Networking Infrastructure and Data
Management for Cyber-Physical
Systems

Song Han
Ilb 11411

Computer Science Department, University of Texas at Austin
shan@cs.utexas.edu

www.cs.utexas.edu/~shan



What is Cyber-Physical System (CPS)?

Cyber-physical system is a system featuring a tight combination
of, and coordination between, the system’s computational and
physical elements.




CPS Application — Cyberphysical Avatar
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Cyberphysical Avatar: A semi-autonomous robotic system (joint project with
UT Human Centered Robotics Lab)



CPS Application — Network-based Mobile Gait
Rehabilitation System

Handheld Monitor Integrating heterogeneous

sensors into real-time wireless
platform

Remote Doctors and
Physical Therapist

A Wirelessly Connected
Host Computer

e Low-level motion control of
rehabilitation device over
wireless network

e Development of high-level
decision making algorithm

Network-based Mobile Gait Rehabilitation System (joint project
with Mechanical Systems Control Laboratory, UC Berkeley)
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Guiding Applications

Handheld Monitor
Wireless Motion Sensors
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Research Overview

Reliable and Real-time Wireless Platform for CPS

— Wireless real-time communication protocol
— Network management techniques
— System design and implementation

Real-time Data Management in CPS

— Model and assumptions
— Algorithms and analysis

Summary and Future Work



Wireless Reliable and Real-time
Communication Platform



Design Space and Required Features

Energy
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Constraint

Low-power
— 802.15.4-based radio

Real-time

— TDMA Data Link Layer (DLL)
— Centralized management

Reliable

— Mesh networking
— Data link layer ACK
— Channel hopping mechanism

Secure

— Data integrity on DLL

— Data confidentiality on
network layer (NL)



Overview of Our Real-time Protocol Stack

e TDMA-based Data Link Layer

— Guarantee timely delivery

e Channel Hopping and Blacklisting
— Spread communication in all active physical channels
— Reduce interference to provide reliable communication

e Confidential and Secure Communication

— Use both public and private keys to secure communication in
both join process and normal operations
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Idle link

e Link: activity in a time slot
— Neighbor Send link

— Send/Receive
— Communication channel - Receive link
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e Superframe: a group of links

— Repeat itself infinitely
— A device can support several superframes
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Link Scheduler

Priority queues for data link layer packets
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How to Achieve Reliable and Real-time
Services in CPS

Network Manager

Authenticating devices
Forming the network
Constructing routing graphs
Scheduling DL transmissions

Gateway

Collecting/caching sensor data
Process queries from other systems

Security Manager

Manage key information

CPS subsystems '. CPS subsystems '
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How to Achieve Reliable and Real-time
Services in CPS

e Communication task definition

— Need to solve two related sub-problems:
1. communication graph design
2. link scheduling

e Technical Objectives

— Achieve reliable routing in wireless mesh networks

— Achieve real-time communication by deterministic link and
channel assignment

— Evaluate their performance in real industrial environments



Communication Graph Design to Achieve Reliable

V I PR o) Y I
alrdpin ROULITg

@ Gateway @ Access Point @ Device with specific ID i

To avoid forwarding loop:

1) Only one cycle of length 2 in G,
2) Each DEV on the cycle has direct
edgestov

(c) Broadcast graph
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Constructing Reliable Graphs

e Reliable Broadcast Graph and Uplink Graph

— Grow the graph by greedily selecting the reliable node with
minimum latency to the Gateway

e Standard Reliable Downlink Graph

— Construct a completely new graph from GW to DEV v
— Configuration in intermediate nodes cannot be reused
— High configuration cost and poor scalability



Sequential Reliable Downlink Routing
(SRDR)

e Key Principles
— Each node only keep a small local graph

— Local graphs are reusable building blocks for constructing
reliable downlink graph for multiple destinations
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High Scalability

High Reliability
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An Example of SRDR

(b) Downlink graph: g2
Sequential route for Dev 2: g2

(b)

(d) Downlink graph: g1 (e) Downlink graph: g4 (f) Downlink graph: g5
Sequential route for Dev 1: g2, g1 Sequential route for Dev 4: g2, g1, g4 Sequential route for Dev 5: g2, g5
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SRDR Extensions
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SRDR Optimization
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The general scheduling problem is known to be NP-
hardness [Saifullah et al. 2010]

Key Principles:

— Spread out the channel usage in the network
— Apply Fastest Sample Rate First policy (FSRF)
— Allocate the links iteratively from Src to Dest
— Split traffic (bandwidth) among all successors



Example Schedule Construction Using the Key
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System Design, Implementation and
Deployment

Network Manager Gateway Host Application

Compliance Verification /\
Environment \ Access \
e ' : Points

Wireless Real-time
Mesh Network

26



System Design, Implementation and
Deployment

Hardware Platforms

Freescale 1322x SRB Custom Designed Mother Custom Designed Board with
Evaluation Board Board with Sensor Support EnergyMicro EFM32 MCU
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System Design, Implementation and
Deployment (Cont.)

Compliance Testing Suite

Testing Engine
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System Design, Implementation and
Deployment (Cont.)

Compliance Verification

Simulating a real-time wireless
network with 100 devices:

- reliable broadcast graph
- device communication schedule
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System Design, Implementation and
Deployment (Cont.)

Metwork Manager Gateway Host Application
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Simulating a real-time wireless
network with 100 devices:

| ] WirslessHART Schedule

Global Schedule !De\ce Schedule | Device Usage
Device Utilization

- reliable uplink graph
h‘jl - device bandwidth utilization
- b b Bl
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System Design, Implementation and
Deployment (Cont.)

Application Layer CoAP APP Layer
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System Design, Implementation and
Deployment (Cont.)

10 Device Testbed UT Austin ACES 5t floor UT Pickle Research UWO
Center Power House
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Higher Sampling Rate Required in Network-based
Rehabilitation System

u Reference ==w==eeee= 500 Hz =r=r=-= 1000 Hz 2000 Hz

------

......

Motor angle (rad)
I I '
"'.'-. N

[ 1 1 1 [
0.24 0.25 0.26 0.27 0.28 0.29 0.3
Time (sec)

e Challenges
— Mechanic modules need high frequency and low jitter control

— A platform for a wide range of wireless control applications: a good
balance among sampling rate, energy consumption and real-time
performance
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Real-time Data Management in CPS



Maintaining Data Quality in CPS is Key

— CPS are in essential sensing and control systems

— Data quality is the key to the success of sensing and control
applications

— Sensor data have time semantics, and their quality degrade with time

36



Maintaining Data Quality in CPS is Key

 Need to enable tradeoff between data quality and sampling rate
— High sampling rate -> high network traffic & CPU workload
— More power consumption & shorter network lifetime
— Reduce sampling rate but maintain data and control quality

e Will exploit concept of validity interval to make the tradeoff
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Task Model

Real-time Database

___________ sensorData . w Periodic Control Task

u\/ min\/ max o
Update Task <CY,v,min Vv max> <C< Pe D< 0>

<_ ___________________________________________
Control Data

* A taskis an abstraction of resource
consumer; a task can be a computing
task (consuming CPU cycles) or a

Sensor Data Quality
A
1

~rArmIrmaTiaT~atiAn "\I‘I hf\v\hllnﬂlnrf
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network bandwidth)

 Validity intervals quantify the
quality of sensor data

P
i

0 Vil Ve Data Age  Control data quality is a function of
sensor data quality
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Task Model

e Sensor update task set TV = {tY},_," _—e Update/Control Task i
— tYis a4d-tuple: TV = (CY, V,min v.max Qu(t)). C.u(© WCET for %
— Q)Y(t) is application-dependent. QU©(t)  Quality function for tu(©

vmin(max)  Min(max) validity interval

e Control task set T* = {t},_,™
— Tisa5-tuple: t¢ = (C5DS, PS, Q, Qf(t))
— Q. is the update tasks that t,¢ will access and Q(t) is application-dependent

DS (PC) Deadline (Period) of T

Goal: Maintain the control data quality above
threshold while Minimizing update workload
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Task Model

e Sensor update task set TV = {tY},_,"
— tYis a4d-tuple: TV = (CY, V,min v.max Qu(t)).
— Q)Y(t) is application-dependent.

e Control task set T* = {t},_,™
— Tisa5-tuple: t¢ = (C5DS, PS, Q, Qf(t))

Tu(© Update/Control Task i
c.u© WCET for t4

QUC(t)  Quality function for T}
vmin(max)  Min(max) validity interval

DS (Pc) Deadline (Period) of T

— Q. is the update tasks that t,¢ will access and Q(t) is application-dependent

e Simplifying Assumptions
— No control task in the system for now

Validity Constraint: An update job
must finish before its previous
job’s validity interval expires

Goal: Guaranteeing validity
constraint while minimizing the
update workload.
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From Validity Interval Model to Periodic Task Model

Validity Interval Task Model How to pick the time point to
4 perform sensing?

SRR LD P A RREEEEEEEEEEEEEEE p - g R EEEEEETPEEEEEY P - >
- - >| - - >| B “ >|
0 t, t,

41



Maintaining Update Data Freshness
- Baseline Scheduling Techniques

 HH (Half-Half) Algorithm

— Period (P;) and relative deadline (D,) of an update task i are each set to
be one-half of the data validity length (V,).

v




Maintaining Update Data Freshness
- Baseline Scheduling Techniques

e ML (More-Less) Algorithm

— Relative deadline (D,) of an update task i is set to be its worst-case
response time (WCRT). Period P, =V, - D,

Validity Length V,  ---mmmmmmmemmmeaeees ,

v




Deferrable Scheduling with Fixed Priority (DS-FP)
- From Periodic to Sporadic Task Model

Principles
e Adopts the sporadic task model.

e Defers the sampling time of the update job as late as
possible to increases the distance of two consecutive jobs.




Deferrable Scheduling with Fixed Priority (DS-FP)
- From Periodic to Sporadic Task Model

ML Schedule (Periodic)
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Deferrable Scheduling with Fixed Priority (DS-FP)
- From Periodic to Sporadic Task Model

ML Schedule (Periodi
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Deferrable Scheduling with Fixed Priority (DS-FP)
- From Periodic to Sporadic Task Model

ML Schedule (Periodic)
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P,=14D,=4
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CPU Workload

Deferrable Scheduling with Fixed priority (DS-FP)
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Deferrable Scheduling with Fixed priority (DS-FP)

e Comparison of DS-FP and ML

— THEOREM. Given a synchronous update transaction set T with known C, and V,
jif foralli, f, ;™ <V, / 2, then T is schedulable with DS-FP.

* Necessary and Sufficient Schedulability Test

— THEOREM. Given an update task set T, if it can be scheduled by DS-FP in the
bounded time interval [0, V., —C_, + TT..;™ (V.= C. + 1) - 1], then the schedule
has a repeating pattern that must occur at least once in the bounded time
interval [V —-C_,V, —C_+T._™(V,—C +1)-1].

 Overhead Reduction Algorithms

— DS with Hyperperiod by Schedule Construction (DESH-SC)
— DS with Hyperperiod by Schedule Adjustment (DESH-SA)



CPS Real-time Data Management Research Roadmap
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Research Summary

e Reliable and real-time wireless platform for CPS

— Wireless real-time communication protocol
— Network management techniques
— System design and implementation

e Theoretical framework for real-time data
management in CPS

— Models and assumptions
— Algorithms and schedulability analysis



Ongoing and Future Work

* | believe that the next Internet resolution will be about the delivery of
physical services in addition to information services over long distances.

* The economic and social impact will be enormous.
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Thanks and Questions?



