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The Short Version of My Talk 

Time synchronization is going to change the world  
(again) 

1500s 
days 

Gregorian Calendar (BBC history) 
Lackawanna Railroad Station, 1907, Hoboken.  
Photograph by Alicia Dudek 

1800s 
seconds 

2000s 
nanoseconds 

2005: first IEEE 1588 plugfest 
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Today’s networks 

“On August 12, 1853, two trains on the Providence & Worcester Railroad 
were headed toward each other on a single track. The conductor of one train 
thought there was time to reach the switch to a track to Boston before the 
approaching train was scheduled to pass through. But the conductor's watch 
was slow. As his speeding train rounded a blind curve, it collided head-on 
with the other train—fourteen people were killed. The public was outraged. All 
over New England, railroads ordered more reliable watches for their 
conductors and issued stricter rules for running on time.” 

Source: National Museum of American History 
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What is going to change? 
Design of Cyber-Physical 
Systems (CPS) 

Courtesy of Doug Schmidt!

Power 
generation and 
distribution 

Courtesy of  
General Electric 

Military systems: 

Transportation 
(Air traffic 
control at 
SFO) Avionics 

Telecommunications 

Factory automation 

Instrumentation 
(Soleil Synchrotron) 

Daimler-Chrysler 

Automotive 

Building Systems 
Orchestrating 
networked 
computational  
resources with 
physical 
systems 
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A Cyber-Physical System 
Printing Press 

Hundreds	
  of	
  microcontrollers	
  and	
  an	
  
Ethernet	
  network	
  are	
  orchestrated	
  
with	
  precisions	
  on	
  the	
  order	
  of	
  
microseconds.	
  
	
  
So8ware	
  for	
  such	
  systems	
  can	
  be	
  
developed	
  in	
  a	
  completely	
  new	
  way.	
  

Bosch-­‐Rexroth	
  
Time	
  synchronizaBon	
  enables	
  Bghtly	
  coordinated	
  acBons	
  
and	
  reliable	
  networking	
  with	
  bounded	
  latency.	
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But software technology will need to adapt to take 
advantage of this revolution… 

For cyber-physical systems,  
programs do not adequately specify behavior. 
 
The core notions of “computation” today ignore time. 
 
The core notions tomorrow will not… 
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Challenges that We are Addressing 

¢  Representation of time 
l  Data types, superdense time, operations on time, etc. 

¢  Gaining control over timing in software 
l  PRET – Precision-timed computer architecture 

¢  Multiform time 
l  Hierarchical clocks proceeding at different rates. 

¢  Joint modeling of functionality and implementation 
l  Timing emerges from the implementation 

¢  Programming models that specify timed behavior 
l  PTIDES – A programming model for distributed systems 
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Schematic of a simple CPS: 

Assume synchronized clocks. 
How can the software take 
advantage of this? 
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Computation given in an  
untimed, imperative language. 

Assume synchronized clocks. 
How can the software take 
advantage of this? 
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This code is 
attempting to 
control timing. 
But will it really? 

Assume synchronized clocks. 
How can the software take 
advantage of this? 
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Timing behavior emerges from 
the combination of the program 
and the hardware platform. 

USB interface

JTAG and SWD interface

graphics
display

CAN bus interface

Ethernet interface

analog
(ADC)
inputs

micro-
controller

removable 
!ash 

memory
slot

PWM outputs

GPIO connectors

switches
connected

to GPIO pins
speaker
connected to
GPIO or PWM

No matter how precise the 
clocks are, controlling timing in 
the software is difficult. 
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Consequences 

When precise control over timing is needed, designs are brittle. 
Small changes in the hardware, software, or environment can 
cause big, unexpected changes in timing. Testing has to be 
redone. Results: 

¢  Manufacturers frequently stockpile parts to suffice for the 
complete production run of a product. 

¢  Manufacturers cannot take advantage of improvements in 
the hardware (e.g. weight, power). The cost of re-testing and 
re-certifying is too high. 

¢  Designs are over provisioned, increasing cost, weight, and 
energy usage. 
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A Key Challenge: 
Timing is not Part of Software Semantics 

Correct execution of a program in C, C#, Java, Haskell, 
OCaml, etc. has nothing to do with how long it takes to do 
anything. Nearly all our computation and networking 
abstractions are built on this premise. 

  
Programmers have to step outside the 
programming abstractions to specify 
timing behavior. 



Lee, Berkeley  14 

The first edition of Hennessy and 
Patterson (1990) revolutionized 
the field of computer architecture 
by making performance metrics 
the dominant criterion for design.  
 
Today, for computers, timing is 
merely a performance metric. 
 
It needs to be a correctness 
criterion. 

Computer Science has not ignored timing… 
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Correctness criteria 

We can safely 
assert that line 8 
does not execute  
 
 
 
 
(In C, we need to 
separately ensure that 
no other thread or ISR 
can overwrite the stack, 
but in more modern 
languages, such 
assurance is provided 
by construction.)  

We can develop absolute 
confidence in the software, in that 
only a hardware failure is an excuse. 
 
But not with regards to timing!! 
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The hardware out of which we build computers 
is capable of delivering “correct” computations 
and precise timing… 

 
The synchronous digital logic 
abstraction removes the 
messiness of transistors. 
 
 
 
… but the overlaying software 
abstractions discard the timing 
precision. 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 
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As with processors, for networks, timing is a 
performance metric, not a correctness criterion 

The point of these abstraction 
layers is to isolate a system 
designer from the details of the 
implementation below. 
 
In today’s networks, timing 
emerges from the details of the 
implementation. 
 
Even QoS-aware networks 
(e.g. AVB) derive timing 
properties from packet 
priorities & network topology. 
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Project 1: (which I will not talk about today) 
PRET Machines 

¢  PREcision-Timed processors = PRET 
¢  Predictable, REpeatable Timing = PRET 
¢  Performance with REpeatable Timing = PRET 

= PRET + 

Computing With time 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 
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Project #2: PTIDES 
A Programming Model for Distributed Cyber-Physical Systems 
Based on Discrete Events (DE) 

¢   Concurrent actors 
¢   Exchange time-stamped messages (“events”) 

A “correct” execution is one where every actor reacts to 
input events in time-stamp order. 
 
 
PTIDES leverages network time synchronization to deliver 
determinate distributed real-time computation. 
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Discrete-Event Models (in Ptolemy II) 
DE Director specifies that 
this will be a DE model 
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Discrete-Event Models (in Ptolemy II) 
Model of regularly spaced 
events (e.g., a clock signal). 
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Discrete-Event Models (in Ptolemy II) 
Model of irregularly spaced 
events (e.g., a failure event). 
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Discrete-Event Models (in Ptolemy II) 
Model of a subsystem that 
changes modes at random 
(event-triggered) times 
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Discrete-Event Models (in Ptolemy II) 
Model of an observer 
subsystem 
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Discrete-Event Models (in Ptolemy II) 
Events on the two input 
streams must be seen in 
time stamp order. 
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This is a Component Technology 
Model of a subsystem given 
as an imperative program. 
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This is a Component Technology 
Model of a subsystem given 
as a state machine. 
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This is a Component Technology 
Model of a subsystem given 
as a modal model. 

More types of components: 
•  Modal models 
•  Functional expressions. 
•  Submodels in DE 
•  Submodels in other MoCs 



Lee, Berkeley  29 

Using Discrete Event Semantics in  
Distributed Real-Time Systems 

¢  DE is usually used for simulation (HDLs, network simulators, …) 
¢  Distributing DE is done to accelerate simulation. 
 
 

¢  We are using DE for distributed real-time software, binding time 
stamps to real time only where necessary. 

¢  PTIDES: Programming Temporally Integrated Distributed 
Embedded Systems 
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Ptides: Programming Temporally Integrated Distributed Embedded Systems 
First step: Time-stamped messages. 

Messages carry time 
stamps that define their 

interleaving 

Actors specify 
computation 
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Ptides: Second step:  
Network time synchronization 

GPS, NTP, IEEE 1588, 
time-triggered busses, … 
they all work. We just 
need to bound the clock 
synchronization error. 

Assume bounded 
clock error 

Assume bounded 
clock error e 

Assume bounded 
clock error e 
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Ptides: Third step: 
Bind time stamps to real time at sensors and actuators 

Input time stamps are 
≥ real time 

Input time stamps are 
≥ real time 

Output time stamps 
are ≤ real time 

Output time stamps 
are ≤ real time Messages are 

processed in time-
stamp order. 

Clock synchronization 
gives global meaning to 

time stamps 

Actors wrap 
sensors 

Actors wrap 
actuators 
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Global latencies between sensors and actuators become 
controllable, which enables analysis of system dynamics. 

Ptides: Fourth step: 
Specify latencies in the model 

Model includes 
manipulations of time 
stamps, which control 

latencies between 
sensors and actors 

Actuators may be 
designed to interpret 
input time stamps as 
the time at which to 

take action. Feedback through the physical world 
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Ptides: Fifth step 
Safe-to-process analysis (ensures determinacy)  
Safe-to-process analysis guarantees that the generated code obeys time-stamp 
semantics (events are processed in time-stamp order), given some assumptions. 

Assume bounded 
network delay d 

Assume bounded 
clock error 

Assume bounded 
clock error e 

An earliest event with 
time stamp t here can 
be safely merged when 
real time exceeds  
t + s + d + e – d2 

Assume bounded 
clock error e 

Assume bounded 
sensor delay s 

Application 
specification of 

latency d2 
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Bounded network delay 
is enabled by time synchronization… 

¢  ARINC 429 
l  Local area network used in avionics systems. 

¢  WorldFIP (Factory Instrumentation Protocol) 
l  Created in France, 1980s, used in train systems 

¢  CAN: Controller Area Network 
l  Created by Bosch, 1980s/90s, ISO standard 

¢  Various ethernet variants 
l  PROFInet, EtherCAT, Powerlink, … 

¢  TTP/C: Time-Triggered Protocol 
l  Created around 1990, TU Vienna, supported by TTTech 

¢  MOST: Media Oriented Systems Transport 
l  Created by a consortium of automotive & electronics companies  
l  Under active development today 

¢  FlexRay: Time triggered bus for automotive applications 
l  Created by a consortium of automotive & electronics companies  
l  Under active development today 
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Ptides Schedulability Analysis 
Determine whether deadlines can be met 

Schedulability analysis incorporates computation times to determine 
whether we can guarantee that deadlines are met. 

Deadline for delivery of 
event with time stamp t 

here is t – c3 – d2 

Deadline for delivery 
here is t 

Assume bounded 
computation time c1 

Assume bounded 
computation time c3 

Assume bounded 
computation time c2 
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Workflow 
Structure for 
Experiments 

 
 
 

HW Platform Software 
Component 

Library 

Ptides Model Code 
Generator  

 
PtidyOS 

Code 

Plant Model 

Network Model 

HW in the 
Loop 

Simulator 

Causality 
Analysis 

Program 
Analysis 

Schedulability 
Analysis 

Analysis	
  

Mixed 
Simulator 

Ptolemy II Ptides domain 

Ptolemy II Discrete-event, 
Continuous, and 
Wireless domains 

Luminary  
Micro  
8962 IEEE 1588 Network 

time protocol 
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Designing & Evaluating PTIDES-based Systems 

To meet real-time constraints,  
the implementation platform matters. 
 
Conventional approach: Specify functionality and 
implementation. Then measure temporal properties. 
 
Our approach: Specify temporal requirements. Then 
verify that they are met by a candidate implementation. 
 



Lee, Berkeley  39 

Topics for further discussion 

¢  How to represent time? 
l  Need superdense time for a clean semantics of simultaneity. 

¢  How to advance time? 
l  Need multiform time to model inhomogeneity and imperfect sync. 

¢  How to determine the required accuracy of time sync? 
l  PTIDES offers a tradeoff between latency and time sync accuracy. 

¢  How to handle faults? 
l  PTIDES can detect violations of assumptions (bounded clock error, 

bounded network latency, and bounded sensor delay). 

¢  Security? 
l  Does time synchronization create a point of vulnerability? 
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Conclusions 

Today, timing emerges from realizations of systems. 

Tomorrow, timing behavior will be a semantic property of  
networks, programs, and models. 

Raffaello Sanzio da Urbino – The Athens School 

Overview References: 
•  Lee. Computing needs time. CACM, 52(5):70–79, 2009 
•  Eidson et. al, Distributed Real-Time Software for Cyber-Physical 

Systems, Proc. of the IEEE January, 2012. 
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Multiform Time 

reference time 

local time 

Heaven for engineers. 
Local time and environment 
time are in sync! 
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Multiform Time in the Real World 

offset reference time 

local time There is an offset 
between 
local time and 
environment time 
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Multiform Time in the Real World 

fast clock 

slow clock 

reference time 

local time 

clocks drift 
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Multiform Time in the Real World 

Change clock drift 

Even more 
real: clock 
drift 
changes! 

reference time 

local time 
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Ptolemy II model: Local time within a hierarchy  
advances at different rates. 

Model uses “oracle time,” 
which becomes “environment time” 
for the subsystems. 

Model internally uses local time 

Discrete Event MoC 

Model internally uses local time 
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Ptides: Fifth step 
Safe-to-process analysis (ensures determinacy)  
Safe-to-process analysis guarantees that the generated code obeys time-stamp 
semantics (events are processed in time-stamp order), given some assumptions. 

Assume bounded 
network delay d 

Assume bounded 
clock error 

Assume bounded 
clock error e 

An earliest event with 
time stamp t here can 
be safely merged when 
real time exceeds  
t + s + d + e – d2 

Assume bounded 
clock error e 

Assume bounded 
sensor delay s 

Application 
specification of 

latency d2 
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Ptides Schedulability Analysis 
Determine whether deadlines can be met 

Schedulability analysis incorporates computation times to determine 
whether we can guarantee that deadlines are met. 

Deadline for delivery of 
event with time stamp t 

here is t – c3 – d2 

Deadline for delivery 
here is t 

Assume bounded 
computation time c1 

Assume bounded 
computation time c3 

Assume bounded 
computation time c2 
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PtidyOS: A lightweight microkernel supporting 
Ptides semantics 

PtidyOS runs on 
¢  Arm (Luminary Micro) 
¢  Renesas 
¢  XMOS 
Occupies about 16 kbytes of 
memory. 
 

Luminary  
Micro  
8962 

An interesting property of 
PtidyOS is that despite being 
highly concurrent, preemptive, 
and EDF-based, it does not 
require threads.  
A single stack is sufficient! 

The name “PtidyOS” is a bow to TinyOS, 
which is a similar style of runtime kernel. 

Renesas 7216 
Demonstration Kit  

  XMOS 
development 
board with 4 

XCores. 
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Source: http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html 

Example – Flying Paster 
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Source:	
  hEp://offsetpressman.blogspot.com/2011/03/how-­‐flying-­‐paster-­‐works.html	
  

Flying	
  Paster	
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Printing Press – Model in Ptolemy II 
Model by Patricia Derler 
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Plant model  
+ 

Distributed Controllers 

5   Siemens CKI Project Review  
  Patricia Derler   

Printing Press – Model in Ptolemy II 
Model by Patricia Derler 
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Printing Press – Model in Ptolemy II 
Model by Patricia Derler 
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Platform independent 
model of functional and 

timing behavior 
Code Generation 
to multiple target 
platforms 
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Same I/O behavior 
w.r.t. value and timing 

e.g.: Renesas 7216 
Demonstration Kit  

 e.g.: XMOS 
development 
board with 4 

XCores. 

Determinate timing at sensors and actuators 



Lee, Berkeley  55 

Platform independent 
model of functional and 

timing behavior 
Code Generation 
to multiple target 
platforms 
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board with 4 

XCores. 

Determinate timing at sensors and actuators 

XMOS 
Predictable timing 
Multiple cores 
No analog I/O 
No FPU 
No hardware clock 

Renesas 
PHY chip for accurate 
timestamping of 
inputs,  
Analog I/O 
 



Lee, Berkeley  56 

Simple test case validates platform-independent timing. 
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Renesas vs. 
XMOS: Busy 
vs. Idle Time 

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 
Time (ms) 

topDeadCenter 
armContact 
tapeDetector 
contact 
cut 

-3x10

0.05

0.10

0.15

0.20

0.25

0.30

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Contact (red), Top Dead Center (green), Cut (blue) and Arm (black)

Time in seconds

Ev
en

tsSimulation 

Renesas 

XMOS 

Oscilloscope traces 
on GPIO pins 



Lee, Berkeley  59 

Execution-time analysis, by itself, 
does not solve the problem! 

Analyzing software for timing behavior requires: 
 
• Paths through the program (undecidable) 
• Detailed model of microarchitecture 
• Detailed model of the memory system 
• Complete knowledge of execution context 
• Many constraints on preemption/concurrency 
• Lots of time and effort 
 
And the result is valid only for that exact 
hardware and software! 
 
Fundamentally, the ISA of the processor  
has failed to provide an adequate abstraction. 

Wilhelm, et al. (2008). "The worst-case 
execution-time problem - overview of 
methods and survey of tools." ACM TECS 
7(3): p1-53. 

Our first goal is to reduce 
the problem so that this is 
the only hard part. 
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Dual Approach 

¢  Rethink the ISA 
l  Timing has to be a correctness property not a 

performance property. 

¢  Implementation has to allow for multiple realizations 
and efficient realizations of the ISA 
l  Repeatable execution times 
l  Repeatable memory access times 
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To deliver repeatable timing, we have to 
rethink the microarchitecture 

Challenges: 
 

l  Pipelining 
l  Memory hierarchy 
l  I/O (DMA, interrupts) 
l  Power management (clock and voltage scaling) 
l  On-chip communication 
l  Resource sharing (e.g. in multicore) 
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Hardware 
thread Hardware 

thread Hardware 
thread 

Our Current PRET Architecture 
PTArm, a soft core on a 
Xilinx Virtex 5 FPGA 

Hardware 
thread 

registers 

scratch 
pad 

memory 

I/O devices 

Interleaved 
pipeline with one 
set of registers 

per thread 

SRAM 
scratchpad 

shared among 
threads 

DRAM main 
memory, 

separate banks 
per thread 

memory 
memory 

memory 
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Performance Cost? 
 

Comparing PTARM against 
SimIT-ARM simulator 
(StrongARM 1100)  
[Qin & Malik] over 
Malardalen WCET 
benchmarks [Gustafsson…]. 
 

Given enough concurrency, 
the PTARM beats the 
StrongARM on every 
benchmark! 
 

Moreover, our simpler 
pipeline can probably be 
clocked faster. 
 
[Isaac Liu, PhD Thesis, May, 2012] 

No! 
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Multicore PRET 

In today’s multicore 
architectures, one thread can 
disrupt the timing of another 
thread even if they are 
running on different cores 
and are not communicating! 

 
Our preliminary work shows that control over timing 
enables conflict-free routing of messages in a network on 
chip, making it possible to have non-interfering programs 
on a multicore PRET. 
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Status of the PRET project 

¢  Results: 
l  PTArm implemented on Xilinx Virtex 5 & 6 FPGA. 
l  Multicore PRET demonstration on real-time CFD app. 
l  UNISIM simulator of the PTArm facilitates experimentation. 
l  DRAM controller with repeatable timing and DMA support. 
l  PRET-like utilities implemented on COTS Arm. 

¢  Much still to be done: 
l  Realize MTFD, interrupt I/O, compiler toolchain, 

scratchpad management, etc. 
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A Key Next Step: 
Parametric PRET Architectures 

ISA that admits a variety of implementations: 
¢  Variable clock rates and energy profiles 
¢  Variable number of cycles per instruction 
¢  Latency of memory access varying by address 
¢  Varying sizes of memory regions 
¢  … 

A given program may meet deadlines on only some 
realizations of the same parametric PRET ISA. 

set_time r1, 1s 
// Code block 
MTFD r1 
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Realizing the MTFD instruction on a  
parametric PRET machine 

The goal is to make software that will run correctly on a variety of 
implementations of the ISA, and that correctness can be checked for each 
implementation. 

set_time r1, 1s 
// Code block 
MTFD r1 
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Potential Uses of PRET Machines 

¢  Deeply embedded applications (CPS) 
¢  Safety-critical systems 
¢  High-precision systems 
¢  Extremely low power applications 
¢  Real-time coprocessor (OpenRT?) 

l  High performance I/O 
l  Memory controllers 
l  High precision I/O 

¢  Mixed hardware/software designs 
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