program the

99%

Objectives of this talk

e Highlight results from Filip Pizlo’s PhD thesis

[PLDI'1 0, EUROSYS'| O, RTSS'09, ECOOP'09, ISMM'08, PLDI'08, ISMMO'/,
LCTES' O/, CC'0/, RTAS'06]

e A managed language should be <2x slower than C

e Real-time support should cost <2x

e Worst case performance matters

After 10 years of work... FijiVM

Java Application Native Code

*/ Fiji VM compiler *

. -

Fiji Runtime

register
allocation

Transform &
Optimize

=» FijilIR =» C Code Gen

Intrinsics P‘ Make SSA

Make SSA

\/
Fiji SSA
\/

Const & Copy
Propagation +
CFG
Silnlellijle=1ilelg]

v

Whole-program
(007

v

Inlining

\/
Global Value
Numbering

\

Kill SSA
\
Fiji IR
\

Unroll and Peel
Loops

\/
Fiji SSA
\J
Const & Copy
Propagation +
CFG
Simplification

A/

Allocation, Lock,
Barrier Inlining

A/

Global Value
Numbering

A/

Whole-program
Dead Code
Elimination

|

Representational ' 'P

Lowering

\/

Calling
Convention
Lowering

\/

Kill Types

A

Const & Copy
Propagation +
CFG
Simplification

\J
Kill SSA

\

Fiji IR
v
Const & Copy
Propagation +
CFG
Simplification

e Real-time benchmark

> Aircraft collision avoidance w. simulated radar frames
» CDc - idiomatic C

> CDj - idiomatic Java

e Real-time platform

ANIENMSENANGERNION)
> 40MHz LEON3, 64MB RAM (radiation-hardened SPARC)

Worst case |ava
Worst case C \ J

\ \ \ \ \ \ \ \ \ \ \ \ \
2050 2100 2150

Frame Number vs. Execution Time (ms)

)
£
|_

-

O
+

5

O

)

X
L1

-
0O
IS

|

)
=
O

| 00K samples | e | e
|5 GC cycles 200 20

Java Iteration Execution Time

e The choice of memory management affects productivity

e Object-oriented languages naturally hide allocation behind
abstraction barriers

> Taking care of de-allocation manually is more difficult in OO style

e Concurrent algorithms usually emphasize allocation

> because freshly allocated data is guaranteed to be thread local

» “transactional’”’ algorithms generate a lot of temporary objects

e ... but garbage collection is a global, costly, operation that
introduces unpredictability

e [f there Is no allocation, GC does not run.

> This approach is used in JavaCard

e RTS| provides scratch pad memory regions which can be used for
temporary allocation

» Used In deployed systems, but tricky as they can cause exceptions

s = new SizeEstimator();
s.reserve(Decrypt.class, 2);

shared = new LTMemory(s.getEstimate())
shared.enter(new Run(){ public void run(){
.dl = new Decrypt() ...

Py

e Mutation

N

re

[~

(O
(-

00
R

]

)
S

u

—/
()

UOOO

\$H

™\

N

e |

Garbage Collection

Phases

O /O /O 8\ » Stop-the-world

\%@F
it

Garbage Collection

Phases

® Root scanning

Garbage Collection

Phases

e Marking

Garbage Collection

Phases

O
%]

000

]

e Marking

OOO000

00
\
000D é@

000

(=g
[\
el

Garbage Collection

Phases

e Sweeping

Garbage Collection

Phases

e Sweeping

Garbage Collection

Phases

O 00000
0000000

e Compaction

Time-based GC Scheduling

Slack-based GC Scheduling

R N =
m .

GC thread
I RT thread

Java thread

® Oracle HotSpot

> fast & space bounded

> but blocking
®Oracle Java RTS

» space bounds, concurrent, wait-free

v but 60% slow-down

®|BM Websphere SRT

> 30% slow-down, concurrent, walt-free

> but susceptible to fragmentation

e Concurrent defragmentation has draw-backs

> slow down during defrag more than 5x [PizloO/,PizIo08]

A

D
O
-
S
-
| -
O
T
o)
Q

Replication-based GC

e Allows concurrent defragmentation [NettlesOToole93, ChengBlellochO]
e [wo spaces: one space for reads; writes "replicated’” to both

e ... but writes not atomic

Original

Fragmented allocation

e All objects split into small fragments [Siebert'99]
e Fragment size Is fixed at 32 bytes
e Fragments are linked, application follows links on reads

Access cost is known

Plain Qufagt statically, does not vary.

Access cost is
. logarithmic.

Most objects require only
two fragments.

e [nsight:

> replicated collectors are good immutable data

> fragmented allocation works well for fixed-size data
e Combination:

> Concurrent mark-sweep for fixed-size fragments

> Replication for array spines

e No external fragmentation, O() heap access, walt-free
& coherent

Arrays

Index in a variable sized spine... which is immutable

Data in fixed size fragments

Concurrent Replication Heap for Spines

To-space for Spines From-space for Spines

> I

Large Array?

Small Object

o

Concurrent Mark-Sweep Heap for Fragments

e A deterministic

> allocate fragmented

e C throughput

> allocate contiguously if possible

e CW worst-case for level C

> poison all fast-paths (array accesses, write barriers, allocations)

e Goal: fast

e Goal: fragmentation tolerant

e Goal: deterministic

SPECjvm98 (50MB heap)

HotSpot W

Websphere [I—_

Java RTS [N 63% slow-down
Metronome [38%
Fiji CMR [
Schism C [N 35%
A N 50%

CW | 57 %

e Goal: fast

* Goal: fragmentation tolerant

e Goal: deterministic

Torture tests

7% Tree memory allocated under fragmentation

» HotSpot:
»Java RTS: ~80%
» Metronome: ~ %

> Schism:

e Goal:fast Y

e Goal: fragmentation tolerant

e Goal: deterministic

Java vs C on CDx

< 40% slower than C

as deterministic

120

100

Millis

98.5

80

60

40

C Java
CMR Schism C

Schism CW
Schism A

References and acknowledgements

® Team

» F Pizlo, E Blanton, L Ziarek,
I Kalibera, T Hosking, P Maj,
I Cunei, M Prochazka, | Baker

® Paper trail

= Schism: Fragmentation-Tolerant Real-Time Garbage Collection. PLDI |0

= High-level Programming of Embedded Hard Real-Time Devices. EUROSYS |0
= Accurate Garbage Collection in Uncooperative Environments. CCP&EQ9

= A Study of Concurrent Real-time Garbage Collectors. PLDIOS

= Memory Management for Real-time Java: State of the Art. ISORCO8

= Hierarchical Real-time Garbage Collection. LCTESO/

