedthrough)

And quite a few issues … (transition actions can generate events)

Transition notation

1

Execution order

For more info:
N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi Defining and translating a

”safe” subset of Simulink/Stateflow into Lustre. 4th ACM International Conference on

Embedded Software (EMSOFT04), Pisa, Italy, September 2004

A. Tiwari. Formal semantics and analysis methods for Simulink Stateflow models.

Technical report, SRI International, 2002.

Simulink models (execution order - feedthrough)

Most blocks are of type
feedthrough or Mealy-type
(output does depend on input)
This implies a precedence
constraint in the computation of
the block output functions

Dependencies
among outputs

Some blocks have
no state

Simulink models (execution order - feedthrough)

If two blocks bi and bj are in an input-output relationship
(one of the outputs of bi is the input of bj), and bj is of type
feedthrough), then

ji bb
1−

→

In case bj is not of type feedthrough, then the link has a delay,
ji bb →

bi bj

Simulink models (execution order - feedthrough)

Let bi(k) represent the k-th occurrence of bi (belonging to the set
∪v kTi,v if a state machine block, or kTi if a standard block), a
sequence of activation times ai(k) is associated to bi.

Given t≥0, ni(t) is the number of times bi is activated before or at t.

In case bi →bj , if ij(k) is the input of the k-th occurrence of bj ,

then this input is equal to the output of the last occurrence of bi that is no later than the k-th occurrence of bj

ij(k) = oi(m); where m = ni(aj(k))

If the link has a delay , then the previous output value is read,
ij(k) = oi(m - 1):

bi bj

Simulink models (execution order - feedthrough)

bi bj

May be a problem in a code implementation with (scheduling)
delays

Simulink models: rates and deadlines

The result is a network of
functions (output/state update)
with a set of partial ordersEach blockset is

characterized by an
execution rate

the system response or reaction must be
completed before the next system event

Stateflow blocks: single task implementation

5 ms

10 ms

2 ms

Each stateflow block is implemented by a periodic task executed
at the period of the gcd of its input signals.
(simplest option, implemented by commercial code generators)

The system hyperperiod H depends on the periods of the regular blocks
(tasks implementing them) and the period of other stateflow blocks in the
system. The offsets are the individual periods of the blocks

There could be alternative
(multitask) options for
semantics-preserving
implementations of
Stateflow FSMs

Schedulability

The busy periods to be checked start at the release of a task with priority
higher than or equal to τi.

Problems
• The number of busy periods to be checked can be very large (all activation times

in a hyperperiod)
• The busy period can be quite long making the computation very expensive
Steps
• Connect FSM analysis to recurrent task graphs
• Improve and speed-up the analysis

Simulink models: rates and deadlines

the system response or reaction must be completed before the
next system event – if we abstract from the model and only look
at the task code model, the analysis can be very pessimistic
5 ms

10 ms

2 ms

The generated code runs in the
context of a 1 ms task, but
reactions do not occur every 1ms

Simple periodic model: Worst-case exec time of a
reaction to any event

Simulink models: rates and deadlines

the system response or reaction must be completed before the
next system event – if we abstract from the model and only look
at the task code model, the analysis can be very pessimistic
5 ms

10 ms

2 ms

The generated code runs in the
context of a 1 ms task, but
reactions do not occur every 1ms

Multiframe model: worst-case exec time of a reaction
to each type of event

Simulink models: rates and deadlines

the system response or reaction must be completed before the
next system event – if we abstract from the model and only look
at the task code model, the analysis can be very pessimistic
5 ms

10 ms

2 ms

The generated code runs in the
context of a 1 ms task, but
reactions do not occur every 1ms

Even a multiframe model should account for state
dependencies in the evaluation of the worst case
execution time of each frame – need to build the
right demand bound function

In_event_3

In_event_2

In_event_2

In_event_2

From Synchronous FSM to digraph task models

The task model is pessimistic.
It allows the activation of a2, a1, and a4 within 2ms, which
implies that the event
sequence e2 → e1 → e2
occurs in a 2ms interval. This
is impossible.

reactions → tasks

Synchronous FSM vs digraph task models

The true task graph model can be computed considering the time (in the
hyperperiod) when actions can occur (WCETs and interarrival edges omitted).

This is the
comparison of the
rbf functions.

Synchronous FSM vs digraph task models

The digraph model can be simplified by removing the edges that are not
critical to the schedulability analysis, and by folding vertices by exploiting
the periodic pattern of the event arrivals in the hyperperiod.

Schedulability Analysis

QuestionQuestionQuestionQuestion: what is an efficient way to compute the rbf(∆) and
dbf(∆) for a given time interval ∆?

Refinement of rbf

rbfi,j(∆)

• source state of the first transition is Si

• destination state of the last transition is Sj

rbfi,j(∆) is additive (rbf(∆) is notnotnotnot additive)

∀i, j ∀t ∈ [s; f], F.rbfi,j [s; f) = maxm(F.rbfi,m[s; t)+F.rbfm,j[t; f))

rbfi,j [s; f) for a long interval [s; f) can be computed from its

values for shorter intervals [s; t) and [t; f).

Dynamic programming can be used for computing rbfi,j(∆)

for large ∆.

(max,+) algebra can be used to demonstrate the possible

periodicity of rbfi,j(∆)

Computing rbf(∆)

Step 1Step 1Step 1Step 1: Computing the request bound function in one hyperperiod
X=(xi,j), where xi,j=rbfi,j[0,H)

The computation of rbfi;j(∆), requires searching the reachable states

within the possible sequences of events in the time interval ∆.

Reachability graph for the example FSM

S1

S2

S3

e1/a1
0.25

0.1
e1/a3

e2/a4
0.15

0.3

e2/a2

e1=2ms

e2=5ms

Execution Request Matrix

S1

S2

S3

e1/a1

0.25

0.1

e1/a3

e2/a4
0.15

0.3

e2/a2

e1=2ms

e2=5ms

event sequence in one hyperperiod

Execution Request Matrix

Step 2Step 2Step 2Step 2: Computing the request bound function over
multiples of a hyperperiod

• X(k)=(x(k)
i,j), where x(k)

i,j=rbfi,j[0,kH)

• ∀i,j, ∀1≤ l<k x(k)
i,j = maxm(x(l)

i,m + x(k-l)
m,j)

PossiblePossiblePossiblePossible tooltooltooltool: : : : applicationapplicationapplicationapplication ofofofof ((((maxmaxmaxmax,+) algebra,+) algebra,+) algebra,+) algebra

F.rbfi,j [s; f) = maxm(F.rbfi,m[s; t)+F.rbfm,j[t; f))

from previous formula

Execution Request Matrix

This indicates some

additional periodicity

S1

S2

S3

e1/a1
0.25

0.1
e1/a3

e2/a4
0.15

0.3

e2/a2

e1=2ms

e2=5ms

For our example
case it is

Basics on Max-Plus Algebra

Periodicity of Matrix Power in Max-Plus Algebra

1 2 3

Periodicity of Matrix Power in Max-Plus Algebra

Definition:
Almost linear periodic sequence if
∃ q ∈R and d,p∈I such that for ∀k>d

qpXX
kpk

×+=
+)(

p is the linear period p=lper(X)
q is the linear factor q=lfac(X)
d is the linear defect d=ldef(X)

Periodicity of Matrix Power in Max-Plus Algebra

Definition: X is irreducible

What if the digraph G is not strongly connected

• If X is reducible it could still be linear periodic, but
deciding whether this is the case has been

demonstrated to be NP-complete

• Periodicity of a different type can still be found

(general periodicity, for which linear periodicity is a

special case)

The Efficient Way of Calculating rbf

• For small interval [s,f)







=

H

s
ns 





=

H

f
n f

s f

ns nf

• small means nf-ns ≤ ldef(X) (cannot leverage periodicity)

• The rbf function can be decomposed into functions
defined over the intervals [s,nsH), [nsH, nfH) and [nfH, f)

• All terms are computed by simply using the definition

The Efficient Way of Calculating rbf

• For large intervals, when nf-ns is larger than the linear
defect of X, we leverage the periodicity for the

computation of the intermediate term.

Summary and Future Work

• Efficient and accurate schedulability analysis

– Event sequence pattern within one hyperperiod

– Max-plus algebra for periodicity of execution request matrix

• Additional issues

– Multi-task implementation of an FSM

• Issues with single task implementation:

– all actions executed at the same priority level

– tight deadline (equal to the gcd of event periods)

– Approximations for large FSMs

• Details in: Haibo Zeng, Marco Di Natale: Schedulability Analysis of
Periodic Tasks Implementing Synchronous Finite State Machines,
Euromicro Conference on Real-time Systems, 2012

H. Zeng, M. Di Natale

Q&A

Thank you!

