“agd ben

£

"‘

451 S8

|

Time for High-Confidence
Distributed Embedded

Systems

Key collaborators:

» Patricia Derler

« John Eidson
Edward A. Lee o « Slobodan Matic
Robert S. Pepper Distinguished Professor - Sanjit Seshia
UC Berkeley * Yang Zhao

» Michael Zimmer

Jia Zou

Invited Keynote Talk

International IEEE Symposium on Precision Clock Synchronization for
Measurement, Control and Communication

ISPCS
September 26, 2012

The Short Version of My Talk

Time synchronization is going to change the world
(again)

A
*ﬁ‘tﬁkf“ﬁ‘eﬁe@s‘m
| St p_'t embe r

S
Ly =il

. = g Lackawanna Railroad Station, 1907, Hoboken. 2005: first IEEE 1588 plugfest
Gregorian Calendar (BBC history) Photograph by Alicia Dudek
1500s 1800s 2000s
days seconds nanoseconds

Lee, Berkeley 2

Today’s networks

“On August 12, 1853, two trains on the Providence & Worcester Railroad
were headed toward each other on a single track. The conductor of one train
thought there was time to reach the switch to a track to Boston before the
approaching train was scheduled to pass through. But the conductor's watch
was slow. As his speeding train rounded a blind curve, it collided head-on
with the other train—fourteen people were killed. The public was outraged. All
over New England, railroads ordered more reliable watches for their
conductors and issued stricter rules for running on time.”

Source: National Museum of American History Lee, Berkeley 3

What is going to change?
Design of Cyber-Physical

Systems (CPS)

Building Systems

Orchestrating

networked
computational
resources with
physical

systems

Automotive

ﬁ‘ ,______.;------./‘\gh
A S~ N a”,//‘\
P " AN
< [y “ v 3
b ' > 5 1) N P — _ -
§ o7 iy, 27 0 4 -
SN AN el
’ NN o r L LA
< /. 1 -, R I“f ’f 7l Lede
A N W . P 1N B v 3
/ 7 - ,"-)‘ > ‘\t“:- A _4’\ z ‘r .
/A o NS LNyt 7 % 3
P Y NN A A
/ NSy 1 \\ oy 2N W o hgy
Al sl \ AN N e
' | WS ‘e"* PM’”.RL AR
S a2 R A AR \
S WL b AR) RN
P VL o

S

s >

\)f-n“ “,\n.\\y ' 7 x\‘\“\‘\ll \a ‘\
N RN v T AN
s AN 2 g .
-
S &f A‘) PR s
M SONG @ TRERIEN 3
N OER S

Avionics

Telecommunications

Power

1 generation and

distribution

Courtesy of

Factory automation

General Electric

@ Transportation
gl (Air traffic
e control at

| SFO)

N, Lignes de lumiére
V Lumiére synchrotron

28, W27 |nstrumentation

R -

Courtesy of Kuka Robotics Corp. Lee, Berkeley 4

A Cyber-Physical System
Printing Press

P =

|
m

Hundreds of microcontrollers and an
_ Ethernet network are orchestrated
= with precisions on the order of

<% microseconds.

4
}

=~

8 Software for such systems can be
4@ developed in a completely new way.

Bosch-Rexroth

Time synchronization enables tightly coordinated actions
and reliable networking with bounded latency.

Lee, Berkeley 5

But software technology will need to adapt to take
advantage of this revolution...

For cyber-physical systems,
programs do not adequately specify behavior.

The core notions of “computation” today ignore time.

The core notions tomorrow will not...

Lee, Berkeley 6

Challenges that We are Addressing

o Representation of time
Data types, superdense time, operations on time, etc.

o Gaining control over timing in software
PRET — Precision-timed computer architecture

o Multiform time
Hierarchical clocks proceeding at different rates.

o Joint modeling of functionality and implementation
Timing emerges from the implementation

o Programming models that specify timed behavior
PTIDES — A programming model for distributed systems

Lee, Berkeley 7

Schematic of a simple CPS:

Computational Network Computational
Platform Fabric Platform

Physical

plant

Assume synchronized clocks.
How can the software take
advantage of this?

Lee, Berkeley 8

\
SysTickPeriodSet (SysCtlClockGet O / 1000) ;]|
SysTickEnable () ;
SysTickIntEnable O

Computation given in an g e -

timer_count--;

untimed, imperative language.

Computational Network \
Platform Fabric Platform

Physical
plant

Assume synchronized clocks.
How can the software take
advantage of this?

Lee, Berkeley 9

Th|S COde iS void initTimer (void) { \‘
. SysTickPeriodSet (SysCtlClockGet () / 1000) ;|\
attempting to

SysTickEnable () ; \
SysTickIntEnable (); \

© W =\, ;R W N e

. . } \
ContrOI tlmlng' volatile uint timer_count = O0; ‘\
. . void ISR(void) { \‘
BUt WI” It rea”y? if (timer_count != 0) { \
timer_count --; \
10 } :
— 11 }
Computatlonalh_u int main(void) al
1 SysTickIntRegister (&ISR);
Platform j // other init
15 timer_count = 2000; -
16 initTimer (); /!
7 while(timer_count != 0) { /

code to run for 2 seconds

[
oo

-
©

}

// other code

[~
=]

Do
-

Assume synchronized clocks.
How can the software take
advantage of this?

Lee, Berkeley 10

Timing behavior emerges from
the combination of the program
and the hardware platform.

Network
Fabric

Computational
Platform

1 void initTimer(void) { \
SysTickPeriodSet (SysCtlClockGet () / 1000) ;|
SysTickEnable ();
4 SysTickIntEnable ();
s
}

¢ volatile uint timer_count = O0;
7 void ISR(void) {
if (timer_count != 0) {

timer_count--;

10
u }
int main(void) {
SysTickIntRegister (£ISR);
.. // other init
er_c

timer_count = 2000;
initTimer ();
while(timer_ =0 {
... code for 2 nds
¥
... // other code

Computational [

Platform >-I

Physical
plant

No matter how precise the
clocks are, controlling timing in
the software is difficult.

/— JTAG and SWD interface
i o

R T

«— USB interface

.-"- L R S
.9

switches ol 3
connected °® gr.aphlcs speaker
to GPIO pins display 8 connected to
......... GPIO or PWM
analog i = :1
(ADC) — [y “ac
inputs - | < GPIO connectors
e < PWM outputs
removable e .
flash — * o m !gg:!_¢— CAN bus interface
memory
slot \
Ethernet interface

Lee, Berkeley 11

Consequences

When precise control over timing is needed, designs are brittle.
Small changes in the hardware, software, or environment can
cause big, unexpected changes in timing. Testing has to be
redone. Results:

o Manufacturers frequently stockpile parts to suffice for the
complete production run of a product.

o Manufacturers cannot take advantage of improvements in
the hardware (e.g. weight, power). The cost of re-testing and
re-certifying is too high.

o Designs are over provisioned, increasing cost, weight, and
energy usage.

Lee, Berkeley 12

A Key Challenge:
Timing is not Part of Software Semantics

Correct execution of a program in C, C#, Java, Haskell,
OCaml, etc. has nothing to do with how long it takes to do
anything. Nearly all our computation and networking
abstractions are built on this premise.

Programmers have to step outside the

programming abstractions to specify
timing behavior.

Lee, Berkeley 13

Computer Science has not ignored timing...

The first edition of Hennessy and
Patterson (1990) revolutionized
the field of computer architecture
by making performance metrics
the dominant criterion for design.

Today, for computers, timing is
merely a performance metric.

It needs to be a correctness
criterion.

Lee, Berkeley 14

Correctness criteria

We can safely
assert that line 8
does not execute

1
2
3
4
5
6
7
8
9

—

10

11

(In C, we need to
separately ensure that
no other thread or ISR
can overwrite the stack,
but in more modern
languages, such
assurance is provided
by construction.)

void foo(int32_t x) {

}

if (x > 1000) {
x = 1000;
+
if (x > 0) {
x = x + 1000;
if (x < 0) {
panic ();

}

We can develop absolute
confidence in the software, in that
only a hardware failure is an excuse.

But not with regards to timing!!

Lee, Berkeley 15

The hardware out of which we build computers
Is capable of delivering “correct” computations
and precise timing...

The synchronous digital logic
abstraction removes the
messiness of transistors.

; // Perform the convolution.
... but the overlaying software for (int 1-0: ico0s ian) 1
abstractions discard the timing x[1] = alil*b[j-1];
. // Notify listeners.
preCISIon. notify(x[i]);

}
Lee, Berkeley 16

As with processors, for networks, timing is a
performance metric, not a correctness criterion

QAN Vet

Day=> SE S N ‘Un ction

38 10
My

3 - N M
~ \ .
< N At
— $
i R %
£ * f
& # ¥
H a 4 o Yy {n f‘l
‘ b 4 - { ‘ |
v | i
AP A e Jr,
A7 ."~ o
o E | | ¢
4 i §
$ I 0
0 " 0 J
"‘ ’) \ ’
“ \ N — ’ /‘r
)] = ’ 7 o~
} oA /
(11’ _..-’/ ” 5 ‘,/
r' 5 % o, a4
. ':.:.‘ % ‘.\';:.f.v‘\"\: ”"";:’ 4 i 4
y . \\ % > - ..--/..' ’ .‘_.. 2
\ A S pparacc o " \F
N Y e > o
N “\:'t‘ . *, -~ - — - . @
. At NN T e K - & i w
’U‘ed'a F'I%?" 7;-_;,_.& g :-' ‘_:—-':" T — _assing
. = =— Ay i
layers e T A
. = _ ~aaais, signal and
Bit N TRsA

ginary transmission

The point of these abstraction
layers is to isolate a system
designer from the details of the
Implementation below.

In today’ s networks, timing
emerges from the details of the
Implementation.

Even QoS-aware networks
(e.g. AVB) derive timing
properties from packet
priorities & network topology.

Lee, Berkeley 17

Project 1: (which | will not talk about today)
PRET Machines

o PREcision-Timed processors = PRET
o Predictable, REpeatable Timing = PRET

o Performance with REpeatable Timing = PRET

// Perform the convolution.

for (int 1=0; 1i<10; i++) {
x[1] = ali]*b[J-1];)
// Notify listeners.
notify(x[i]);

}

Computing With time

Lee, Berkeley 18

Project #2: PTIDES

A Programming Model for Distributed Cyber-Physical Systems
Based on Discrete Events (DE)

o Concurrent actors
o Exchange time-stamped messages (“events”)

A “correct” execution is one where every actor reacts to
iInput events in time-stamp order.

PTIDES leverages network time synchronization to deliver
determinate distributed real-time computation.

Lee, Berkeley 19

Discrete-Event Models (in Ptolemy Il)

DE Director specifies that
this will be a DE model (=13
File View Edit Graph Debug Help

HoeaRQADDP O Dl e

) Utilities ~
Directors EER e
----- = 5DF Director
B3 DDF Director

" Unnamed

----- B3 HDF Director

----- = p Director

----- o b J
----- =3 SR Director

----- B3 pendezvous Director

----- =1 FSM Director

----- = CT Director

----- = CTEmbedded Diractor

----- B3 pirector

[#-{_7) ExperimentalDirectors

Actors
f:—l [Cavxeans

DE Director

v

[J

Lee, Berkeley 20

Discrete-Event Models (in Ptolemy II)

Model of reqularly spaced

events (e.g., a clock signal). EBX
File View Edit Graph Debug Help
Gd@@l@Ambnm» S e
g oS *!| DEDirector

=) Sources

(|3 GenericSources
=) TimedSources

T

: CurrentTime Clock

PoissonClock . f
- ~[B=] TimedSinewave B
[TriggeredClock

L_} uj SequenceSources
[#-47) Sinks

#-) Array

EJ{[j Conversions

T = v
0 L Bl ambesl

DE Director

Av

J

Lee, Berkeley 21

File View Edit Graph Debug Help

E:ﬂ@@l@AEPII\.M

Discrete-Event Models (in Ptolemy II)

) Utilities
) Directors
Actors
[=-C) Sources
#-.) GenericSources
L} @ TimedSources

- [Be] TimedSinewave
= [7] TriggeredClock
L_} uj SequenceSources
G t-{7) Sinks

[+ Array

8 | Conver5|ons
1_;‘1 =2 Elawn

DE Dimclor

FoissonClock
%

v

DE Director

Clock
D@

PoissonClock

G

Av

Model of irregularly spaced
events (e.q., a failure event).

e e

=6

J

Lee, Berkeley 22

Discrete-Event Models (in Ptolemy II)

Model of a subsystem that

changes modes at random

¥4 file:/C:/eal/talks/08/models/DEexample.xml (event_triggered) times Q@@
File View Edit Graph Debug Help

HocaBa AP IO [e

) Utilities
- ir r
) Directors DE Directo
) MoreLibraries
) UserLibrary
guard: clock_isPresant && lemor_isPresent)
output; status = 1 guard: clock_isPresent
Clock output: gatus=0
B alModel
Db
sthe
PoissonClock guard: error_isPresent
- output: gtatus =0
ot
DE Diracior
Clock
D@ ModalModed
= ’_Lnn. : -
““Zif_m
£

Lee, Berkeley 23

Discrete-Event Models (in Ptolemy II)

Model of an observer
¥4 file:/C:/eal/talks/08/models/DEexample.xml sub System Q@@

File View Edit Graph Debug Help
; [R A A
;Ed@@@APII\.!¢F#¢>D>'¢>\
) Actors ~
@ e = DE Director
- [#2) GenericSinks
- =2+ TimedSinks
:
I TimedScope
. ¥ SequenceSinks Clock
) Array P ModalModel TimedPlotter
#-{_7) Conversions > oE0
#-{2) FlowControl o -
#1-{2) HigherOrderActors
w3 I0 PoissonClock
(#-{3) Logic
#-{3) Math v B
G (=% A akvise
= SR
L | TimedPlotter BB
1.0—illllililil*ll*lili ! T4
08 i
06 1
041 T
021 T
0oL - 3 = 3
Ie"“”t'“‘ Finkhed. o 2 4 6 8 10 12 14 16 18 20

Lee, Berkeley 24

Discrete-Event Models (in Ptolemy Il)

Events on the two input
¥4 file:/C:/eal/talks/08/models/DEexample.xml streams must be seen in Q@@

File View Edit Graph Debug Help tlm e Sta m p o) rd er

HoeaRaABPNO

Actors
- Sources — DE Director
- #-) GenericSinks
- 2+ Timedsinks
T
N T TimedScope
. #-09) SequenceSinks Clock
EJ{[j Array >
#-{_3) Conversions B
#-{C3) FlowControl *
EJ{[j HigherQrderActors
w10
- Logic
#-{C3) Math >

Ll =% B akxise

ModalModel

TimedPlotter

PoissonClock

OF Cirecior

Iexecution finished. |

Lee, Berkeley 25

This is a Component Technology

Model of a subsystem given

¥4 file:/C:/eal/talks/08/models/DEexample.xml as an imperative program. Q@@
File View Edit Graph Debug Help

HoaeaRaAZp>HNe=») /shoe

gl __ DE Director

[+-{7) Sources

¢ @) GenericSinks *4 Unnamed
Eg File Help

/** Output the current value.
* [@exception IllegallActionException If there is no director.
*/

public void fire() throws IllegalActionException {

-2 TimedSinks
I TimedScope
#-|5) SequenceSinks
#-47) Array
EJ@ Conversions >
(#-{2) FlowControl
i) HigherOrderActors

oIo
+-{2) Math 3

Ll =% B akxise
OF Cirwcse

Av

super.fire();

// Get the current time and period.
Time currentTime = getDirector () .getMod=lTime () ;

// Indicator whether we've reached the next esvent.
_boundaryCrossed = false;

_tentativeCurrentOutputIndex = _currentOutputlIndex;

output.send (0, _getValue(_tentativeCurrentOutputlIndex));

// In case current tims has resached or crossed a boundary to tl

// next output, update it.

if (currentTime.compareTo(_nextFiringTime) == 0) {
_tentativeCurrentOutput Index++; —

if (_tentativeCurrentOutputIndex >= _length) {
_tentativeCurrentOutputIndex = 0;

execution finished. \ _boundaryCrosssd = trus;

This is a Component Technology

Model of a subsystem given
¥4 file:/C:/eal/talks/08/models/DEexample.xml as a state machine. Q@@
File View Edit Graph Debug Help

HoceaRaAd>Ne» e

Actors

— DE Director

EJ{[j Sources
- [#(2) GenericSinks

E}@ TimedSinks
- TimedPlotter guard: clock_isPresant && lemor_isPresent)

: o Timedscope output: status = 1 guard: clock_isPresent
. #-09) SequenceSinks Clock output: gatus =0
EJ@ Array >
@{l:j Conversions [y
(#)-{_7) FlowControl .
(#-{_3) HigherOrderActors

w310 PoissonClock guard: eror,_isPresent
{5 Logic output: gtatus = 0
#-{C3) Math >

1‘:‘1 [N M ~bxiae b

OF Cirecior

Iexecution finished. |

Lee, Berkeley 27

This is a Component Technology

¥4 file:/C:/eal/talks/08/models/DEexample.xml
File View Edit Graph Debug Help

HoeeR

AC>NO»

Actors
#-{C) Sources
=42 Sinks
- -0 GenericSinks
=) TimedSinks
IR S
I TimedScope
. -3 SequenceSinks
#-) Array
#-{_3) Conversions
#-{C3) FlowControl
EJ{B HigherQrderActors
#3310
- Logic
#-{2) Math

Ll =% B akxise
OF Cirwcse

DE Director

Clock

More types of components:
 Modal models

° Functional expressions_ M in + 0.1 * random() +—-

e Submodels in DE

PoissonClock

Model of a subsystem given =
as a modal model.

&K E|

TimedPlotter

10
08
06
04
02

00|

L

0 2 4 6 8 10 12 14 16 18 20

e e

guard: clock_isPresent && lerror_isPresent

guard: clock_isPresent
output: status = 0

or_isPresent
output: status = 0

F Director

clock

error

« Submodels in other MoCs ﬂé »

Expression

status

I

Lee, Berkeley 28

Using Discrete Event Semantics in
Distributed Real-Time Systems

o DE is usually used for simulation (HDLs, network simulators, ...)
o Distributing DE is done to accelerate simulation.

o We are using DE for distributed real-time software, binding time
stamps to real time only where necessary.

o PTIDES: Programming Temporally Integrated Distributed
Embedded Systems

Lee, Berkeley 29

Ptides: Programming Temporally Integrated Distributed Embedded Systems
First step: Time-stamped messages.

Actors specify

computation _
P \ Messages carry time
\ (| stamps that define their
Platform 1 interleaving
Computationl *
Platform 3
/ Computation3 E_—
Platform 2 I
< Sensdr2 H Computation2 * Merge
hysical Local -
iﬂtgrface network| Event ZOEE
fabric Source m
g Computation4 *—
>
Physical
plant

Lee, Berkeley 30

GPS, NTP, IEEE 1588,

: : . time-triggered busses, ...
Ptides: Second step: thoy all work. We just

Network time synchronization need to bound the clock
synchronization error.

Platform 1
Computationl *
Platform 3

A f ion3
/ // I Computat E_—

Platform 2 [
“.‘9.92* Sen54r2 H Comp/ /i0n2 * Merge
’;{ /| 1)
_ X
physical /‘% physical
interface ggﬁ?cte interface
>

v

————
@-* Computation4 *—

Assume bounded
clock error e

Lee, Berkeley 31

Ptides: Third step:

Bind time stamps to real time at sensors and actuators

Actors wrap

Sensors

rm 1 are < real time

Output time stamps

[/
Computationl
¥

Platform 3

Input time stamps are f

I Computation3 E_—

> real time
S
rm 2 I
’M* Sensc{rZ H Computation2 *
VA
v/
o
networ
HE fabric ce

Output time stamps
are < real time

Computation4 *—

Physical Clock synchronization
plant gives global meaning to

time stamps

Mer

>' Actuatorl

Input time stamps are
= real time

Actors wrap
actuators

%/

physical
interface

Messages are
processed in time-
stamp order.

Ptides: Fourth step:
Specify latencies in the model

Global latencies between sensors and actuators become
controllable, which enables analysis of system dynamics.

Model includes

Actuatorl

manipulations of time
stamps, which control

1 latencies between

sensors and actors

X
physi
interf.

Actuators may be

Platform 1
Computationl * el tima
ensorA Platform 3
- » del ti
/ IComputatlonB)
Platform 2 l
2932* Senser H Computation2 *
* 1 model time
| delay d3
ph\Zical Local
interface network Event
fabric Source
Db
Computation4
Db
Physical
nlant

designed to interpret
input time stamps as

Feedback through the physical world |

the time at which to

take action.

Ptides: Fifth step

Safe-to-process analysis (ensures determinacy)

Safe-to-process analysis guarantees that the generated code obeys time-stamp
semantics (events are processed in time-stamp order), given some assumptions.

Assume bounded

sensor delay s

Assume bounded
network delay d

\i
lﬂ:’@:
[

//

Platform 2 I

v |

phyZica
interfac

Assume bounded
clock error e

W&f
A

T

Platform 3

Computation3 §

tation2

fodel time

delay d3

Local

Cor\gutation4 J

model time
delay d1

‘ model time
k lay d2

Merge

Application
specification of
latency d2

An earliest event with
time stamp t here can
—* be safely merged when
real time exceeds
t+s+d+e—-d2?

ke, Berkeley 34

Bounded network delay
IS enabled by time synchronization...

o)

ARINC 429
Local area network used in avionics systems.
WorldFIP (Factory Instrumentation Protocol)
Created in France, 1980s, used in train systems
CAN: Controller Area Network
Created by Bosch, 1980s/90s, ISO standard
Various ethernet variants
PROFInet, EtherCAT, Powerlink, ...
TTP/C: Time-Triggered Protocol
Created around 1990, TU Vienna, supported by TTTech
MOST: Media Oriented Systems Transport
Created by a consortium of automotive & electronics companies
Under active development today
FlexRay: Time triggered bus for automotive applications
Created by a consortium of automotive & electronics companies
Under active development today Lee, Berkeley 35

Ptides Schedulability Analysis

Determine whether deadlines can be met

Schedulability analysis incorporates computation times to determine
whether we can guarantee that deadlines are met.

Deadline for delivery of

event with time stamp t

here ist—c3 - dZ\\j\T\i;
Computation
| Sensorl

yd

model time

Platform 3

delay d1

Assume bounded I//[

model time

I Computation3 § delay d2

computation time c1 ; l

'M* Sensc{rZ H Computation2 *

model ti

Al —~
L

Assume bounded

delay d3

computation time c2

computation time c3

Local
network Event
fabric Source

Deadline for delivery
here is t

physical
interface
———

Assume bounded

=ce, Berkeley 36

Workflow Analysis Schedulability
Analysis
Structure for
. Causality Program
EXpe Frme ntS ‘| Analysis) | Analysis
_ 4
ssssss oy = e 5| | piges Model Code
S — =" Generator
7 | ——

Ptolemy Il Ptides domain

CCodeGenerator
Double click to

DE Director

Mixed
Simulator

generate code.
) Plant Model ‘(1)
& ’ - ; (1)
Platform Platform2
E jtuator Jtuator
networ B}D okou Network Model E}D kOut
(1) (1)

Ptolemy Il Discrete-event,

Continuous, and
Wireless domains

Software
Component
Library

Plant Model
_/—

Network Model

PtidyOS

HW Platform

Loop
Simulator

L —

IEEE 1588 Network

time protocol Lee, Berkeley 37

Designing & Evaluating PTIDES-based Systems

To meet real-time constraints,
the implementation platform matters.

Conventional approach: Specify functionality and
Implementation. Then measure temporal properties.

Our approach: Specify temporal requirements. Then
verify that they are met by a candidate implementation.

Lee, Berkeley 38

Topics for further discussion

o How to represent time?
Need superdense time for a clean semantics of simultaneity.

o How to advance time?
Need multiform time to model inhomogeneity and imperfect sync.

o How to determine the required accuracy of time sync?
PTIDES offers a tradeoff between latency and time sync accuracy.

o How to handle faults?

PTIDES can detect violations of assumptions (bounded clock error,
bounded network latency, and bounded sensor delay).

o Security?
Does time synchronization create a point of vulnerability?

Lee, Berkeley 39

Overview References:
+ Lee. Computing needs time. CACM, 52(5):70-79, 2009

» Eidson et. al, Distributed Real-Time Software for Cyber-Physical

CO N CI us | ons Systems, Proc. of the IEEE January, 2012.

Today, timing emerges from realizations of systems.
Tomorrow, timing behavior will be a semantic property of
networks, programs, and models.

Raffaello SanZ/o da Urblno The Athens School
y - | f; BE

Multiform Time

local time

Heaven for engineers.
Local time and environment
time are in sync!

reference time

Lee, Berkeley 41

Multiform Time in the Real World

local time

There is an offset
between

local time and
environment time

offset reference time

Lee, Berkeley 42

Multiform Time in the Real World

local time

clocks drift
fast clock

slow clock

reference time

Lee, Berkeley 43

Multiform Time in the Real World

local time

Even more
real: clock
drift

changes!

Change clock drift

reference time

Lee, Berkeley 44

Ptolemy Il model: Local time within a hierarchy
advances at different rates.

Mgadel internally uses local time Model internally uses local time

Computational Network Computational
Platform Fabric Platform

Discrete Event MoC

Physical

plant

Model uses “oracle time,”
which becomes “environment time”

for the subsystems.
Lee, Berkeley 45

Ptides: Fifth step

Safe-to-process analysis (ensures determinacy)

Safe-to-process analysis guarantees that the generated code obeys time-stamp
semantics (events are processed in time-stamp order), given some assumptions.

Assume bounded

sensor delay s

Assume bounded
network delay d

\i
lﬂ:’@:
[

//

Platform 2 I

v |

phyZica
interfac

Assume bounded
clock error e

W&f
A

T

Platform 3

Computation3 §

tation2

fodel time

delay d3

Local

Cor\gutation4 J

model time
delay d1

‘ model time
k lay d2

Merge

Application
specification of
latency d2

An earliest event with
time stamp t here can
—* be safely merged when
real time exceeds
t+s+d+e—-d2?

ke, Berkeley 46

Ptides Schedulability Analysis

Determine whether deadlines can be met

Schedulability analysis incorporates computation times to determine
whether we can guarantee that deadlines are met.

Deadline for delivery of

event with time stamp t

here ist—c3 - dZ\\j\T\i;
Computation
| Sensorl

yd

model time

Platform 3

delay d1

Assume bounded I//[

model time

I Computation3 § delay d2

computation time c1 ; l

'M* Sensc{rZ H Computation2 *

model ti

Al —~
L

Assume bounded

delay d3

computation time c2

computation time c3

Local
network Event
fabric Source

Deadline for delivery
here is t

physical
interface
———

Assume bounded

=ce, Berkeley 47

PtidyOS: A lightweight microkernel supporting

Pt' d €S S€ma ntl CS An interesting property of

PtidyOS is that despite being
highly concurrent, preemptive,

. and EDF-based, it does not
PtldyOS runs on require threads.
o Arm (Lumin ary MiCI’O) A single stack is sufficient!
o Renesas
o XMOS
Occupies about 16 kbytes of
memaory. Renesas 7216
Demonstration Kit g
XMOS
developn_vent ' Luminary §
board with 4 Micro §

XCores.

8962 M

The name “PtidyOS” is a bow to TinyOS,
which is a similar style of runtime kernel. Lee, Berkeley 48

Example — Flying Paster

Sensor top dead center Drive roller
Dancer

-

G Idle roller ?

@.

Idle roller

Reserve
paper feed

.

Source: http.//offsetpressman.blogspot.com/2011/03/how-flying-paster-works.hti

Lee, Berkeley 49

P

Source: http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html

Flying Paster

Lee, Berkeley 50

Printing Press — Model in Ptolemy I

This design demonstrates DC motors driving a feed roller and a drive roller. The PID-based motor controllers minimize

the error between the paper velocity produced by the roller and the target profile
velocity produced by the Target Profile actor. The tracking error input allows one such roller to
track the other to remove small differences in paper velocity.

The target profile is either a profile from 0 to maxPaperVelocity starting at time 0 and
reaching the maximum value at time Interval seconds. The profile and its derivative are continuous.

SENSOR, ACTUATOR and NETWORK ACTORS STILL NEED TO BE ADDED

DE Director

ecoreRadius: 0.07
efullRollRadius: 0.7

Model by Patricia Derler

@ maxPaperVelocity: 35.0
estartuplinterval: 120.0

@ systemSamplinginterval: 0.40
e@systemStart: 0.0

epaperThickness: 0.000075

oller

torD T

ervoErrorMON

reservePaperVelocitfCONT

reserveTargetProfile

reserveFeedMonitor

B0

driveRoller papeeloctyCONT feedRoller paperVelocityCONT reserveFeedR‘oIIer
Ve - cangularveroci INT
‘ paperVelocityCONT angularVelocifCONT Q oageCONT reserveFeedP| fperRad ——ang TYCONT voltageCOl <
voltageCONT . E}D angutarverocr T an E}D — E}D
gularAcceleratignCONT arfgularAccelerationCONT L gcontactCONT
> D angularacceleratiofl CONT paperRadifsCONT @ paperRadiusCONT @
Contact Controller
drivefaperVelocitySH} topDeadCenterNET
s TeserveAnpularVeloctySEQ contactACT
s —
measurpdPapervelocitysen, ReserveCont
D y T
driveToReserveE[rdr velocitferrorner E}EI =
DtoRTracking € er T}
|
drivefaperVelofitySEN N
kil
. driveToFeedError] Teedfapervelo o
DtoFTracking Controller StartNET trackmgVelocityCorrectioniET)
drivePaperfelocit{SEN tracki ON
feedPaperfelocitySEN g}ﬂ trackingVelocityCorrectionNET N Reserve Target Profile
remainingPapefDetector
messurediggervelocySeN FeedController startRbserveNET _sj@tProfileNET E}D targetProfileNET
PapervaRLityPrommel tIE
Drive Controller . o E}D jﬂfm tactNET
motorD: Drive Target Profile ocityFrrorNET L servoErTorMON
> 2 Feed Targ e
servoErrorMON S}D paperVelggitaRyefRepfENET E}D 1 "
. targetgeofilefET
anery]| SO pepi
\
systemStart
Drive Monitor
" itySEN)
/eServpErTorMON .
ervelfcityProfileNet Error Multiplier
|/
1
Ly, Error Multiplier feedPaperVelocity, error feedPaperRadiug, markers
bity: —]
oM B}D TeserveC ontrollerservoEr aMON
E H |

. feedPaperVel|

Model by Patricia Derler

Printing Press — Model in Ptolemy I

DE Director @ maxPaperVelocity: 35.0
estartuplinterval: 120.0

@ systemSamplinginterval: 0.40
e@systemStart: 0.0

This design demonstrates DC motors driving a feed roller and a drive roller. The PID-based motor controllers minimize
the error between the paper velocity produced by the roller and the target profile

velocity produced by the Target Profile actor. The tracking error input allows one such roller to

track the other to remove small differences in paper velocity.

ecoreRadius: 0.07
efullRollRadius: 0.7

The target profile is either a profile from 0 to maxPaperVelocity starting at time 0 and epaperThickness: 0.000075
reaching the maximum value at time Interval seconds. The profile and its derivative are continuous.

SENSOR, ACTUATOR and NETWORK ACTORS STILL NEED TO BE ADDED

driveRoller paparelctyCONT feedRoller paperVelocityCONT reserveFeedﬁoller
angularVelocifgCONT —anguTarVeloctyCONT VoltageCONT
VO‘“QECONI’ E}D L ;";“Ne;zcwot,g” angularAccelerati ncom< B}D s ONT reservefeed? perRada"gularAccelerahonCONT E}D ontactCONT)
>angulamccelemm CONT paperRadifsCONT @ paperRadiusCONT @

arvelocitysen, ReserveContfoller
T

Plant model

+ o] 210 [
scityErrorNET servoErrorMON
— AR P

i:::::::% Distributed Controllers

Drive Controller C

motorDri p

» o
servoErrorMOl e

paperVelggitaRyafRedJHENET

systemStart
itySEN I I | J

Drive Monitor

Error Multiplier

1
Error Multiplier feedPaperVelocity, error feedPaperRadiu s reserveFeedMonitor
_’ feedPaperVelps reservePaperVelocitfCONT
P reserveControllerServoErrqgMON
2 Tk E}EI L reserveTargetProfile]

Siemens CKI Project Review !

Model by Patricia Derler

Printing Press — Model in Ptolemy I

DE Director @ maxPaperVelocity: 35.0
estartuplinterval: 120.0

@ systemSamplinginterval: 0.40
e@systemStart: 0.0

This design demonstrates DC motors driving a feed roller and a drive roller. The PID-based motor controllers minimize
the error between the paper velocity produced by the roller and the target profile

velocity produced by the Target Profile actor. The tracking error input allows one such roller to

track the other to remove small differences in paper velocity.

ecoreRadius: 0.07
efullRollRadius: 0.7

The target profile is either a profile from 0 to maxPaperVelocity starting at time 0 and epaperThickness: 0.000075
reaching the maximum value at time Interval seconds. The profile and its derivative are continuous.

SENSOR, ACTUATOR and NETWORK ACTORS

driveRoller
voltageCONT

pap ityCONT
vokagecom' E}D P G UTRTVETocTyCON T

P angularAceeleratior|CONT

reservefeedRoller

L contactCONT

dleRalker

driveRoller
O, e
* dancer - YA VY

1 o

L dpapervelocitysin, ReserveContfoller
e y T torD T
b

T velocitfErrorNET E}D servoErrorMON
(mNFI'! =

i driveToFeedError] Teedfapervelol
DtoFTracking Controller

drivePaper) e\u(ll'SEN| tracki ON

trackingVelocityCorrectionNET

feedPaperfelocitySEN . Reserve Target Profile
remainingPapefDetector
mEasuredPﬁerVElo(\tySEN FeedControllp startRbserveNET sigtProfileNET targetProfileNET
PapervVoRLityProTeNET 1) E}D
Drive Controller . (¥ armc@tactNET
Drive Target Profile i NET servoErrorMON
Feed Targ

motorDri pe et m-? P

» o
servoErrorMOl e

4

CUtNET

paperVelggityRyefReMIENET X
| E}D targetvfile ET

systemStart

Drive Monitor

easuredPaperVeloflitySEN J
eServpErTorMON
erVelcityProfileNet

Error Multiplier

r — 1
Error Multiplier feedPaperVelocity, error feedPaperRadiug, markerfs reserveFeedMonitor
P reservePaperVelocitCONT

it
’n reserveControllerServoErrqgMON
o E}D L reserveTargetProfile]

. feedPaperVel|

Determinate timing at sensors and actuators

Platform independent
model of functional and
timing behavior

Code Generation
to multiple target
platforms

Simulation

Reserve Velocity (red), Target Velocity (green) and Tracking Error

Contact (red), Top Dead Center (green), Cut (blue) and Arm (black)

Orart 1 T T] St e
00 2001 2002 2003 2004 2005 2.006
Time in seconds

Tim

0.10
| R S
1.997 1.998 E

1.999 2.0

Same I/O behavior
w.r.t. value and timing

board with 4

XCores. sas 72 6

e.g.. Rene
Demonstration Kit

Lee, Berkeley 54

Determinate timing at sensors and actuators

Platform independent
model of functional and
timing behavior

Code Generation

to multiple target
platforms
Simulation
‘Reserve V‘elocity (red?, Target Ve!ocily (greep) and Tracl‘(ing Error ;
(;ontact ‘(rad), T?p Dead‘ Cen!er‘(gre; n): Cut (blye) and‘Arm (bl‘ack) i XMOS - Renesas
’ ' Predictable timing | PHY chip for accurate
i] Multiple cores 1 timestamping of
o-qg‘ T 1;97 IQ‘SB 1199 ZOTOl ‘2(?‘!0‘1T 20‘02 1603 ZEDA ZD‘DTS 20‘06 NO analog I/O :‘ InpUtS’
T T e T e No FPU . Analog I/O
No hardware clock !

e.g.. XMOS
development
board with 4

XCores.

Same I/O behavior
w.r.t. value and timing

sas 7216
Demonstration Kit
Lee, Berkeley 55

| —
e.g.: Rene

Simple test case validates platform-independent timing.

Contact (red), Top Dead Center (green), Cut (blue) and Arm (black)

0.30 ® -

0.25 - n

Simulation | %oz} :

0.15 - n
0.10 n
0.05 L -

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
4 .. Time in seconds x1073
3L
0 Oscilloscope traces
i on GPIO pins
Renesas .| P

OMWWMWW

| r

200 0 200 400 600 800 1000 1200 1400 1600 1800

—topDeadCenter
—armContact
—tapeDetector
XMOS

—contact
—cut

-01 0 010203040506 0.7 0._E|3__0.9 1 111213141516 17 1819 2
ime (ms
(ms) Lee, Berkeley 56

Renesas vs.
XMOS:
/O timing

Simulation

Renesas

XMOS

input output input
2d 2nter (. Jlue) and Arm (black)
0.30 [L J |
0.25 |
E 0.20 - 1
L
0.15 1
0.10 1
0.05 L T T |
-0.2 0.0 O? Oi4 0.6 018 1.0 1 I.2 1 i4 1 i6 1 i8
4 . Time in s2conds x1073
3.
5 Oscilloscope traces
on GPIO pins
1.
-1 r | r r r r r r r r
200 0O 200 400 600 800 1000 1200 1400 1600 1800
—topDeadCenter
—armContact
—tapeDetector
—contact
—cut
-0.1%86:140.2 0:5-84-8:5+6.6 0.7 QIS 08441 121314151617 18 19 2
ime (ms)

Lee, Berkeley 57

Renesas vs.
XMOS: Busy

Contact (red), Top Dead Center (green), Cut (blue) and Arm (black)

vs. ldle Time _ i _
. . " 0.25 1
Simulation | %oz :
0.15 n
0.10 T T 1
-0.2 0.0 0i2 Oi4 0.6 0i8 1.0 1 I.2 1 i4 1 i6 1 i8
4. Time in seconds x1073
3.
) l | I Oscilloscope traces
i on GPIO pins
Renesas il
0 . "

200 0 200 400 600 800 1000 1200 1400 1600 1800
—topDeadCenter
—armContact
XMOS —tapeDetector

—contact

—cut

[e EE— R - T —r—

-01 0 010203040506 0.7 018 0.9 e 111213141516 17 18 1.9 2
ime

ms) Lee, Berkeley 58

Execution-time analysis, by itself,
does not solve the problem!

Our first goal is to reduce
the problem so that this is
the only hard part.

Sej

Analyzing software for timing behavior requires: |
 Paths through the program (undecidable) t() — hold
» Detailed model of microarchitecture cancel [T code(a) |
* Detailed model of the memory system @ i o
« Complete knowledge of execution context cancel IE"D
» Many constraints on preemption/concurrency " ,.HS; wait v
- Lots of time and effort S - Y

nextr |start I
And the result is valid only for that exact Bx ; t;l(’z :
hardware and software! set (a) / stop [store |wai

SST
Fundamentally, the ISA of the processor Wilhelm, et al. (2008). "The worst-case
has failed to provide an adequate abstraction. fnxeetggg%néﬂ]fgglf’r(?e@eofptz)gl\ge_{\g%vl\\'f&cs
7(3): p1-53.

Lee, Berkeley 59

Dual Approach

o Rethink the ISA

Timing has to be a correctness property not a
performance property.

o Implementation has to allow for multiple realizations
and efficient realizations of the ISA

Repeatable execution times
Repeatable memory access times

Lee, Berkeley 60

To deliver repeatable timing, we have to
rethink the microarchitecture

Challenges:

Pipelining

Memory hierarchy

/O (DMA, interrupts)

Power management (clock and voltage scaling)
On-chip communication

Resource sharing (e.g. in multicore)

Lee, Berkeley 61

Our Current PRET Architecture

PTArm, a soft core on a
Xilinx Virtex 5 FPGA

Hardware .
scratch I/O devices

thread pad memory
registers
Interleaved SRAM DRAM main
pipeline with one Scratchpad memory,
set of registers Shared among separate banks
per thread threads per thread

Lee, Berkeley 62

Performance Cost?
No!

Comparing PTARM against
SimIT-ARM simulator
(StrongARM 1100)

[Qin & Malik] over
Malardalen WCET
benchmarks [Gustafsson...].

Given enough concurrency,
the PTARM beats the
StrongARM on every
benchmark!

Moreover, our simpler
pipeline can probably be
clocked faster.

[Isaac Liu, PhD Thesis, May, 2012]

instruction throughput (instructions/cycle)

total cycles (logscale)

—
o
I

'y
o
w

-
o
N

WCET Benchmarks Instruction Throughput (higher is better)

PTARM m—

SA1100 cold ==
SA1100 warm
SA1100 allcaphe —

WCET Benchmarks Latency (lower is better)

SA1100 warm s

PTARM mmmm |
SA1100 allcache ——3]

SA1100 cold === |

Multicore PRET

In today’ s multicore
architectures, one thread can
disrupt the timing of another
thread even if they are X
running on different cores
and are not communicating!

]
m
)

Our preliminary work shows that control over timing
enables conflict-free routing of messages in a network on
chip, making it possible to have non-interfering programs
on a multicore PRET.

Lee, Berkeley 64

Status of the PRET project

o Results:
PTArm implemented on Xilinx Virtex 5 & 6 FPGA.
Multicore PRET demonstration on real-time CFD app.
UNISIM simulator of the PTArm facilitates experimentation.
DRAM controller with repeatable timing and DMA support.
PRET-like utilities implemented on COTS Arm.

o Much still to be done:

Realize MTFD, interrupt I/0O, compiler toolchain,
scratchpad management, etc.

Lee, Berkeley 65

set timeri, 1s

A Key Next Step: // Code block
Parametric PRET Architectures MIFD

ISA that admits a variety of implementations:

o Variable clock rates and energy profiles

o Variable number of cycles per instruction

o Latency of memory access varying by address
o Varying sizes of memory regions

o ...

A given program may meet deadlines on only some
realizations of the same parametric PRET [ISA.

Lee, Berkeley 66

Realizing the MTFD instruction on a
parametric PRET machine

set_timer1, 1s /archltecture/
// Code block parameters
MTFD r1 checker

-&— certificate

link absolute
lm derr confidence
oade software

I—’analyzer
source . |
>—'comp||er

includes includes predicate
MTFD code MTFD to be
blocks instructions satisfied

object code

The goal is to make software that will run correctly on a variety of
implementations of the ISA, and that correctness can be checked for each
implementation.

Lee, Berkeley 67

Potential Uses of PRET Machines

Deeply embedded applications (CPS)
Safety-critical systems

High-precision systems

Extremely low power applications

Real-time coprocessor (OpenRT?)
High performance 1/O
Memory controllers
High precision |/O

o Mixed hardware/software designs

O O O O O

Lee, Berkeley 68

http.//chess.eecs.berkeley.edu/pret/

PRET Publications

o S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET)
Machine," in the Wild and Crazy Ideas Track of DAC, June 2007.

o B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards and E. A. Lee, “Predictable
programming on a precision timed architecture,” CASES 2008.

o S. Edwards, S. Kim, E. A. Lee, |. Liu, H. Patel and M. Schoeberl, “A Disruptive
Computer Design Idea: Architectures with Repeatable Timing,” ICCD 2009.

o D. Bui, H. Patel, and E. Lee, “Deploying hard real-time control software on
chip-multiprocessors,” RTCSA 2010.

o Bui, E. A. Lee, |. Liu, H. D. Patel and J. Reineke, “Temporal Isolation on
Multiprocessing Architectures,” DAC 2011.

o J. Reineke, I. Liu, H. D. Patel, S. Kim, E. A. Lee, PRET DRAM Controller: Bank
Privatization for Predictability and Temporal Isolation (to appear), CODES
+|SSS, Taiwan, October, 2011.

o S. Bensalem, K. Goossens, C. M. Kirsch, R. Obermaisser, E. A. Lee, J. Sifakis,
Time-Predictable and Composable Architectures for Dependable
Embedded Systems, Tutorial Abstract (to appear), EMSOFT, Taiwan, October,
2011

Lee, Berkeley 69

