
program the

99%

Java

Objectives of this talk

After almost a decade working on real-time Java

Self-contained overview of Real-time Garbage Collection

Highlight results from Filip Pizlo’s PhD thesis
[PLDI’10, EUROSYS’10, RTSS’09, ECOOP’09, ISMM’08, PLDI’08, ISMM0’7,
 LCTES’07, CC’07, RTAS’06]

Expectations

A managed language should be <2x slower than C

Real-time support should cost <2x

Worst case performance matters

Reality After 10 years of work… FijiVM

Java Application Fiji VM compiler Native Code

Fiji Runtime

Fiji VM C1 GCC register
allocation

everything else

Bytecode Parser Fiji IR Transform &
Optimize

Fiji IR C Code Gen

Bytecode

Parser

Fiji IR

Make SSA

Fiji SSA

Const & Copy
Propagation +

CFG
Simplification

Intrinsics

Inlining

Global Value
Numbering

Kill SSA

Unroll and Peel
Loops

Make SSA

Const & Copy
Propagation +

CFG
Simplification

Fiji IR

Fiji SSA

Allocation, Lock,
Barrier Inlining

Global Value
Numbering

Whole-program
Dead Code
Elimination

Representational
Lowering

Calling
Convention
Lowering

Kill Types

Const & Copy
Propagation +

CFG
Simplification

Kill SSA

Const & Copy
Propagation +

CFG
Simplification

Generate C Code

C code

Whole-program
0CFA

Fiji IR

Reality

Real-time benchmark
Aircraft collision avoidance w. simulated radar frames
CDc - idiomatic C
CDj - idiomatic Java

Real-time platform
RTEMS 4.9.1 (hard RTOS)
40MHz LEON3, 64MB RAM (radiation-hardened SPARC)

2000 2050 2100 2150 2200

100

150

200

250

300

Worst case Java
Worst case C

Frame Number vs. Execution Time (ms)

Java Iteration Execution Time

C
Ite

ra
tio

n
Ex

ec
ut

io
n T

im
e

Correlation C/Java

100K samples
15 GC cycles

Memory management and programming models

The choice of memory management affects productivity

Object-oriented languages naturally hide allocation behind
abstraction barriers

Taking care of de-allocation manually is more difficult in OO style

Concurrent algorithms usually emphasize allocation

because freshly allocated data is guaranteed to be thread local

“transactional” algorithms generate a lot of temporary objects

… but garbage collection is a global, costly, operation that
introduces unpredictability

Alternative 1: No Allocation

If there is no allocation, GC does not run.

This approach is used in JavaCard

Alt 2: Allocation in Scoped Memory

RTSJ provides scratch pad memory regions which can be used for
temporary allocation

Used in deployed systems, but tricky as they can cause exceptions

s = new SizeEstimator();
s.reserve(Decrypt.class, 2);
…
shared = new LTMemory(s.getEstimate());
shared.enter(new Run(){ public void run(){
 ...d1 = new Decrypt() ...
}});

1

GC is easy*

* good performance is hard

Garbage Collection: Mark & Sweep

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

2

RTGC is easy*

* good performance is harder

Incrementalizing marking

Collector marks object

Application updates
reference field

Compiler inserted
write barrier marks object

Time-based GC Scheduling

GC thread

RT thread

Java thread

Slack-based GC Scheduling

GC thread
RT thread

Java thread

3

Compaction is easy*

* that’s a lie

State of the art

Oracle HotSpot

fast & space bounded
but blocking

Oracle Java RTS

space bounds, concurrent, wait-free
but 60% slow-down

IBM Websphere SRT

30% slow-down, concurrent, wait-free
but susceptible to fragmentation

Minimizing
fragmentation

Previous Work

On-demand Defragmentation

Concurrent defragmentation has draw-backs

slow down during defrag more than 5x [Pizlo07,Pizlo08]

timepe
rfo

rm
an

ce

Defrag
starts

Defrag
ends

Replica

Replication-based GC

Allows concurrent defragmentation [NettlesOToole93, ChengBlelloch01]

Two spaces: one space for reads; writes “replicated” to both

… but writes not atomic

Original
Object

Copying

Read Write

Fragmented allocation

All objects split into small fragments [Siebert’99]

Fragment size is fixed at 32 bytes

Fragments are linked, application follows links on reads

Plain ObjectArray

Most objects require only
two fragments.

Access cost is known
statically, does not vary.

Access cost is
logarithmic.

Schism
[PLDI’10]

Schism = CM&S + Replication + Fragments

Insight:
replicated collectors are good immutable data
fragmented allocation works well for fixed-size data

Combination:
Concurrent mark-sweep for fixed-size fragments
Replication for array spines

No external fragmentation, O(1) heap access, wait-free
& coherent

Spine

Arrays

Data in fixed size fragments

Index in a variable sized spine… which is immutable

Concurrent Mark-Sweep Heap for Fragments

To-space for Spines From-space for Spines

Small Object

Large Array?

Concurrent Replication Heap for Spines

Proof ?

Tunable throughput/predictability trade-off

A deterministic

allocate fragmented

C throughput

allocate contiguously if possible

CW worst-case for level C

poison all fast-paths (array accesses, write barriers, allocations)

Summary of Results

Goal: fast

Goal: fragmentation tolerant

Goal: deterministic

SPECjvm98 (50MB heap)

HotSpot 1.6 Server

IBM J9

Sun Java RTS 2.1

IBM Metronome SRT

Fiji VM CMR

Fiji VM Schism/cmr level C

Fiji VM Schism/cmr level A

Fiji VM Schism/cmr level CW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Throughput relative to HotSpot 1.6 Server
(More is Better)

HotSpot
Websphere

Java RTS
Metronome

Fiji CMR
Schism C

 A
 CW

63% slow-down
38%

35%
50%

57%

Non Real Time

Summary of Results

Goal: fast

Goal: fragmentation tolerant

Goal: deterministic

✓

Torture tests

% free memory allocated under fragmentation
HotSpot: 100%

Java RTS: ~80%
Metronome: ~1%
Schism: 100%

Summary of Results

Goal: fast

Goal: fragmentation tolerant

Goal: deterministic

✓

✓

40

60

80

100

120

Java vs C on CDx
M

illi
s

C Java
CMR Schism C

Schism CW
Schism A

70.5

98.5

 < 40% slower than C
as deterministic

References and acknowledgements

Team

F Pizlo, E Blanton, L Ziarek,
T Kalibera, T Hosking, P Maj,
T Cunei, M Prochazka, J Baker

Paper trail

Schism: Fragmentation-Tolerant Real-Time Garbage Collection. PLDI10
High-level Programming of Embedded Hard Real-Time Devices. EUROSYS10
Accurate Garbage Collection in Uncooperative Environments. CCP&E09
A Study of Concurrent Real-time Garbage Collectors. PLDI08
Memory Management for Real-time Java: State of the Art. ISORC08
Hierarchical Real-time Garbage Collection. LCTES07

