

Equations, Synchrony, Time, and Modes

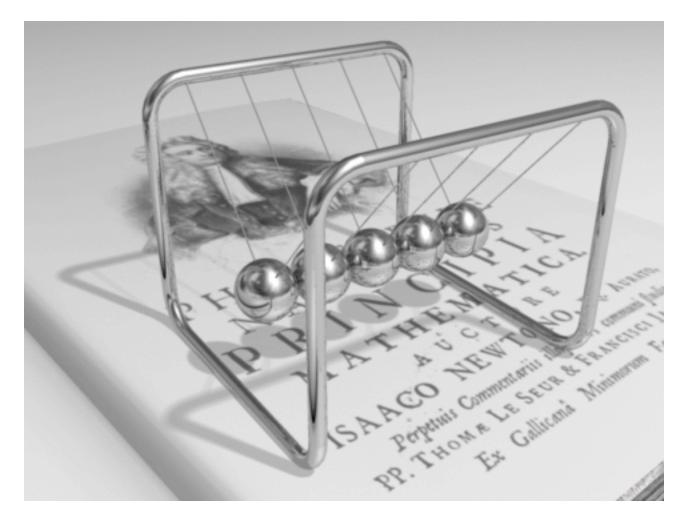
Edward A. Lee

Robert S. Pepper Distinguished Professor UC Berkeley

Collaborative with:

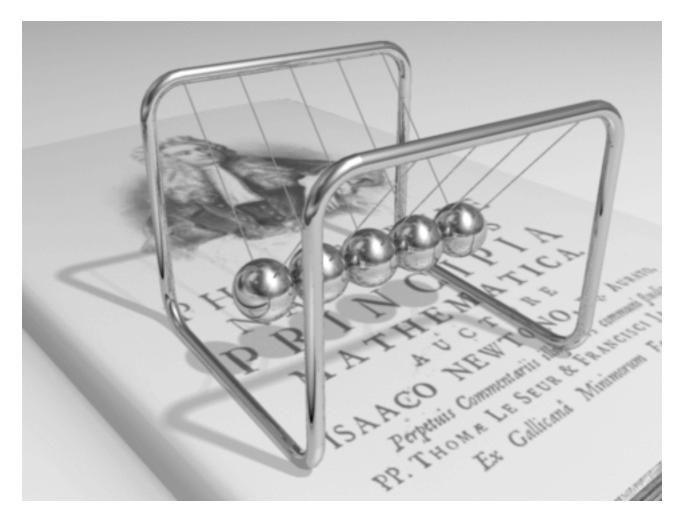
- Adam Cataldo
- Patricia Derler
- John Eidson
- Xiaojun Liu
- Eleftherios Matsikoudis
- Haiyang Zheng

Invited Talk at Workshop:
System Design meets Equation-based
Languages: Workshop Program
Lunds, Sweden,
Sept. 18-21



What is the momentum of the middle ball as a function of time?

$$\mathbf{p}(t) = m\mathbf{v}(t)$$

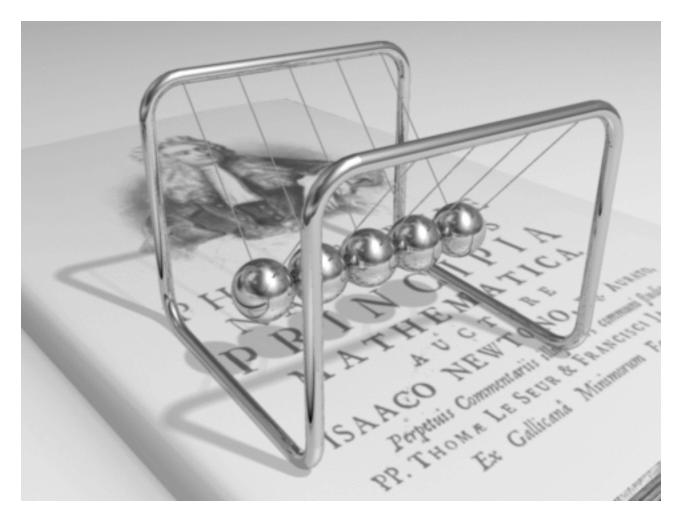


What is the momentum of the middle ball as a function of time?

$$\mathbf{p}(t) = m\mathbf{v}(t)$$

It might seem:

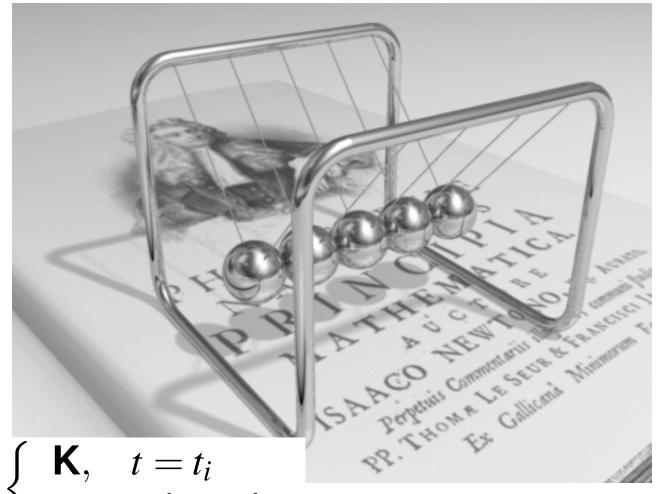
$$\mathbf{v}(t) = 0 \quad \Rightarrow \quad \mathbf{p}(t) = 0$$



But no, it is:

$$\mathbf{v}(t) = \begin{cases} \mathbf{K}, & t = t_i \\ 0 & \text{otherwise} \end{cases}$$

where t_i is the time of collision

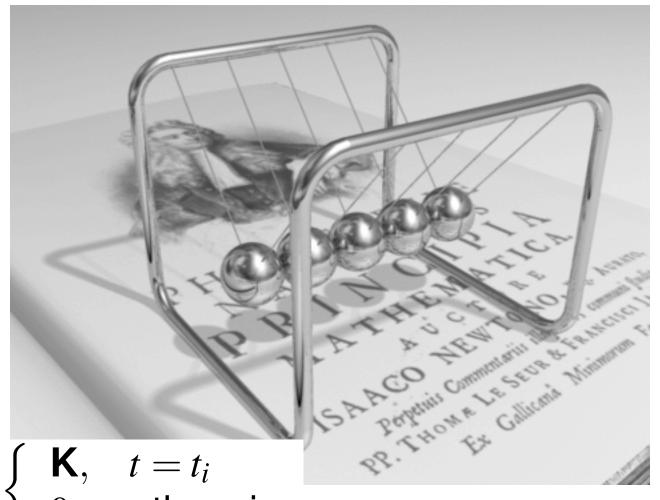


 $\mathbf{v}(t) = \begin{cases} \mathbf{K}, & t = t_i \\ 0 & \text{otherwise} \end{cases}$

 t_i

K

Since position is the integral of velocity, and the integral of **v** is zero, the ball does not move.



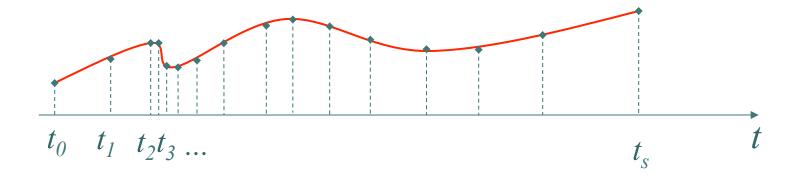
 $\mathbf{v}(t) = \begin{cases} \mathbf{K}, & t = t_i \\ 0 & \text{otherwise} \end{cases}$

A *discrete* representation of this signal with *samples* is inadequate.

Samples yield discrete signals

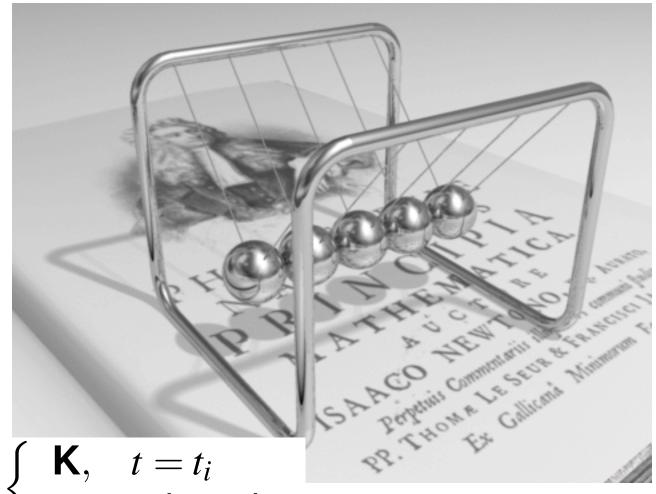
A signal $s: T \rightarrow D$ is sampled at tags

$$\pi(s) = \{t_0, t_1, \ldots\} \subset T$$



A signal s is discrete if there is an order embedding from its tag set $\pi(s)$ (the tags for which it is defined and not absent) to the natural numbers (under their usual order).

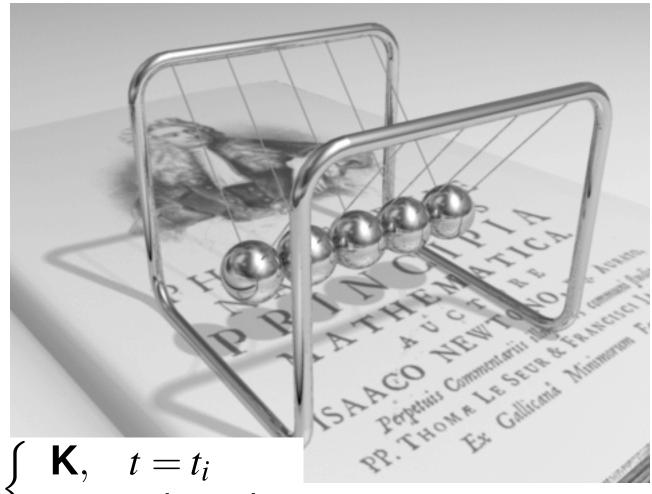
Note: Benveniste et al. use a different (and less useful?) notion of "discrete."



 $\mathbf{v}(t) = \begin{cases} \mathbf{K}, & t = t_i \\ 0 & \text{otherwise} \end{cases}$

K t_i

No discrete subset of realvalued times is adequate to unambiguously represent this signal.



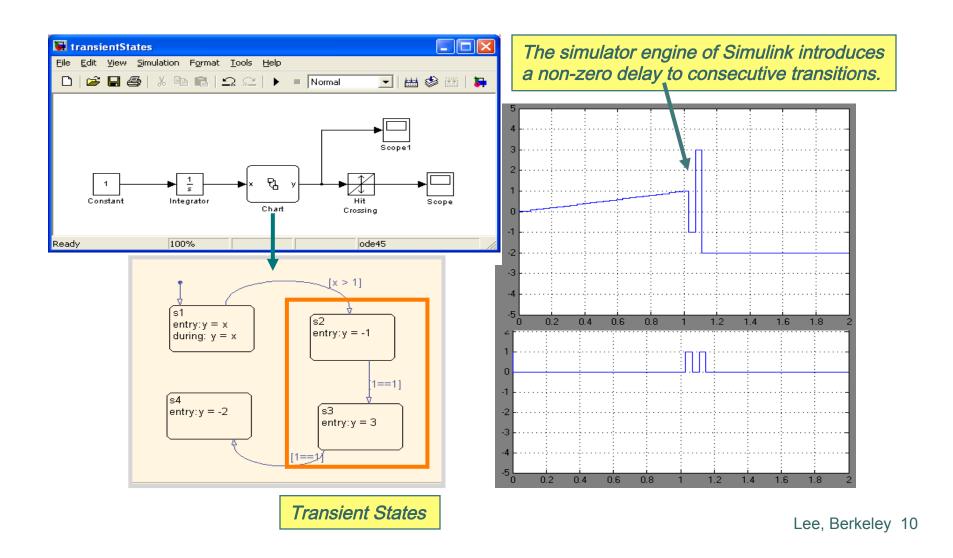
 $\mathbf{v}(t) = \begin{cases} \mathbf{K}, & t = t_i \\ 0 & \text{otherwise} \end{cases}$

K t_i

There is no *semantic* distinction between a discrete event and a rapidly varying continuous signal.

Simulink/Stateflow cannot accurately model such events.

In Simulink, a signal can only have one value at a given time. Hence Simulink introduces solver-dependent behavior.



Ptolemy II uses Superdense Time

[Maler, Manna, Pnuelli, 92]

for Continuous-Time Signals

$$\mathbf{v} \colon (\mathbb{R} \times \mathbb{N}) \to \mathbb{R}^3$$

Initial value:
$$\mathbf{V}(t_i,0)=0$$

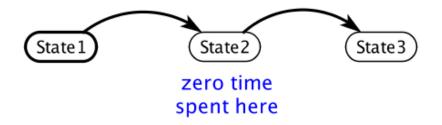
Intermediate value:
$$\mathbf{v}(t_i, 1) = \mathbf{K}$$

Final value:
$$\mathbf{V}(t_i, n) = 0, \quad n \geq 2$$

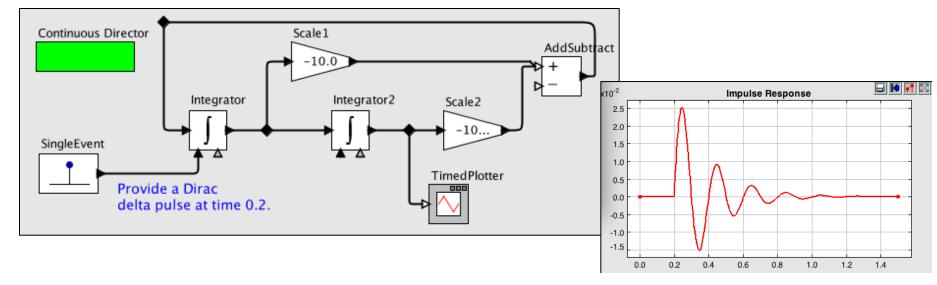
At each **tag**, the signal has *exactly one value*. At each time point, the signal has a *sequence of values*. Signals are *piecewise continuous*, in a well-defined technical sense, a property that makes ODE solvers work well.

Consequences of using Superdense Time

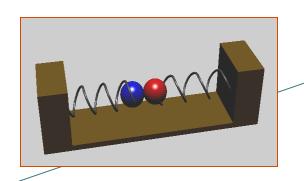
Transient states are well represented:

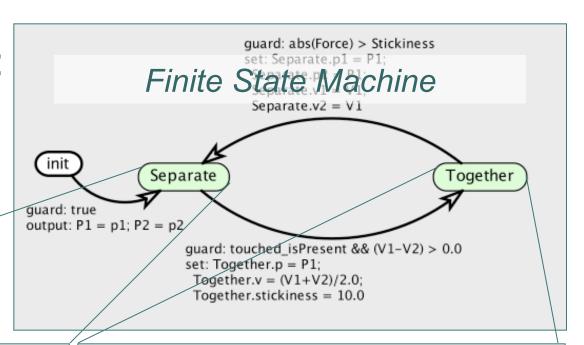


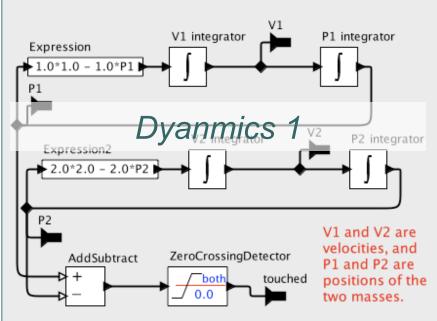
Infinitessimals (even Dirac delta functions):

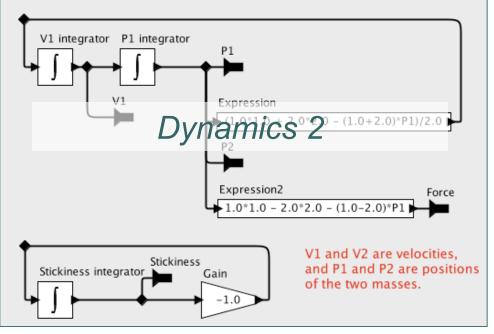


More Consequences: Hybrid System

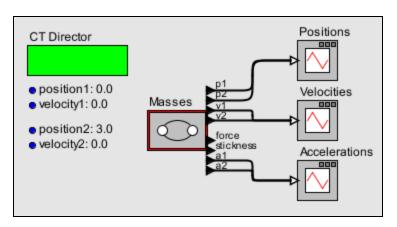




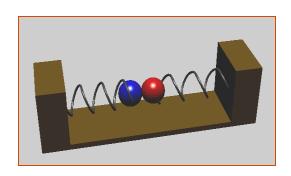


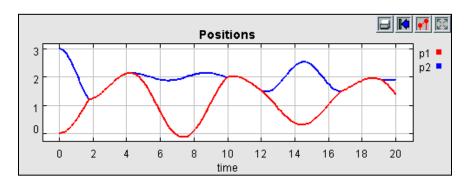


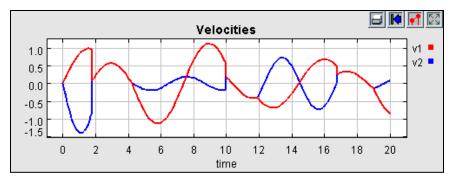
Transitions between modes are instantaneous

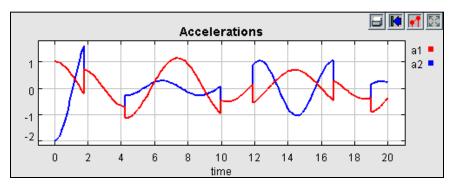


In the signals at the right, the velocities and accelerations proceed through a sequence of values at the times of the collisions and separations.

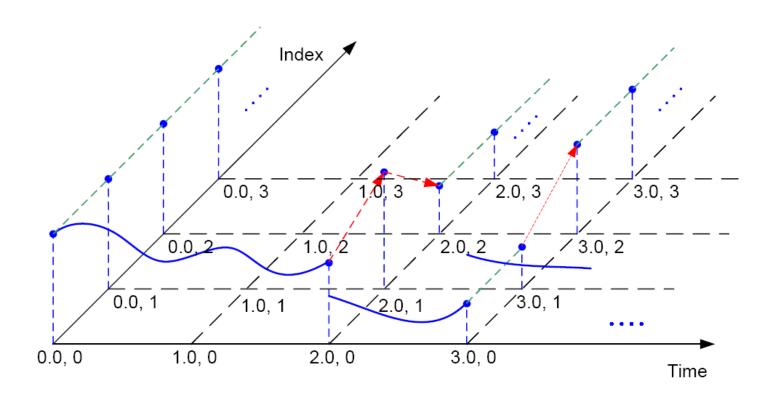




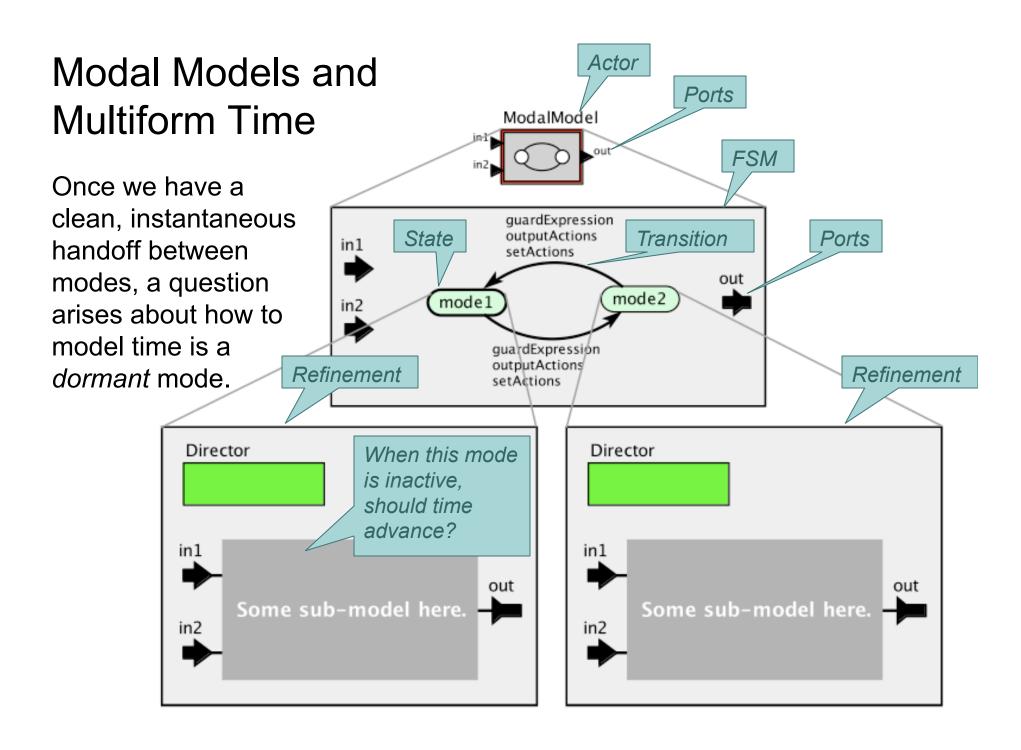




Superdense Time



The red arrows indicate value changes between tags, which correspond to discontinuities. Signals are continuous from the left *and* continuous from the right at points of discontinuity.



The Modal Model Muddle

It's about time

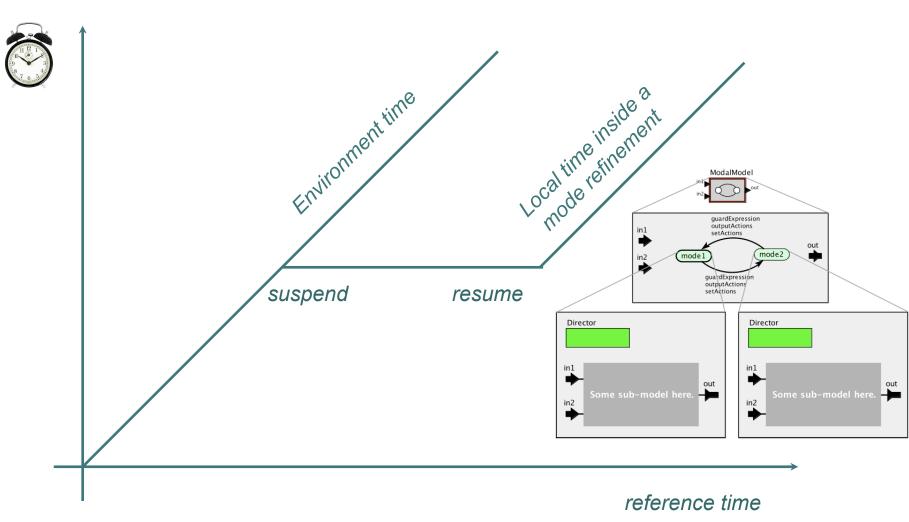
After trying several variants on the semantics of modal time, we settled on this:

A mode refinement has a *local* notion of time. When the mode refinement is inactive, local time does not advance. Local time has a monotonically increasing gap relative to environment time.

MultiForm Time in Ptolemy II

local time

In Ptolemy II Modal Models, Time is suspended and resumed



Variants for the Semantics of Modal Time that we Tried or Considered, but that Failed

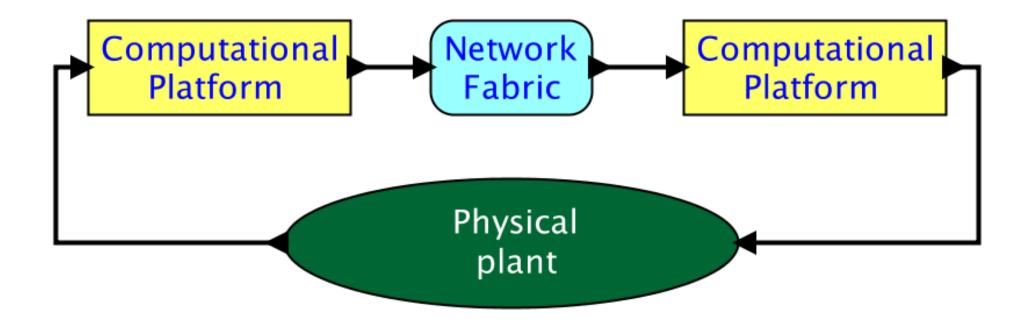
- Mode refinement executes while "inactive" but inputs are not provided and outputs are not observed.
- Time advances while mode is inactive, and mode refinement is responsible for "catching up."
- Mode refinement is "notified" when it has requested time increments that are not met because it is inactive.
- When a mode refinement is re-activated, it resumes from its first missed event.

All of these led to some very strange models...

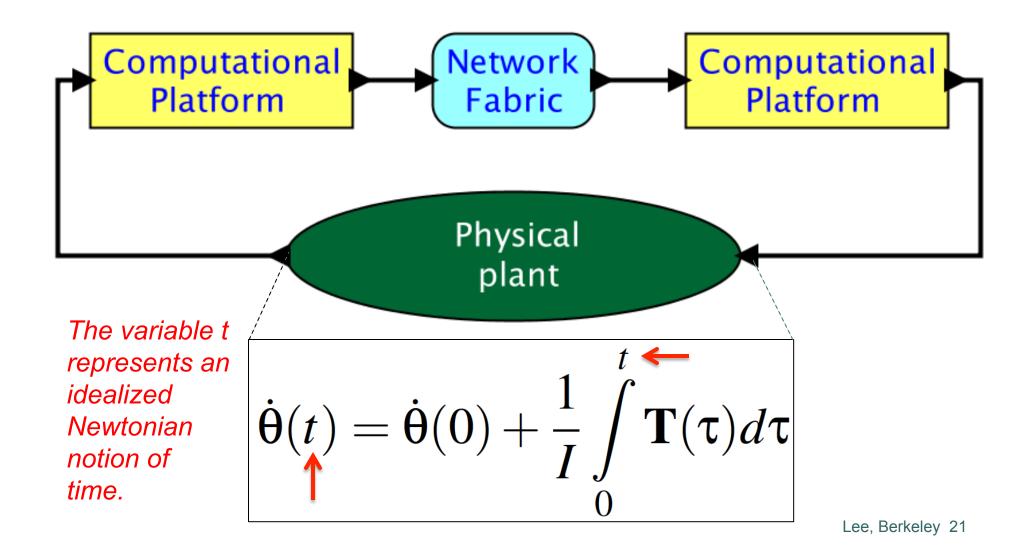
Final solution: Local time does not advance while a mode is inactive. Monotonically growing gap between local time and environment time.

Lee, Berkeley 19

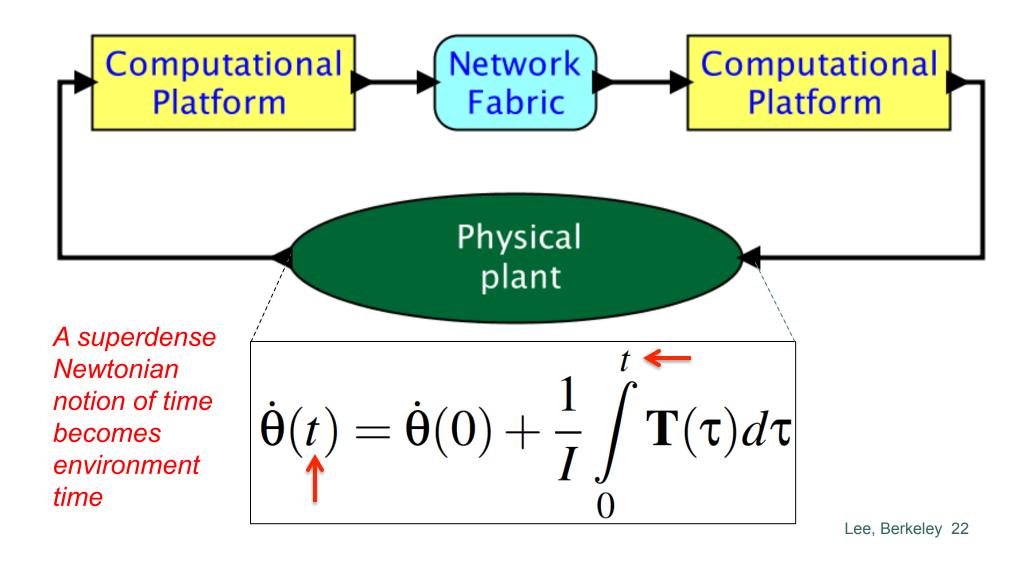
Once we have multiform time, we can build accurate models of cyber-physical systems



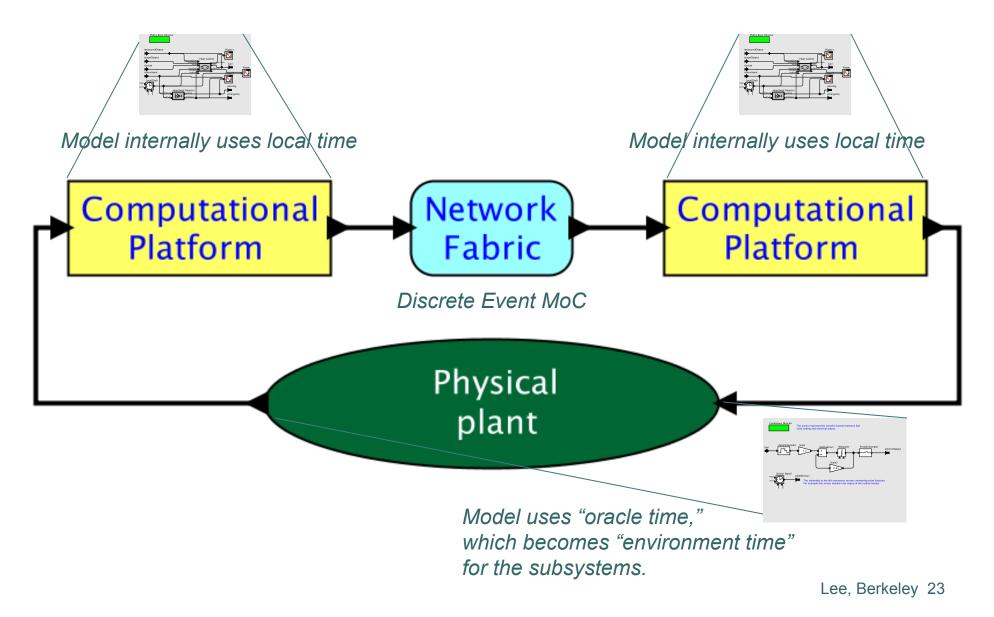
Engineers model physical dynamics using differential-algebraic equations.



But computational platforms have no access to *t*. Instead, local measurements of time are used.



Local time within a hierarchy can advance at different rates.

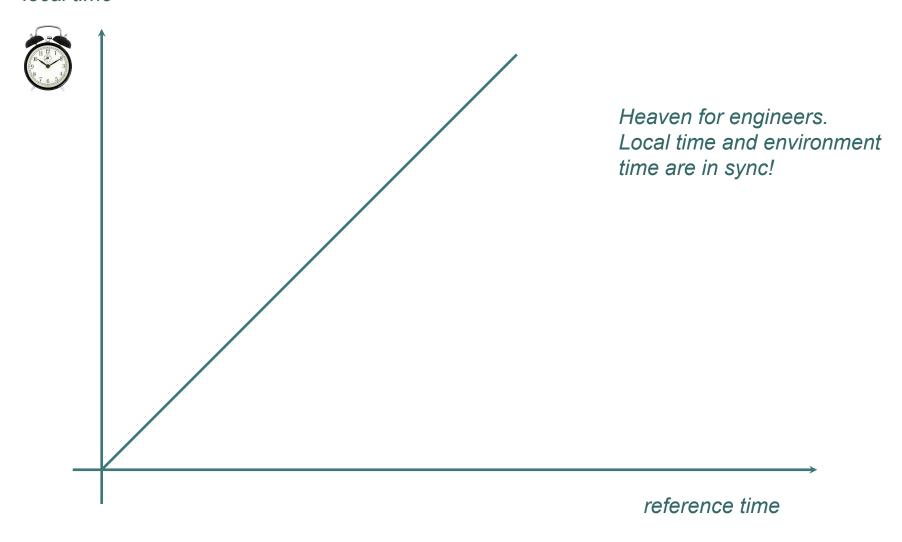


Clocks drift

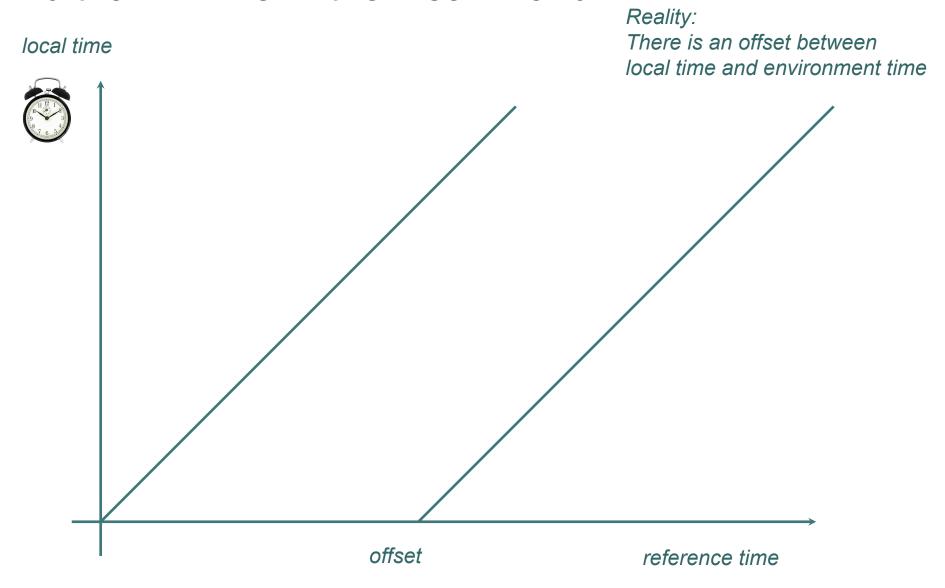
- Fabrication tolerance
- Aging
- Temperature
- Humidity
- Vibrations
- Quality of the quartz.
- Clock drifts measured in "parts per million" or ppm
 1 ppm corresponds to a deviation of 1µs every second

MultiForm Time in Ptolemy

local time



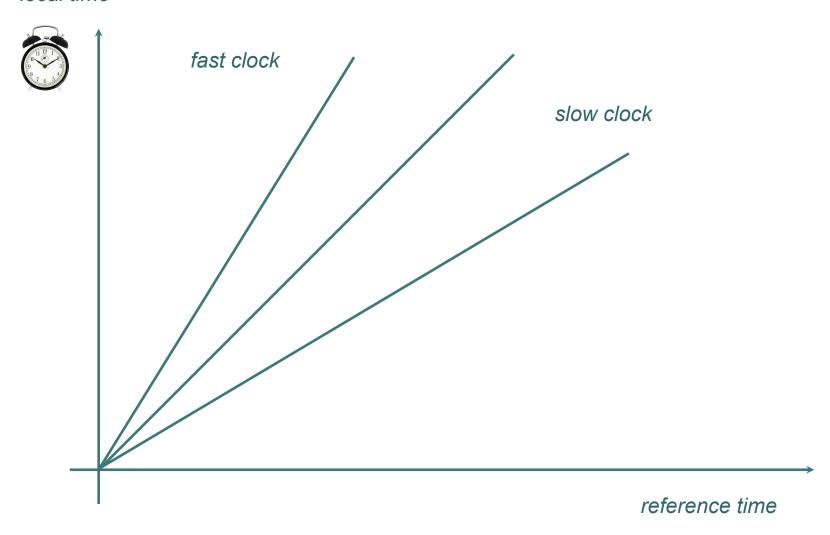
Multiform Time in the Real World



Multiform Time in Ptolemy

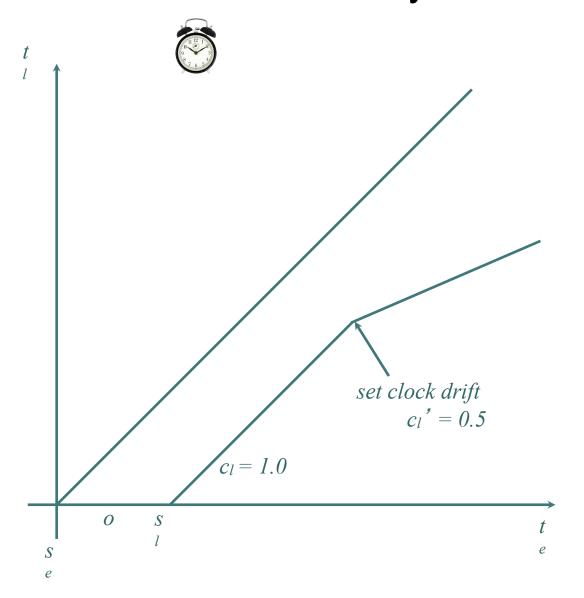
More real: clocks drift

local time



Multiform Time in Ptolemy

Even more real: clock drift changes!



environment time:

te

start time:

Se, Sl

offset:

$$o = s_e - s_l$$

clock rate:

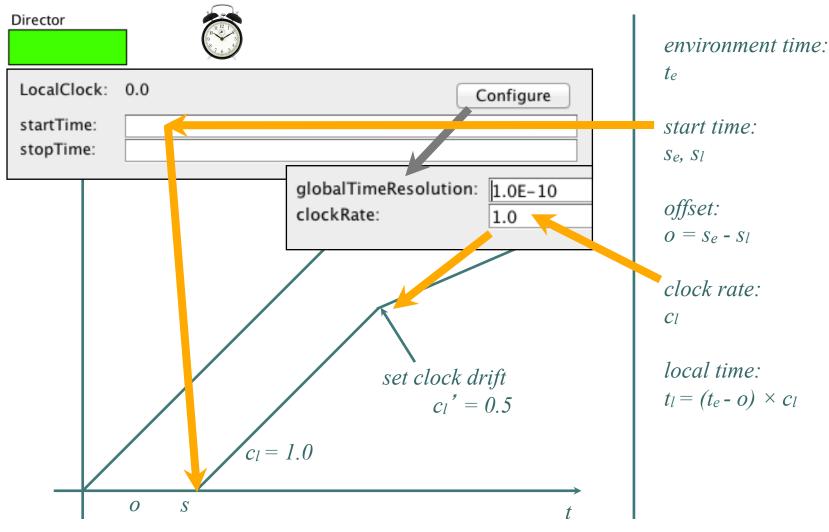
Cl

local time:

$$t_l = (t_e - o) \times c_l$$

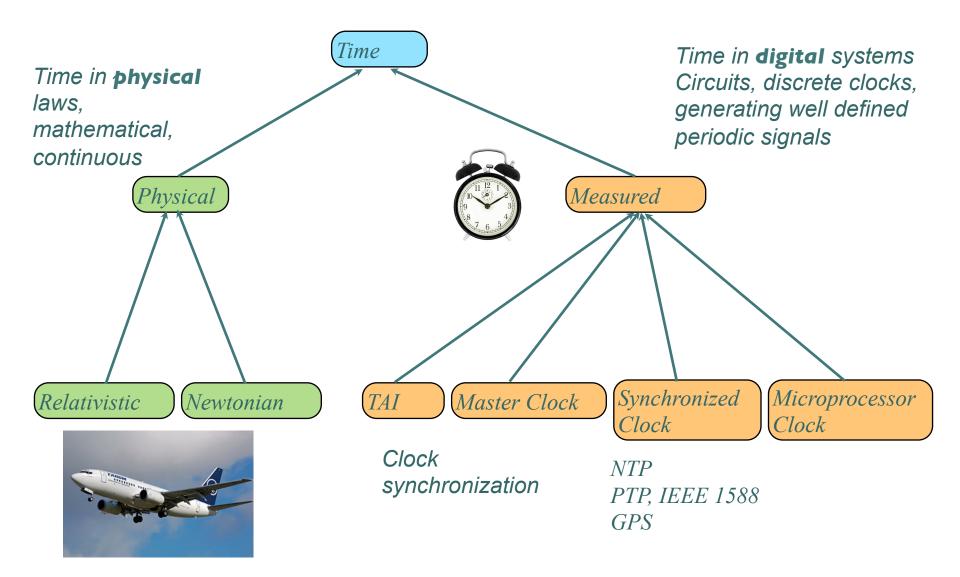
Multiform Time in Ptolemy

Ptolemy II provides a hierarchy of local clocks



This can be used, for example, to accurately model time synchronization protocols.

Multiform Time is Intrinsic!



Source: Patricia Derler and John Eidson

Precision

In floating-point formats,
 precision degrades as magnitude increases

Clear Semantics of Simultaneity

Requires precise addition and subtraction, e.g.
 (a + b) + c = a + (b + c).
 Floating-point numbers don't have this property.

Floating point numbers are a poor choice for modeling time!

Conclusions

- Modeling time as a simple continuum is not adequate.
 - Superdense time offers clean semantics for instantaneous events.
- Homogeneous time advancing uniformly is not adequate.
 - Hierarchical multiform time enables accurate and practical models of heterogeneous distributed systems.
- Floating point numbers for time are not adequate.
 - A model with invariant precision and precise addition and subtraction is.