
Time for High-Confidence
Distributed Embedded
Systems

Edward A. Lee
Robert S. Pepper Distinguished Professor
UC Berkeley

Invited Keynote Talk

International IEEE Symposium on Precision Clock Synchronization for
Measurement, Control and Communication
ISPCS
September 26, 2012

Key collaborators:
•  Patricia Derler
•  John Eidson
•  Slobodan Matic
•  Sanjit Seshia
•  Yang Zhao
•  Michael Zimmer
•  Jia Zou

Lee, Berkeley 2

The Short Version of My Talk

Time synchronization is going to change the world
(again)

1500s
days

Gregorian Calendar (BBC history)
Lackawanna Railroad Station, 1907, Hoboken.
Photograph by Alicia Dudek

1800s
seconds

2000s
nanoseconds

2005: first IEEE 1588 plugfest

Lee, Berkeley 3

Today’s networks

“On August 12, 1853, two trains on the Providence & Worcester Railroad
were headed toward each other on a single track. The conductor of one train
thought there was time to reach the switch to a track to Boston before the
approaching train was scheduled to pass through. But the conductor's watch
was slow. As his speeding train rounded a blind curve, it collided head-on
with the other train—fourteen people were killed. The public was outraged. All
over New England, railroads ordered more reliable watches for their
conductors and issued stricter rules for running on time.”

Source: National Museum of American History

Lee, Berkeley 4 Courtesy of Kuka Robotics Corp.!

What is going to change?
Design of Cyber-Physical
Systems (CPS)

Courtesy of Doug Schmidt!

Power
generation and
distribution

Courtesy of
General Electric

Military systems:

Transportation
(Air traffic
control at
SFO) Avionics

Telecommunications

Factory automation

Instrumentation
(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems
Orchestrating
networked
computational
resources with
physical
systems

Lee, Berkeley 5

A Cyber-Physical System
Printing Press

Hundreds	
 of	
 microcontrollers	
 and	
 an	

Ethernet	
 network	
 are	
 orchestrated	

with	
 precisions	
 on	
 the	
 order	
 of	

microseconds.	

	

So8ware	
 for	
 such	
 systems	
 can	
 be	

developed	
 in	
 a	
 completely	
 new	
 way.	

Bosch-­‐Rexroth	

Time	
 synchronizaBon	
 enables	
 Bghtly	
 coordinated	
 acBons	

and	
 reliable	
 networking	
 with	
 bounded	
 latency.	
 	

Lee, Berkeley 6

But software technology will need to adapt to take
advantage of this revolution…

For cyber-physical systems,
programs do not adequately specify behavior.

The core notions of “computation” today ignore time.

The core notions tomorrow will not…

Lee, Berkeley 7

Challenges that We are Addressing

¢  Representation of time
l  Data types, superdense time, operations on time, etc.

¢  Gaining control over timing in software
l  PRET – Precision-timed computer architecture

¢  Multiform time
l  Hierarchical clocks proceeding at different rates.

¢  Joint modeling of functionality and implementation
l  Timing emerges from the implementation

¢  Programming models that specify timed behavior
l  PTIDES – A programming model for distributed systems

Lee, Berkeley 8

Schematic of a simple CPS:

Assume synchronized clocks.
How can the software take
advantage of this?

Lee, Berkeley 9

Computation given in an
untimed, imperative language.

Assume synchronized clocks.
How can the software take
advantage of this?

Lee, Berkeley 10

This code is
attempting to
control timing.
But will it really?

Assume synchronized clocks.
How can the software take
advantage of this?

Lee, Berkeley 11

Timing behavior emerges from
the combination of the program
and the hardware platform.

USB interface

JTAG and SWD interface

graphics
display

CAN bus interface

Ethernet interface

analog
(ADC)
inputs

micro-
controller

removable
!ash

memory
slot

PWM outputs

GPIO connectors

switches
connected

to GPIO pins
speaker
connected to
GPIO or PWM

No matter how precise the
clocks are, controlling timing in
the software is difficult.

Lee, Berkeley 12

Consequences

When precise control over timing is needed, designs are brittle.
Small changes in the hardware, software, or environment can
cause big, unexpected changes in timing. Testing has to be
redone. Results:

¢  Manufacturers frequently stockpile parts to suffice for the
complete production run of a product.

¢  Manufacturers cannot take advantage of improvements in
the hardware (e.g. weight, power). The cost of re-testing and
re-certifying is too high.

¢  Designs are over provisioned, increasing cost, weight, and
energy usage.

Lee, Berkeley 13

A Key Challenge:
Timing is not Part of Software Semantics

Correct execution of a program in C, C#, Java, Haskell,
OCaml, etc. has nothing to do with how long it takes to do
anything. Nearly all our computation and networking
abstractions are built on this premise.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Lee, Berkeley 14

The first edition of Hennessy and
Patterson (1990) revolutionized
the field of computer architecture
by making performance metrics
the dominant criterion for design.

Today, for computers, timing is
merely a performance metric.

It needs to be a correctness
criterion.

Computer Science has not ignored timing…

Lee, Berkeley 15

Correctness criteria

We can safely
assert that line 8
does not execute

(In C, we need to
separately ensure that
no other thread or ISR
can overwrite the stack,
but in more modern
languages, such
assurance is provided
by construction.)

We can develop absolute
confidence in the software, in that
only a hardware failure is an excuse.

But not with regards to timing!!

Lee, Berkeley 16

The hardware out of which we build computers
is capable of delivering “correct” computations
and precise timing…

The synchronous digital logic
abstraction removes the
messiness of transistors.

… but the overlaying software
abstractions discard the timing
precision.

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

Lee, Berkeley 17

As with processors, for networks, timing is a
performance metric, not a correctness criterion

The point of these abstraction
layers is to isolate a system
designer from the details of the
implementation below.

In today’s networks, timing
emerges from the details of the
implementation.

Even QoS-aware networks
(e.g. AVB) derive timing
properties from packet
priorities & network topology.

Lee, Berkeley 18

Project 1: (which I will not talk about today)
PRET Machines

¢  PREcision-Timed processors = PRET
¢  Predictable, REpeatable Timing = PRET
¢  Performance with REpeatable Timing = PRET

= PRET +

Computing With time

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

Lee, Berkeley 19

Project #2: PTIDES
A Programming Model for Distributed Cyber-Physical Systems
Based on Discrete Events (DE)

¢  Concurrent actors
¢  Exchange time-stamped messages (“events”)

A “correct” execution is one where every actor reacts to
input events in time-stamp order.

PTIDES leverages network time synchronization to deliver
determinate distributed real-time computation.

Lee, Berkeley 20

Discrete-Event Models (in Ptolemy II)
DE Director specifies that
this will be a DE model

Lee, Berkeley 21

Discrete-Event Models (in Ptolemy II)
Model of regularly spaced
events (e.g., a clock signal).

Lee, Berkeley 22

Discrete-Event Models (in Ptolemy II)
Model of irregularly spaced
events (e.g., a failure event).

Lee, Berkeley 23

Discrete-Event Models (in Ptolemy II)
Model of a subsystem that
changes modes at random
(event-triggered) times

Lee, Berkeley 24

Discrete-Event Models (in Ptolemy II)
Model of an observer
subsystem

Lee, Berkeley 25

Discrete-Event Models (in Ptolemy II)
Events on the two input
streams must be seen in
time stamp order.

Lee, Berkeley 26

This is a Component Technology
Model of a subsystem given
as an imperative program.

Lee, Berkeley 27

This is a Component Technology
Model of a subsystem given
as a state machine.

Lee, Berkeley 28

This is a Component Technology
Model of a subsystem given
as a modal model.

More types of components:
•  Modal models
•  Functional expressions.
•  Submodels in DE
•  Submodels in other MoCs

Lee, Berkeley 29

Using Discrete Event Semantics in
Distributed Real-Time Systems

¢  DE is usually used for simulation (HDLs, network simulators, …)
¢  Distributing DE is done to accelerate simulation.

¢  We are using DE for distributed real-time software, binding time
stamps to real time only where necessary.

¢  PTIDES: Programming Temporally Integrated Distributed
Embedded Systems

Lee, Berkeley 30

Ptides: Programming Temporally Integrated Distributed Embedded Systems
First step: Time-stamped messages.

Messages carry time
stamps that define their

interleaving

Actors specify
computation

Lee, Berkeley 31

Ptides: Second step:
Network time synchronization

GPS, NTP, IEEE 1588,
time-triggered busses, …
they all work. We just
need to bound the clock
synchronization error.

Assume bounded
clock error

Assume bounded
clock error e

Assume bounded
clock error e

Lee, Berkeley 32

Ptides: Third step:
Bind time stamps to real time at sensors and actuators

Input time stamps are
≥ real time

Input time stamps are
≥ real time

Output time stamps
are ≤ real time

Output time stamps
are ≤ real time Messages are

processed in time-
stamp order.

Clock synchronization
gives global meaning to

time stamps

Actors wrap
sensors

Actors wrap
actuators

Lee, Berkeley 33

Global latencies between sensors and actuators become
controllable, which enables analysis of system dynamics.

Ptides: Fourth step:
Specify latencies in the model

Model includes
manipulations of time
stamps, which control

latencies between
sensors and actors

Actuators may be
designed to interpret
input time stamps as
the time at which to

take action. Feedback through the physical world

Lee, Berkeley 34

Ptides: Fifth step
Safe-to-process analysis (ensures determinacy)
Safe-to-process analysis guarantees that the generated code obeys time-stamp
semantics (events are processed in time-stamp order), given some assumptions.

Assume bounded
network delay d

Assume bounded
clock error

Assume bounded
clock error e

An earliest event with
time stamp t here can
be safely merged when
real time exceeds
t + s + d + e – d2

Assume bounded
clock error e

Assume bounded
sensor delay s

Application
specification of

latency d2

Lee, Berkeley 35

Bounded network delay
is enabled by time synchronization…

¢  ARINC 429
l  Local area network used in avionics systems.

¢  WorldFIP (Factory Instrumentation Protocol)
l  Created in France, 1980s, used in train systems

¢  CAN: Controller Area Network
l  Created by Bosch, 1980s/90s, ISO standard

¢  Various ethernet variants
l  PROFInet, EtherCAT, Powerlink, …

¢  TTP/C: Time-Triggered Protocol
l  Created around 1990, TU Vienna, supported by TTTech

¢  MOST: Media Oriented Systems Transport
l  Created by a consortium of automotive & electronics companies
l  Under active development today

¢  FlexRay: Time triggered bus for automotive applications
l  Created by a consortium of automotive & electronics companies
l  Under active development today

Lee, Berkeley 36

Ptides Schedulability Analysis
Determine whether deadlines can be met

Schedulability analysis incorporates computation times to determine
whether we can guarantee that deadlines are met.

Deadline for delivery of
event with time stamp t

here is t – c3 – d2

Deadline for delivery
here is t

Assume bounded
computation time c1

Assume bounded
computation time c3

Assume bounded
computation time c2

Lee, Berkeley 37

Workflow
Structure for
Experiments

HW Platform Software
Component

Library

Ptides Model Code
Generator

PtidyOS

Code

Plant Model

Network Model

HW in the
Loop

Simulator

Causality
Analysis

Program
Analysis

Schedulability
Analysis

Analysis	

Mixed
Simulator

Ptolemy II Ptides domain

Ptolemy II Discrete-event,
Continuous, and
Wireless domains

Luminary
Micro
8962 IEEE 1588 Network

time protocol

Lee, Berkeley 38

Designing & Evaluating PTIDES-based Systems

To meet real-time constraints,
the implementation platform matters.

Conventional approach: Specify functionality and
implementation. Then measure temporal properties.

Our approach: Specify temporal requirements. Then
verify that they are met by a candidate implementation.

Lee, Berkeley 39

Topics for further discussion

¢  How to represent time?
l  Need superdense time for a clean semantics of simultaneity.

¢  How to advance time?
l  Need multiform time to model inhomogeneity and imperfect sync.

¢  How to determine the required accuracy of time sync?
l  PTIDES offers a tradeoff between latency and time sync accuracy.

¢  How to handle faults?
l  PTIDES can detect violations of assumptions (bounded clock error,

bounded network latency, and bounded sensor delay).

¢  Security?
l  Does time synchronization create a point of vulnerability?

Lee, Berkeley 40

Conclusions

Today, timing emerges from realizations of systems.

Tomorrow, timing behavior will be a semantic property of
networks, programs, and models.

Raffaello Sanzio da Urbino – The Athens School

Overview References:
•  Lee. Computing needs time. CACM, 52(5):70–79, 2009
•  Eidson et. al, Distributed Real-Time Software for Cyber-Physical

Systems, Proc. of the IEEE January, 2012.

Lee, Berkeley 41

Multiform Time

reference time

local time

Heaven for engineers.
Local time and environment
time are in sync!

Lee, Berkeley 42

Multiform Time in the Real World

offset reference time

local time There is an offset
between
local time and
environment time

Lee, Berkeley 43

Multiform Time in the Real World

fast clock

slow clock

reference time

local time

clocks drift

Lee, Berkeley 44

Multiform Time in the Real World

Change clock drift

Even more
real: clock
drift
changes!

reference time

local time

Lee, Berkeley 45

Ptolemy II model: Local time within a hierarchy
advances at different rates.

Model uses “oracle time,”
which becomes “environment time”
for the subsystems.

Model internally uses local time

Discrete Event MoC

Model internally uses local time

Lee, Berkeley 46

Ptides: Fifth step
Safe-to-process analysis (ensures determinacy)
Safe-to-process analysis guarantees that the generated code obeys time-stamp
semantics (events are processed in time-stamp order), given some assumptions.

Assume bounded
network delay d

Assume bounded
clock error

Assume bounded
clock error e

An earliest event with
time stamp t here can
be safely merged when
real time exceeds
t + s + d + e – d2

Assume bounded
clock error e

Assume bounded
sensor delay s

Application
specification of

latency d2

Lee, Berkeley 47

Ptides Schedulability Analysis
Determine whether deadlines can be met

Schedulability analysis incorporates computation times to determine
whether we can guarantee that deadlines are met.

Deadline for delivery of
event with time stamp t

here is t – c3 – d2

Deadline for delivery
here is t

Assume bounded
computation time c1

Assume bounded
computation time c3

Assume bounded
computation time c2

Lee, Berkeley 48

PtidyOS: A lightweight microkernel supporting
Ptides semantics

PtidyOS runs on
¢  Arm (Luminary Micro)
¢  Renesas
¢  XMOS
Occupies about 16 kbytes of
memory.

Luminary
Micro
8962

An interesting property of
PtidyOS is that despite being
highly concurrent, preemptive,
and EDF-based, it does not
require threads.
A single stack is sufficient!

The name “PtidyOS” is a bow to TinyOS,
which is a similar style of runtime kernel.

Renesas 7216
Demonstration Kit

 XMOS
development
board with 4

XCores.

Lee, Berkeley 49
Source: http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html

Example – Flying Paster

Lee, Berkeley 50

Source:	
 hEp://offsetpressman.blogspot.com/2011/03/how-­‐flying-­‐paster-­‐works.html	

Flying	
 Paster	

Lee, Berkeley 51

Printing Press – Model in Ptolemy II
Model by Patricia Derler

Lee, Berkeley 52

Plant model
+

Distributed Controllers

5 Siemens CKI Project Review
 Patricia Derler

Printing Press – Model in Ptolemy II
Model by Patricia Derler

Lee, Berkeley 53

Printing Press – Model in Ptolemy II
Model by Patricia Derler

Lee, Berkeley 54

Platform independent
model of functional and

timing behavior
Code Generation
to multiple target
platforms

2x10

-10

0

10

20

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Reserve Velocity (red), Target Velocity (green) and Tracking Error

Time in seconds

Ve
lo

ci
ty

 m
/s

2x10

0.10

0.15

0.20

0.25

0.30

1.997 1.998 1.999 2.000 2.001 2.002 2.003 2.004 2.005 2.006

Contact (red), Top Dead Center (green), Cut (blue) and Arm (black)

Time in seconds

Ev
en

ts

Simulation

Same I/O behavior
w.r.t. value and timing

e.g.: Renesas 7216
Demonstration Kit

 e.g.: XMOS
development
board with 4

XCores.

Determinate timing at sensors and actuators

Lee, Berkeley 55

Platform independent
model of functional and

timing behavior
Code Generation
to multiple target
platforms

2x10

-10

0

10

20

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Reserve Velocity (red), Target Velocity (green) and Tracking Error

Time in seconds

Ve
lo

ci
ty

 m
/s

2x10

0.10

0.15

0.20

0.25

0.30

1.997 1.998 1.999 2.000 2.001 2.002 2.003 2.004 2.005 2.006

Contact (red), Top Dead Center (green), Cut (blue) and Arm (black)

Time in seconds

Ev
en

ts

Simulation

Same I/O behavior
w.r.t. value and timing

e.g.: Renesas 7216
Demonstration Kit

 e.g.: XMOS
development
board with 4

XCores.

Determinate timing at sensors and actuators

XMOS
Predictable timing
Multiple cores
No analog I/O
No FPU
No hardware clock

Renesas
PHY chip for accurate
timestamping of
inputs,
Analog I/O

Lee, Berkeley 56

Simple test case validates platform-independent timing.

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Time (ms)

topDeadCenter
armContact
tapeDetector
contact
cut

-3x10

0.05

0.10

0.15

0.20

0.25

0.30

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Contact (red), Top Dead Center (green), Cut (blue) and Arm (black)

Time in seconds

Ev
en

tsSimulation

Renesas

XMOS

Oscilloscope traces
on GPIO pins

Lee, Berkeley 57

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Time (ms)

topDeadCenter
armContact
tapeDetector
contact
cut

-3x10

0.05

0.10

0.15

0.20

0.25

0.30

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Contact (red), Top Dead Center (green), Cut (blue) and Arm (black)

Time in seconds

Ev
en

tsSimulation

Renesas

XMOS

input input output

Renesas vs.
XMOS:
I/O timing

Oscilloscope traces
on GPIO pins

Lee, Berkeley 58

Renesas vs.
XMOS: Busy
vs. Idle Time

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Time (ms)

topDeadCenter
armContact
tapeDetector
contact
cut

-3x10

0.05

0.10

0.15

0.20

0.25

0.30

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Contact (red), Top Dead Center (green), Cut (blue) and Arm (black)

Time in seconds

Ev
en

tsSimulation

Renesas

XMOS

Oscilloscope traces
on GPIO pins

Lee, Berkeley 59

Execution-time analysis, by itself,
does not solve the problem!

Analyzing software for timing behavior requires:

• Paths through the program (undecidable)
• Detailed model of microarchitecture
• Detailed model of the memory system
• Complete knowledge of execution context
• Many constraints on preemption/concurrency
• Lots of time and effort

And the result is valid only for that exact
hardware and software!

Fundamentally, the ISA of the processor
has failed to provide an adequate abstraction.

Wilhelm, et al. (2008). "The worst-case
execution-time problem - overview of
methods and survey of tools." ACM TECS
7(3): p1-53.

Our first goal is to reduce
the problem so that this is
the only hard part.

Lee, Berkeley 60

Dual Approach

¢  Rethink the ISA
l  Timing has to be a correctness property not a

performance property.

¢  Implementation has to allow for multiple realizations
and efficient realizations of the ISA
l  Repeatable execution times
l  Repeatable memory access times

Lee, Berkeley 61

To deliver repeatable timing, we have to
rethink the microarchitecture

Challenges:

l  Pipelining
l  Memory hierarchy
l  I/O (DMA, interrupts)
l  Power management (clock and voltage scaling)
l  On-chip communication
l  Resource sharing (e.g. in multicore)

Lee, Berkeley 62

Hardware
thread Hardware

thread Hardware
thread

Our Current PRET Architecture
PTArm, a soft core on a
Xilinx Virtex 5 FPGA

Hardware
thread

registers

scratch
pad

memory

I/O devices

Interleaved
pipeline with one
set of registers

per thread

SRAM
scratchpad

shared among
threads

DRAM main
memory,

separate banks
per thread

memory
memory

memory

Lee, Berkeley 63

Performance Cost?

Comparing PTARM against
SimIT-ARM simulator
(StrongARM 1100)
[Qin & Malik] over
Malardalen WCET
benchmarks [Gustafsson…].

Given enough concurrency,
the PTARM beats the
StrongARM on every
benchmark!

Moreover, our simpler
pipeline can probably be
clocked faster.

[Isaac Liu, PhD Thesis, May, 2012]

No!

Lee, Berkeley 64

Multicore PRET

In today’s multicore
architectures, one thread can
disrupt the timing of another
thread even if they are
running on different cores
and are not communicating!

Our preliminary work shows that control over timing
enables conflict-free routing of messages in a network on
chip, making it possible to have non-interfering programs
on a multicore PRET.

Lee, Berkeley 65

Status of the PRET project

¢  Results:
l  PTArm implemented on Xilinx Virtex 5 & 6 FPGA.
l  Multicore PRET demonstration on real-time CFD app.
l  UNISIM simulator of the PTArm facilitates experimentation.
l  DRAM controller with repeatable timing and DMA support.
l  PRET-like utilities implemented on COTS Arm.

¢  Much still to be done:
l  Realize MTFD, interrupt I/O, compiler toolchain,

scratchpad management, etc.

Lee, Berkeley 66

A Key Next Step:
Parametric PRET Architectures

ISA that admits a variety of implementations:
¢  Variable clock rates and energy profiles
¢  Variable number of cycles per instruction
¢  Latency of memory access varying by address
¢  Varying sizes of memory regions
¢  …

A given program may meet deadlines on only some
realizations of the same parametric PRET ISA.

set_time r1, 1s
// Code block
MTFD r1

Lee, Berkeley 67

Realizing the MTFD instruction on a
parametric PRET machine

The goal is to make software that will run correctly on a variety of
implementations of the ISA, and that correctness can be checked for each
implementation.

set_time r1, 1s
// Code block
MTFD r1

Lee, Berkeley 68

Potential Uses of PRET Machines

¢  Deeply embedded applications (CPS)
¢  Safety-critical systems
¢  High-precision systems
¢  Extremely low power applications
¢  Real-time coprocessor (OpenRT?)

l  High performance I/O
l  Memory controllers
l  High precision I/O

¢  Mixed hardware/software designs

Lee, Berkeley 69

PRET Publications
¢  S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET)

Machine," in the Wild and Crazy Ideas Track of DAC, June 2007.

¢  B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards and E. A. Lee, “Predictable
programming on a precision timed architecture,” CASES 2008.

¢  S. Edwards, S. Kim, E. A. Lee, I. Liu, H. Patel and M. Schoeberl, “A Disruptive
Computer Design Idea: Architectures with Repeatable Timing,” ICCD 2009.

¢  D. Bui, H. Patel, and E. Lee, “Deploying hard real-time control software on
chip-multiprocessors,” RTCSA 2010.

¢  Bui, E. A. Lee, I. Liu, H. D. Patel and J. Reineke, “Temporal Isolation on
Multiprocessing Architectures,” DAC 2011.

¢  J. Reineke, I. Liu, H. D. Patel, S. Kim, E. A. Lee, PRET DRAM Controller: Bank
Privatization for Predictability and Temporal Isolation (to appear), CODES
+ISSS, Taiwan, October, 2011.

¢  S. Bensalem, K. Goossens, C. M. Kirsch, R. Obermaisser, E. A. Lee, J. Sifakis,
Time-Predictable and Composable Architectures for Dependable
Embedded Systems, Tutorial Abstract (to appear), EMSOFT, Taiwan, October,
2011

http://chess.eecs.berkeley.edu/pret/

