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Context and relationship with MBD
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Schedulability analysis: Independent periodic tasks

« First model (Late 70s/80s)
« Study of ADA programs

« Developments into early RTOS
systems

« Activation events are periodic
(period=T),

« Deadlines are timing contraints on
the executllon of tasks (D=T) e n tasks Ty, Toy ... T

« Tasks are independent

« The execution time of each task is
modeled by the worst case execution « Execution times are C,,
time (worst-case scenario) C,, ... C,

n

« Taskperiods T4, T,, ... T,



Scheduling algorithm

* Preemptive & priority driven
— task have priorities
« statically (design time) assigned
— at each time the highest priority task is executed

« if a higher piority task becomes ready, the execution of the
running task is interrupted and the CPU given to the new task

 In this case, scheduling algorithm = priority
assignment + priority queue management



Critical instant and Worst-case response time

- Critical instant of a task = time instant t, such that, if the
task instance is released in t,, it has the worst possible
response (completion) time (Critical instant of the system)

« Theorem: the critical instant for each task is when the
task instance is released together with (at the same time)
all the other higher priority instances

« The critical instant may be used to check if a priority
assignment results in a feasible scheduling

— if all requests at the critical instant complete before their
deadlines



Response Time Analysis (contd.)
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Response Time Analysis (contd.)
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Response Time Analysis (contd.)
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Response Time Analysis (contd.)
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Response Time Analysis (contd.)
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Scheduling with Offsets

« Offset free model: the values of the O, are not defined
(analysis in the worst-case/critical instant)

« Synchronous model: O, may be # 0, but the values
are given
— Critical instant may never happen (pessimistic assumption)



Scheduling with Offsets

« Example: consider the case (C, D, T)

T,=(3, 8, 8), T,=(6, 12, 12), T,=(1, 12, 12)

* Not schedulable in the offset-free model (not even with
RM assignment), given that task 3 misses its deadline.

 But is schedulable with O,=0, O,=0, O,=10!
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Scheduling with Offsets

Feasibility test for task sets with offsets:
« Given a set of offsets O,, O,, ... O,

« [Leung82] a task set is feasible if all deadlines are met in [s, 2P],
where s=max{O,, O,, ... O} and P =lcm {T,, T,, ... T}
— in practice it is sufficient to build the schedule and check all the busy
periods originating from a task release time in [s, 2P)

» For fixed priority tasks and D<T it is possible to further restrict the
interval [Audsley91]

« Theorem: Let S; be inductively defined by
5, =0,

S. =max{O, + { Si‘lT_ O —lTi

l

Then, if the task set is ordered by decreasing priorities and has a feasible
schedule, it is periodic from S, with period P = lcm{T, st: i=1, 2, ..., n}

It is sufficient to check al the busy periods in the interval [S,, S,+P])



Synchronous FSM vs digraph task models
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Synchronous FSM vs digraph task models

« The request bound function (or rbf) and demand bound function (or
adbr) are a general tool for the analysis of task graphs.

Definition 6: The request bound function of an FSM F
during a time interval A = [s, f), (s inclusive and f
exclusive), denoted as F.rbf(A), 1s the maximum sum of
execution times by the actions of J that have their activation
time within A.

Definition 7: The demand bound function of an FSM
F during the time interval A = [s, f] (both s and f
are included in the interval), denoted as F.dbf(A), is the
maximum sum of execution times by the actions of F that
have their activation time and deadline within A.

« See the analysis in
M. Stigge, P. Ekberg, N. Guan, , and W. Yi, “The digraph real-time task
model,” in Proc. the 16th IEEE Real-Time and Embedded Technology
and Applications Symposium, 2011.



Functional representation: SR Simulink modeling

« Functional model: “zero-logical-time” execution or (no
notion of platform or computation time)

The output update and state update functions are computed
immediately at the time the block is triggered/activated

“the system response or reaction is guaranteed to be
completed before the next system event”.

The only significant references to time are the sampling times
(or trigger events) of blocks

Also, the partial order in the execution of blocks because of
feedthrough behavior must be considered.

it _____—| Regular type blocks

Stateflow (state

T machine)-type blocks

VehicleSpeed




Functional representation: SR Simulink modeling

« Simulink system = networks of blocks

S =1b,,b,,....b }

« Blocks can be Regular or Stateflow blocks
« Regular blocks can be Continuous of Discrete type.
« All types operate on (right)continuous type signals.
* Blocks may have a state S;or may be stateless.

|




Functional representation: SR Simulink modeling

Continuous-type blocks are defined by a set of differential
equations

Discrete-type blocks are activated at events e; belonging
to a periodic sequence with O offset and period T,

When a model generates code, continuous blocks must
be implemented by a fixed-step solver, with period Tb

T, (base period) must be a divisor of any other T;in the

system l e,

|




Functional representation: SR Simulink modeling

* At each e the block computes its out update and state
update functions, updating the values on its output signals

§;7,0; = f(Sj”Tj
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Simulink models (execution order - feedthrough)

Stateflow (or state machine)
blocks react to a set of events
€ derived from signals
(generated at each rising or
falling edge).

As such, events belong to a set
of discrete time bases T,

Outt

Tick1

Out1

Tick2

D3

D4

Out1

Signal1

Out1

D3 Pl

Signal2

D4 P!

Annotation Description Value

Cont

D1
D2
D3

Continuous 0
Discrete 1 0.1

Discrete2 1

Discrete 3 2

Discrete 4 5

[-1,-1]

Not Applicable

Triggered
Hybrid

D2 B

In1

Sub1

H
D4

W

§ \

i1 o1
i2 02
\ J

Chart

| D2 g ling

Sub2



Simulink models (execution order - feedthrough)

Stateflow machines are extended (synchronous) FSMs with
hierarchical and parallel states
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Simulink models (execution order - feedthrough)

Transition notation
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And quite a few issues ... (transition actions can generate events)
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For more info:

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi Defining and translating a
"safe” subset of Simulink/Stateflow into Lustre. 4th ACM International Conference on
Embedded Software (EMSOFTO04), Pisa, ltaly, September 2004

A. Tiwari. Formal semantics and analysis methods for Simulink Stateflow models.
Technical report, SRI International, 2002.



Simulink models (execution order - feedthrough)
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Simulink models (execution order - feedthrough)

If two blocks b; and b, are in an input-output relationship
(one of the outputs of b, is the input of b, ), and b, is of type
feedthrough), then

b, abj

In case b, is not of type feedthrough, then the link has a delay,

—1
b, ebj



Simulink models (execution order - feedthrough)

b, — b

i J

Let b,(k) represent the k-th occurrence of bi (belonging to the set
U, kT, if a state machine block, or kT; if a standard block), a
sequence of activation times a,(k) is associated to b,.

Given 120, n(¢) is the number of times b, is activated before or at .

In case bi —bj, if i (k) is the input of the k-th occurrence of b;,
then this input is equal to the output of the last occurrence of b,
that is no later than the k-th occurrence of b,

i(k) =o0,(m); where m = nak))
If the link has a delay , then the previous output value is read,

ij(k) =o0/(m-1):



Simulink models (execution order - feedthrough)

b, — b
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May be a problem in a code implementation with (scheduling)
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Simulink models: rates and deadlines

the system response or reaction must be
completed before the next system event

Ti i
. 'he result is a network of

functions (output/state update)

Each blockset is with a set of partial orders

characterized by an
execution rate




Stateflow blocks: single task implementation

Each stateflow block is implemented by a periodic task executed

at the period of the gcd of its input signals.
(simplest option, implemented by commercial code generators)

5ms
In_event_1
2ms (2 EI .
IE There could be alternative
it ) (multitask) options for
ms - . :
s A N > semantics-preserving
=D, st in_: data_out implementations of
In_data_1
?{]_LI Stateflow FSMs
@ | dzta_in_2 data_out_2
In_data_2 Owt2
" A

The system hyperperiod H depends on the periods of the regular blocks
(tasks implementing them) and the period of other stateflow blocks in the

system. The offsets are the individual periods of the blocks



Schedulability

Schedulability Analysis for Task i

FOR each priority level-i busy period [s,f)
IF 3t € [s,f), Vt' € [s,t] such that
Ti.dbf[s, t] + Xjenpiy Tj- bfIs, ') > t' — s
THEN return unschedulable
ENDFOR

Return schedulable

The busy periods to be checked start at the release of a task with priority
higher than or equal to ..

Problems

« The number of busy periods to be checked can be very large (all activation times
in a hyperperiod)

« The busy period can be quite long making the computation very expensive

Steps

« Connect FSM analysis to recurrent task graphs

* Improve and speed-up the analysis



Simulink models: rates and deadlines

the system response or reaction must be completed before the
next system event — if we abstract from the model and only look
at the task code model, the analysis can be very pessimistic

5ms

The generated code runs in the
context of a 1 ms task, but

reactions do not occur every 1ms
J Ot
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Simple periodic model: Worst-case exec time of a
reaction to any event




Simulink models: rates and deadlines

the system response or reaction must be completed before the
next system event — if we abstract from the model and only look
at the task code model, the analysis can be very pessimistic

5ms

The generated code runs in the
context of a 1 ms task, but

In_event_1

2ms (2
In_svent_2

In_svent_3

reactions do not occur every 1ms
10 ms J

(2 ) | data_in_t data_out_? T T T T T

In_data_2

Multiframe model: worst-case exec time of a reaction
to each type of event




Simulink models: rates and deadlines

the system response or reaction must be completed before the
next system event — if we abstract from the model and only look
at the task code model, the analysis can be very pessimistic

5 ms | \ The generated code runs in the
— n-event context of a 1 ms task, but
In_event_1 .
2ms reactions do not occur every 1ms
In_event_2
In In_event 2
10
ms rr t+ ¢t 1 1
In_event_2 Q T T T
In_event_2 T T

ul

Even a multiframe model should account for state
dependencies in the evaluation of the worst case
execution time of each frame — need to build the
right demand bound function




From Synchronous FSM to digraph task models
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Synchronous FSM vs digraph task models
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The true task graph model can be computed considering the time (in the
hyperperiod) when actions can occur (WCETs and interarrival edges omitted).
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Synchronous FSM vs digraph task models
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The digraph model can be simplified by removing the edges that are not
critical to the schedulability analysis, and by folding vertices by exploiting
the periodic pattern of the event arrivals in the hyperperiod.



Schedulability Analysis

Question. what is an efficient way to compute the rbf(A) and
dbf(A) for a given time interval A?



Refinement of rbf

rbf; (A)
 source state of the first transition is S,
* destination state of the last transition is Sj

rbf; (A) is additive (rbf(A) is not additive)
Vi, j Vt & [s; fl, F.rbf;; [s; f) = max, (F.rbf; ,[s; )+F.rbf, [t; )

rbf;; [s; f) for along interval [s; f) can be computed from its
values for shorter intervals [s; r) and [z, /).

Dynamic programming can be used for computing rbf; (A)
for large A.

(max,+) algebra can be used to demonstrate the possible
periodicity of rbf; (A)



Computing rbf(A)

Step 1: Computing the request bound function in one hyperperiod
X=(x;,), where x; . =rbf, .[0,H)

The computation of rbf, (A), requires searching the reachable states
within the possible sequences of events in the time interval A.

el=2ms
e2=bms

Reachability graph for the example FSM



Execution Request Matrix
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Execution Request Matrix

Step 2: Computing the request bound function over
multiples of a hyperperiod
K=(x®, ), where xX, .=rbf; .[0,kH)

* Vij, VISI<k | xV,. = maxm(x(”l’m + x(k0)

m, j)

/ from previous formula

F.rbf;; [s; ) = max, (F.rbf; ,[s; O+F.rbf,, [t )

Possible tool: application of (max,+) algebra




Execution Request Matrix

el=2ms
e2=om

S1
e2/a2

el/al

1
e2/a4 /

0.25

For our example

case it is

0.65 09 1.0

095 1.2 1.3

=[0.45 0.7 0.8(+kx1.3

This indicates some
additional periodicity




Basics on Max-Plus Algebra

* Operations maximum (denoted by the max
operator @) and addition (denoted by the plus
operator &)

-—a®b=max(a,b) a®b=a+b

« Multiplication of two square matrix
- AQ® B =C, where
Ci,j = GB (ai,m ® bm,]) = max(ai’m + bm,])



Periodicity of Matrix Power in Max-Plus Algebra

« Studied by its corresponding digraph G(X)

0.45

1 2 3
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31095 1.2 1.3




Periodicity of Matrix Power in Max-Plus Algebra

Definition.
Almost linear periodic sequence if

1 g €R and d,pel such that for Vk>d

X" = X"+ pxg

p is the linear period p=Iper(X)
g is the linear factor g=Ilfac(X)
d is the linear defect d=ldef(X)




Periodicity of Matrix Power in Max-Plus Algebra

« If the digraph G(X) is strongly connected,
— Xk*r)= XK+ p x q for sd{ficiently large k
— P = maxirm

Definition: X is irreducible

—q-= Ilcm ofamue Cycres wrut riedarr equar o P
0.45

p=1.3, g=1 =

0.65 0.9 1.0
Xk1)=1045 0.7 0.8|+kx1.3
095 1.2 1.3




What if the digraph G is not strongly connected

« If X'is reducible it could still be linear periodic, but
deciding whether this is the case has been
demonstrated to be NP-complete

 Periodicity of a different type can still be found
(general periodicity, for which linear periodicity is a
special case)



The Efficient Way of Calculating rbf

 For small interval [s,f) S
| l |

| | |
s /
* small means n-n < Ildef(X) (cannot leverage periodicity)

« The rbf function can be decomposed into functions
defined over the intervals [s,n.H), [nH, nt{) and [nH, f)

« All terms are computed by simply using the definition

'r'b_ﬂ,j: [5, f} — Il'ﬁa%x('!'bfi_k[s_, ﬂ-SH] + ':'bfg,;_; [HSH, ﬂ-fH}

+rbfi[ngH, f))

— HHK(?'E’fi-k[S: neH ) + .r;f_m}

+rbfi 0, f —nsH))



The Efficient Way of Calculating rbf

» For large intervals, when n-n is larger than the linear
defect of X, we leverage the periodicity for the
computation of the intermediate term.

o " Iif.:} + (nf —ne —n) X g (k)

wheren<dandn+p>d, ny—n.=n=~k modp.



Summary and Future Work

 Efficient and accurate schedulability analysis
— Event sequence pattern within one hyperperiod
— Max-plus algebra for periodicity of execution request matrix

 Additional issues

— Multi-task implementation of an FSM
* Issues with single task implementation:
— all actions executed at the same priority level
— tight deadline (equal to the gcd of event periods)
— Approximations for large FSMs

» Details in: Haibo Zeng, Marco Di Natale: Schedulability Analysis of
Periodic Tasks Implementing Synchronous Finite State Machines,
Euromicro Conference on Real-time Systems, 2012



Q&A

Thank you!




