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Schedulability analysis: Independent periodic tasks

• Activation events are periodic 
(period=T), 

• Deadlines are timing contraints on 
the execution of tasks (D=T)

• Tasks are independent

• The execution time of each task is 
modeled by the worst case execution 
time (worst-case scenario) 

• First model (Late 70s/80s)

• Study of ADA programs

• Developments into early RTOS 
systems

• n tasks τ1, τ2, … τn

• Task periods T1, T2, ... Tn

• Execution times are C1, 

C2, ... Cn



Scheduling algorithm

• Preemptive & priority driven
– task have priorities

• statically (design time) assigned

– at each time the highest priority task is executed

• if a higher piority task becomes ready, the execution of the 
running task is interrupted and the CPU given to the new task

• In this case, scheduling algorithm = priority
assignment + priority queue management



Critical instant and Worst-case response time

• Critical instant of a task = time instant t0 such that, if the 
task instance is released in t0, it has the worst possible 

response (completion) time (Critical instant of the system)

• Theorem: the critical instant for each task is when the 

task instance is released together with (at the same time) 

all the other higher priority instances

• The critical instant may be used to check if a priority 

assignment results in a feasible scheduling

– if all requests at the critical instant complete before their 
deadlines



Response Time Analysis (contd.)
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Response Time Analysis (contd.)
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order
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Response Time Analysis (contd.)
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Response Time Analysis (contd.)
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Response Time Analysis (contd.)
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Scheduling with Offsets

• Offset free model: the values of the Oi are not defined 
(analysis in the worst-case/critical instant)  

• Synchronous model: Oi may be ≠ 0, but the values 
are given
– Critical instant may never happen (pessimistic assumption)



Scheduling with Offsets

• Example: consider the case (C, D, T)

τ1=(3, 8, 8),  τ2=(6, 12, 12),  τ3=(1, 12, 12)

• Not schedulable in the offset-free model (not even with 
RM assignment), given that task 3 misses its deadline.

• But is schedulable with O1=0, O2=0, O3=10 !



Scheduling with Offsets

Feasibility test for task sets with offsets:

• Given a set of offsets O1, O2, ... On

• [Leung82] a task set is feasible if all deadlines are met in [s, 2P], 
where s=max{O1, O2, ... On} and P = lcm {T1, T2, ... Tn}

– in practice it is sufficient to build the schedule and check all the busy 

periods originating from a task release time in [s, 2P)

• For fixed priority tasks and D≤T it is possible to further restrict the 
interval [Audsley91]

• Theorem: Let Si be inductively defined by 

Then, if the task set is ordered by decreasing priorities and has a feasible 
schedule, it is periodic from Sn with period P = lcm{Ti st: i=1, 2, …, n}

It is sufficient to check al the busy periods in the interval [Sn, Sn+P])
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Synchronous FSM vs digraph task models
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Synchronous FSM vs digraph task models

• The request bound function (or rbf ) and demand bound function (or 
dbf ) are a general tool for the analysis of task graphs. 

• See the analysis in 
M. Stigge, P. Ekberg, N. Guan, , and W. Yi, “The digraph real-time task 

model,” in Proc. the 16th IEEE Real-Time and Embedded Technology 

and Applications Symposium, 2011.



Functional representation: SR Simulink modeling

• Functional model: “zero-logical-time” execution or (no 
notion of platform or computation time)

– The output update and state update functions are computed

immediately at the time the block is triggered/activated

– “the system response or reaction is guaranteed to be 

completed before the next system event”.

– The only significant references to time are the sampling times

(or trigger events) of blocks

– Also, the partial order in the execution of blocks because of

feedthrough behavior must be considered.

Regular type blocks

Stateflow (state 

machine)-type blocks



Functional representation: SR Simulink modeling

• Simulink system = networks of blocks

{ }nbbbS ,...,, 21=

• Blocks can be Regular or Stateflow blocks

• Regular blocks can be Continuous of Discrete type.

• All types operate on (right)continuous type signals.

• Blocks may have a state Sj or may be stateless. 

bj
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ji
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jo



Functional representation: SR Simulink modeling

• Continuous-type blocks are defined by a set of differential

equations

• Discrete-type blocks are activated at events ej belonging

to a periodic sequence with 0 offset and period Tj

• When a model generates code, continuous blocks must
be implemented by a fixed-step solver, with period Tb

• Tb (base period) must be a divisor of any other Tj in the 

system

bj
ij,p

ji
oj,p

jo

je



Functional representation: SR Simulink modeling

• At each ej the block computes its out update and state 

update functions, updating the values on its output signals

bj
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Simulink models (execution order - feedthrough)

Stateflow (or state machine) 
blocks react to a set of events 
ej,v, derived from signals 
(generated at each rising or 
falling edge).
As such, events belong to a set 
of discrete time bases kTjv



Simulink models (execution order - feedthrough)

Stateflow machines are extended (synchronous) FSMs with 
hierarchical and parallel states



Simulink models (execution order - feedthrough)

And quite a few issues … (transition actions can generate events)

Transition notation

1

Execution order

For more info:
N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi Defining and translating a 

”safe” subset of Simulink/Stateflow into Lustre. 4th ACM International Conference on 

Embedded Software (EMSOFT04), Pisa, Italy, September 2004

A. Tiwari. Formal semantics and analysis methods for Simulink Stateflow models. 

Technical report, SRI International, 2002.



Simulink models (execution order - feedthrough)

Most blocks are of type 
feedthrough or Mealy-type 
(output does depend on input)
This implies a precedence 
constraint in the computation of 
the block output functions

Dependencies 
among outputs

Some blocks have 
no state



Simulink models (execution order - feedthrough)

If two blocks bi and bj are in an input-output relationship
(one of the outputs of bi is the input of bj ), and bj is of type 
feedthrough), then

ji bb
1−

→

In case bj is not of type feedthrough, then the link has a delay,
ji bb →

bi bj



Simulink models (execution order - feedthrough)

Let bi(k) represent the k-th occurrence of bi (belonging to the set
∪v kTi,v if a state machine block, or kTi if a standard block), a 
sequence of activation times ai(k) is associated to bi. 

Given t≥0, ni(t) is the number of times bi is activated before or at t.

In case bi →bj , if ij(k) is the input of the k-th occurrence of bj , 

then this input is equal to the output of the last occurrence of bi  that is no later than the k-th occurrence of bj

ij(k) = oi(m); where m = ni(aj(k))

If the link has a delay , then the previous output value is read,
ij(k) = oi(m - 1):

bi bj



Simulink models (execution order - feedthrough)

bi bj

May be a problem in a code implementation with (scheduling) 
delays



Simulink models: rates and deadlines

The result is a network of 
functions (output/state update) 
with a set of partial ordersEach blockset is 

characterized by an 
execution rate

the system response or reaction must be 
completed before the next system event



Stateflow blocks: single task implementation

5 ms

10 ms

2 ms

Each stateflow block is implemented by a periodic task executed 
at the period of the gcd of its input signals.
(simplest option, implemented by commercial code generators)

The system hyperperiod H depends on the periods of the regular blocks 
(tasks implementing them) and the period of other stateflow blocks in the 
system. The offsets are the individual periods of the blocks

There could be alternative 
(multitask) options for 
semantics-preserving 
implementations of 
Stateflow FSMs



Schedulability

The busy periods to be checked start at the release of a task with priority 
higher than or equal to τi.

Problems
• The number of busy periods to be checked can be very large (all activation times 

in a hyperperiod)
• The busy period can be quite long making the computation very expensive
Steps
• Connect FSM analysis to recurrent task graphs
• Improve and speed-up the analysis



Simulink models: rates and deadlines

the system response or reaction must be completed before the 
next system event – if we abstract from the model and only look 
at the task code model, the analysis can be very pessimistic
5 ms

10 ms

2 ms

The generated code runs in the 
context of a 1 ms task, but 
reactions do not occur every 1ms 

Simple periodic model: Worst-case exec time of a 
reaction to any event



Simulink models: rates and deadlines

the system response or reaction must be completed before the 
next system event – if we abstract from the model and only look 
at the task code model, the analysis can be very pessimistic
5 ms

10 ms

2 ms

The generated code runs in the 
context of a 1 ms task, but 
reactions do not occur every 1ms 

Multiframe model: worst-case exec time of a reaction 
to each type of event



Simulink models: rates and deadlines

the system response or reaction must be completed before the 
next system event – if we abstract from the model and only look 
at the task code model, the analysis can be very pessimistic
5 ms

10 ms

2 ms

The generated code runs in the 
context of a 1 ms task, but 
reactions do not occur every 1ms 

Even a multiframe model should account for state 
dependencies in the evaluation of the worst case 
execution time of each frame – need to build the 
right demand bound function

In_event_3

In_event_2

In_event_2

In_event_2



From Synchronous FSM to digraph task models

The task model is pessimistic. 
It allows the activation of a2, a1, and a4 within 2ms, which
implies that the event
sequence e2 → e1 → e2
occurs in a 2ms interval. This
is impossible.

reactions → tasks



Synchronous FSM vs digraph task models

The true task graph model can be computed considering the time (in the 
hyperperiod) when actions can occur (WCETs and interarrival edges omitted).

This is the 
comparison of the 
rbf functions.



Synchronous FSM vs digraph task models

The digraph model can be simplified by removing the edges that are not
critical to the schedulability analysis, and by folding vertices by exploiting
the periodic pattern of the event arrivals in the hyperperiod.



Schedulability Analysis

QuestionQuestionQuestionQuestion: what is an efficient way to compute the rbf(∆) and 
dbf(∆) for a given time interval ∆?



Refinement of rbf

rbfi,j(∆) 

• source state of the first transition is Si

• destination state of the last transition is Sj

rbfi,j(∆) is additive (rbf(∆) is notnotnotnot additive)

∀i, j ∀t ∈ [s; f], F.rbfi,j [s; f) = maxm(F.rbfi,m[s; t)+F.rbfm,j[t; f))

rbfi,j [s; f) for a long interval [s; f) can be computed from its

values for shorter intervals [s; t) and [t; f).

Dynamic programming can be used for computing rbfi,j(∆) 

for large ∆.

(max,+) algebra can be used to demonstrate the possible

periodicity of rbfi,j(∆) 



Computing rbf(∆)

Step 1Step 1Step 1Step 1: Computing the request bound function in one hyperperiod
X=(xi,j), where xi,j=rbfi,j[0,H) 

The computation of rbfi;j(∆), requires searching the reachable states

within the possible sequences of events in the time interval ∆.

Reachability graph for the example FSM
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0.1
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Execution Request Matrix
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e1=2ms
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event sequence in one hyperperiod



Execution Request Matrix

Step 2Step 2Step 2Step 2: Computing the request bound function over 
multiples of a hyperperiod

• X(k)=(x(k)
i,j), where x(k)

i,j=rbfi,j[0,kH) 

• ∀i,j, ∀1≤ l<k   x(k)
i,j = maxm(x(l)

i,m + x(k-l)
m,j)

PossiblePossiblePossiblePossible tooltooltooltool: : : : applicationapplicationapplicationapplication ofofofof ((((maxmaxmaxmax,+) algebra,+) algebra,+) algebra,+) algebra

F.rbfi,j [s; f) = maxm(F.rbfi,m[s; t)+F.rbfm,j[t; f))

from previous formula



Execution Request Matrix

This indicates some 

additional periodicity 
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For our example
case it is



Basics on Max-Plus Algebra



Periodicity of Matrix Power in Max-Plus Algebra

1        2        3



Periodicity of Matrix Power in Max-Plus Algebra

Definition:
Almost linear periodic sequence if
∃ q ∈R and d,p∈I such that for ∀k>d

qpXX
kpk

×+=
+ )(

p is the linear period p=lper(X)
q is the linear factor q=lfac(X)
d is the linear defect d=ldef(X)



Periodicity of Matrix Power in Max-Plus Algebra

Definition: X is irreducible



What if the digraph G is not strongly connected

• If X is reducible it could still be linear periodic, but 
deciding whether this is the case has been 

demonstrated to be NP-complete

• Periodicity of a different type can still be found 

(general periodicity, for which linear periodicity is a 

special case)



The Efficient Way of Calculating rbf

• For small interval [s,f)
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• small means nf-ns ≤ ldef(X) (cannot leverage periodicity)

• The rbf function can be decomposed into functions 
defined over the intervals [s,nsH), [nsH, nfH) and [nfH, f)

• All terms are computed by simply using the definition



The Efficient Way of Calculating rbf

• For large intervals, when nf-ns is larger than the linear 
defect of X, we leverage the periodicity for the 

computation of the intermediate term.



Summary and Future Work

• Efficient and accurate schedulability analysis

– Event sequence pattern within one hyperperiod

– Max-plus algebra for periodicity of execution request matrix

• Additional issues

– Multi-task implementation of an FSM

• Issues with single task implementation: 

– all actions executed at the same priority level

– tight deadline (equal to the gcd of event periods)

– Approximations for large FSMs

• Details in: Haibo Zeng, Marco Di Natale: Schedulability Analysis of
Periodic Tasks Implementing Synchronous Finite State Machines, 
Euromicro Conference on Real-time Systems, 2012

H. Zeng, M. Di Natale



Q&A

Thank you!


