
 Precision Timed Infrastructure

David Broman
broman@eecs.berkeley.edu

UC Berkeley and
Linköping University

IHI Meeting

February 20, 2013

PRET Infrastructure at Berkeley
Edward A. Lee
Aviral Shrivastava
Chris Shaver
Michael Zimmer

PRET Machine Collaborators and Alumni
Steven A. Edwards
Jeff Jensen
Sungjun Kim

Jan Reineke
Sanjit Seshia
Jia Zou

David Broman
Jian Cai
Hokeun Kim
Yooseong Kim

Isaac Liu
Slobadan Matic
Hiren Patel

2

broman@eecs.berkeley.edu

A Story…

Success?

They have to purchase and store
microprocessors for at least 50 years
production and maintenance…

Fly-by-wire technology
controlled by software.

Why?

Apparently, the software does not
specify the behaviour that has
been validated and certified!

Safety critical "
Rigorous validation and certification

3

broman@eecs.berkeley.edu

What is PRET?

Timing is not part of the software semantics
 Correct execution of programs (e.g., in C, C++, C#, Java, Scala,
Haskell, OCaml) has nothing to do with how long time things
takes to execute.

Programming
Model

Timing Dependent on the
Hardware Platform

Make time an abstraction within the
programming model

Traditional Approach

Programming
Model

Our Objective

Timing is independent of the hardware
platform (within certain constraints)

4

broman@eecs.berkeley.edu

What is Precision Timed (PRET) Infrastructure?

PRET Infrastructure

•  PRET Machine (Computer Architecture)

•  PRET Compiler (Timing aware compilation)

•  PRET Language (Language with timing semantics)

A vision of making time first class citizen in both software
and hardware.

5

broman@eecs.berkeley.edu

What do mean by precision, predictable,
and repeatable timing?

Task
(clock cycles)

Focus on cyber-physical systems with real-time constraints

Time
(measured in e.g., ns)

Deadline

Hard task Firm task Soft task
Missed
deadline

Catastrophic
consequence

Result is useless, but
causes no damage

Result has still
some utility

Processor
frequency

Late miss
detection

Immediate miss
detection

Early miss
detection

Precision of timing
! Enable accuracy in

nano seconds

Repeatable timing
! Same platform: Testability
! Changing platform: Portability

Predictable timing
! Guarantee

correctness
(WCET)

6

broman@eecs.berkeley.edu

Languages with timing semantics

Modeling
Languages

Programming
Languages

Assembly
Languages

PRET-C
(Andalam et al., 2009)

Real-time Concurrent C
(Gehani and Ramamritham, 1991)

The assembly languages for todays
processors lack the notion of time

Giotto
(Henzinger, Horowitz,

and Kirsch, 2003)

Modelyze
(Broman and
Siek, 2012)

Ptolemy II
(Eker et al., 2003)

Simulink/
Stateflow
(Mathworks)

Modelica
(Modelica

Associations)

7

broman@eecs.berkeley.edu

Precision Timed Machine

Rethink the ISA
Timing has to be a correctness property not only
a performance (quality) property

PRET Machine

•  Timing instructions for handling
missed deadline detection

•  Repeatable memory access time

•  Repeatable and predictable execution time

Photo by Andrew Dunn, 2005

8

broman@eecs.berkeley.edu

PRET Infrastructure

Modeling
Languages

Programming
Languages

Assembly
Languages

Giotto
(Henzinger, Horowitz,

and Kirsch, 2003)

Modelyze
(Broman and
Siek, 2012)

Ptolemy II
(Eker et al., 2003)

Simulink/
Stateflow
(Mathworks)

Modelica
(Modelica

Associations)

Semantic gap between
timed high level modeling
languages and PRET ISA

PRET
ISA

9

broman@eecs.berkeley.edu

PRET Infrastructure

Modeling
Languages

Programming
Languages

Assembly
Languages

Giotto
(Henzinger, Horowitz,

and Kirsch, 2003)

Modelyze
(Broman and
Siek, 2012)

Ptolemy II
(Eker et al., 2003)

Simulink/
Stateflow
(Mathworks)

Modelica
(Modelica

Associations)

Can we just compile
directly down to PTARM?

Lots of redundant work…

PRET
ISA

10

broman@eecs.berkeley.edu

PRETIL vision

Modeling
Languages

Programming
Languages

Assembly
Languages

Giotto
(Henzinger, Horowitz,

and Kirsch, 2003)

Modelyze
(Broman and
Siek, 2012)

Ptolemy II
(Eker et al., 2003)

Simulink/
Stateflow
(Mathworks)

Modelica
(Modelica

Associations)

PRET
ISA

PRETIL
- Abstracting away memory the hierarchy
 (scratchpad, DRAM etc.)

- Expose timing constructs

ptC

C extended with high-
level timing constructs.

Can be seen both as an intermediate
and programming language

E machine
(Henzinger, and

Kirsch, 2007)

11

broman@eecs.berkeley.edu

PRETIL vision

Modeling
Languages

Programming
Languages

Assembly
Languages

Giotto
(Henzinger, Horowitz,

and Kirsch, 2003)

Modelyze
(Broman and
Siek, 2012)

Ptolemy II
(Eker et al., 2003)

Simulink/
Stateflow
(Mathworks)

Modelica
(Modelica

Associations)

PRET
ISA

PRETIL
- Abstracting away memory the hierarchy
 (scratchpad, DRAM etc.)

- Expose timing constructs

ptC

C extended with high-
level timing constructs.

Can be seen both as an intermediate
and programming language

E machine
(Henzinger, and

Kirsch, 2007)

Compilation of
high-level languages
with timing semantics

Compilation of
high-level languages
with timing semantics

Intermediate language
based on LLVM,

extended with timing
semantics

Precise Clock
Synchronization

Flexible PRET
Machines

WCET Analysis and
WCET-aware Compilation

WCET-Aware
Scratchpad allocation

High-level languages with
Timing semantics

Intermediate language with
Timing semantics

