
Specification Mining for Cyber-
physical Systems

Alexandre	 Donzé	 and	 Sanjit	 Seshia	 (UCB),	 	
Xiaoqing	 Jin	 (UCR),	 Jyo9rmoy	 Deshmukh	 (Toyota)	 	

Problem formulation
What specifications does this system satisfy ?

•  Documentation of legacy code/model

•  Mining specifications of prototype models can lead to bugs or undesired
behaviors discoveries

Figure 1: The closed-loop Simulink model of an au-
tomatic transmission controller. The input to the
model is the throttle position and the brake torque.

The rest of the paper is as follows: In Sec. 2, we present a
transmission controller as a running example. Sec. 3 presents
the background, the problem formulation and an overview
of our technique. We discuss our approach for finding coun-
terexamples to candidate requirements in Sec. 4, and synthe-
sizing parameter values for templates in Sec. 5. We present
two case studies and experimental results for each in Sec. 6,
and conclude with related work in Sec. 7.

2. A RUNNING EXAMPLE
As an illustrative example throughout the paper, we con-

sider a closed-loop model designed for a four-speed auto-
matic transmission controller of a vehicle (shown in Fig. 1).
Although this model is not a real industrial model, it has all
necessary mechanical components: models for the engine,
the transmission, and the vehicle. The transmission block
computes the transmission ratio (Ti) using the current gear
status, and computes the output torque from the engine
speed (Ne), the gear status and the transmission RPM. The
other two blocks represent the gear shift logic and the related
threshold speed calculation. The model has two inputs: (1)
the percentage of the throttle position, and (2) the brake

torque.
We are interested in the following signals: the vehicle

speed, transmission gear position, and engine speed mea-
sured in RPM (rotations per minute). Suppose we want to
use this controller to ensure the requirement that the engine
speed never exceeds 4500 rpm, and that the vehicle never
drives faster than 120 mph. After simulating the closed-
loop system we can show that these requirements are not
met, as illustrated in Fig. 2.

However, this negative result does not provide further in-
sight into the model. If a requirement does not hold, we
would like to know what does hold for the controller, and
how narrowly the controller misses the requirement. Such
a characterization would shed more light on the working of
the system, especially in the context of legacy systems and
for reverse engineering the behavior of a very complex sys-
tem. In the context of this example, it would help to know
the maximum speed and RPM that the model can reach, or
the minimum dwell time that the transmission enforces to
avoid frequent gear shifts. In the next section, we present
a technique to automatically obtain such requirements from
the model.

0 5 10 15 20 25 30
0

50

100
Throttle

0 5 10 15 20 25 30
0

2000

4000

6000
RPM

0 5 10 15 20 25 30
0

50

100

150
Speed

Violation

Violation

Figure 2: Falsifying trace for the automatic trans-
mission controller and the requirement that RPM
never goes beyond 4500 or speed beyond 120 mph.

3. PRELIMINARIES AND OVERVIEW

3.1 Signals and Systems
The systems considered in this paper are hybrid dynami-

cal systems, that is systems mixing discrete dynamics (such
as the shifting logic of gears) and continuous dynamics (such
as the rotational dynamics of the car engine). Additionally,
the systems are closed-loop, meaning that they are obtained
by composing a controller and a plant in a loop.1

We define a signal as a function mapping the time domain
T = R�0 to the reals R. Boolean signals, used to represent
discrete dynamics, are signals whose values are restricted to
false (denoted ?) and true (denoted >). Vectors in Rn with
n > 1 are denoted in bold fonts and their components are
indexed from 1 to n, e.g., p = (p1, · · · , pn). Likewise, a
multi-dimensional signal x is a function from T to Rn such
that 8t 2 T, x(t) = (x1(t), · · · , xn(t)). A system S (such
as a Simulink model) is an input-output state machine: it
takes as input a signal u(t) and computes an output signal
x(t) = S(u(t)). It is common to drop time t, and say x =
S(u). A trace is a collection of output signals resulting from
the simulation of a system, i.e., it can be viewed as a multi-
dimensional signal. In the following, we use interchangeably
the words trace and signal.

3.2 Signal Temporal Logic
Temporal logics were introduced in the late 1970s [24]

to reason formally about the temporal behaviors of reac-
tive systems – originally input-output systems with Boolean,
discrete-time signals. Temporal logics to reason about real-
time signals, such as Timed Propositional Temporal Logic
[2], and Metric Temporal Logic (MTL) [17] were introduced
later to deal with dense-time signals. More recently, Signal
Temporal Logic [20] was proposed in the context of analog
and mixed-signal circuits as a specification language for con-
straints on real-valued signals. These constraints, or predi-
cates can be reduced to the form µ = f(x) ⇠ ⇡, where f is
a scalar-valued function over the signal x, ⇠2 {<,,�, >

,=, 6=}, and ⇡ is a real number.
Temporal formulas are formed using temporal operators,

“always” (denoted as 2), “eventually” (denoted as 3) and
“until” (denoted as U). Each temporal operator is indexed
by intervals of the form (a, b), (a, b], [a, b), [a, b], (a,1) or
[a,1) where each of a, b is a non-negative real-valued con-

1Note that such systems can have exogenous inputs, e.g.
a human controlling brakes provides inputs to the vehicle
engine and controller system. The term “closed-loop” di↵ers
from “closed systems,” which are systems with no inputs.

Formalizing Specifications
Parametric Signal Temporal Logic (PSTL)

•  “The speed never exceeds 120 and RPM never exceeds 4500”

 where, e.g.,

•  “Eventually between time 0 and some unspecified time τ1, the signal x is less

than some value π1, and from that point for some τ2 seconds, it remains less
than some value π2 “

•  “Whenever the system shifts to gear 2, it dwells in gear 2 for at least τ seconds”

a synthesized requirement matching the template. In our
current implementation, we assume that the model is speci-
fied in Simulink [21], an industry-wide standard that is able
to: (1) express complex dynamics (di↵erential and algebraic
equations), (2) capture discrete state-machine behavior by
allowing both Boolean and real-valued variables, (3) allow a
layered design approach through modularity and hierarchi-
cal composition, and (4) perform high-fidelity simulations.
We remark that our technique is not restricted to Simulink
models; in principle, it is applicable in any setting where the
closed-loop system can be simulated, e.g., hardware-in-the-
loop simulations, and tests on the physical system.

Formalisms such as Metric Temporal Logic (MTL) [2,17],
and later Parametric Signal Temporal Logic (PSTL) [6] have
emerged as logics well-suited to capture both the real-valued
and time-varying behaviors of hybrid control systems. As
PSTL is equipped with parameters, properties in PSTL nat-
urally express template requirements. As an example, con-
sider the following natural language specification: “eventu-
ally between time 0 and some unspecified time ⌧1, the signal
x is less than some value ⇡1, and from that point for some
⌧2 seconds, it remains less than some value ⇡2”. In PSTL
the above property would be expressed as:

3[0,⌧1](x < ⇡1 ^ 2[0,⌧2](x < ⇡2)).

Here, we interpret the unspecified values ⌧1, ⌧2,⇡1,⇡2 as pa-
rameters. The subset of PSTL with no parameters is re-
ferred to as STL. Robust satisfaction of MTL formulas [13]
and quantitative semantics for PSTL [11] allow reasoning
about how “close” a system behavior is to satisfying a given
specification. Intuitively, a lower satisfaction value corre-
sponds to a stronger property, making it easier for a behav-
ior to violate the property.

The proposed mining algorithm is an iterative procedure;
in each iteration, it performs the following steps:

1. In the first step, the algorithm synthesizes a candidate re-
quirement from a given PSTL template and a set of sim-
ulation traces of the model. The candidate requirement
is the strongest STL property satisfied by the given set of
traces. It is obtained by instantiating the PSTL template
with the parameter values that minimize the satisfaction
value of the PSTL property over the given traces.

2. It then tries to falsify the candidate requirement using a
global optimization-based search, such as using stochastic-
search within the tool S-Taliro [5].

3. If the falsification tool finds a counterexample, we add
this trace to the existing set of simulation traces, and go
to Step 1 of the next iteration. If no counterexample is
found, the algorithm terminates.

At the heart of Step 1 is an e�cient search over the space
defined by the parameters in the PSTL property in order to
generate a candidate requirement. For this purpose, we use
the Breach tool [9]. If the number of parameters is n, a
näıve search strategy in the parameter space would have an
exponential cost in n.
However, we observe that the satisfaction values of certain

PSTL properties are monotonic in their parameter values.
For example, consider the property � = 3[0,⌧](x > ⇡). Sup-
pose that the minimum value of a given trace x(t) is 3, then,
starting from a value less than 3, as ⇡ increases, the prop-
erty � becomes a stronger assertion for the trace x(t), i.e., its
satisfaction value decreases. Finally, when ⇡ exceeds 3, the
satisfaction value becomes negative, i.e., � no longer holds

for x(t). Thus, we can say that the satisfaction value of �
monotonically decreases in the parameter ⇡. Similarly, the
satisfaction value of � monotonically increases in ⌧ . When
monotonicity holds, we can get exponential savings when
searching over the parameter-space by using methods like
binary search. Though syntactic rules for polarity of a PSTL
property identified in previous work [6] ensure satisfaction
monotonicity, these rules are not complete. Hence, we pro-
vide a general way of reasoning about monotonicity of arbi-
trary PSTL properties using Satisfiability-Modulo-Theories
(SMT) solving [7].
In this paper, we explore two applications for requirement

mining. The first application is the obvious one: to gener-
ate requirements that serve as high-level specifications for
the closed-loop model. In an industrial setting, formalized
requirements that can be used for design validation are often
unavailable. For example, consider the case of legacy con-
troller code. Such code usually goes through several years
of refinement, is developed in a non-formal setting, and is
not very easy to understand for any engineers other than
its original developers. In this context, mined requirements
can enhance understanding of the code and help future code
maintenance. The second application explores the use of
mining as an enhanced bug-finding procedure. Suppose we
wish to check if the model behavior ever has a signal that
oscillates with an amplitude greater than a threshold. Con-
sidering the huge space of input signals, simply running tests
on the closed-loop model is unlikely to detect such behavior.
We instead attempt to mine the requirement, “the signal set-
tles to a steady value ⇡ in time ⌧” (roughly corresponding
to the negation of the original property). In each step, our
algorithm pushes the trajectory-space exploration of the fal-
sification tool in a region not already subsumed by existing
traces. Hence, the search for a counterexample is guided by
the intermediate candidate requirements. Note that state-
of-the-art falsifiers such as S-Taliro would require a con-
crete STL property encoding the oscillation behavior, which
would require tedious manual e↵ort given many possible ex-
pressions of such behavior arising from unknowns such as
the oscillation amplitude, frequency, and the time at which
oscillations start.
To summarize, our contributions are as follows:

1. We propose a novel counterexample-guided iterative pro-
cedure for mining temporal requirements satisfied by sig-
nals of interest of an industrial-scale closed-loop control
model. Specifically, we target the mining of properties
expressible in PSTL.

2. We extend Breach to support Simulink models and the
falsification of STL formulas. In addition we enhance the
Breach tool framework with e�cient strategies for syn-
thesizing parameters of monotonic PSTL properties. To
extend the range of formulas for which we can prove mono-
tonicity, and hence apply these strategies, we formulate
the query for monotonicity in a fragment of first order
logic with quantifiers, real arithmetic and uninterpreted
functions, and use an SMT solver to answer the query.

3. We demonstrate the practical applicability of our tech-
nique in two case studies: (a) a simple automatic trans-
mission controller, and (b) an industrial closed-loop model
of the airpath-control in an automobile engine model. We
also demonstrate the use of the mining technique as a bug-
finding tool, showing how it found a bug in the industrial
model that was confirmed by a designer.

stant. If I is an interval, then an STL formula is written
using the following grammar:

' := > | µ | ¬' | '1 ^ '2 | '1 UI '2

The always and eventually operators are defined as spe-
cial cases of the until operator as follows: 2I' , ¬3I¬',
3I' , >UI '. When the interval I is omitted, we use the
default interval of [0,+1). The semantics of STL formu-
las are defined informally as follows. The signal x satisfies
f(x) > 10 at time t (where t � 0) if f(x(t)) > 10. It satisfies
' = 2[0,2) (x > �1) if for all time 0 t < 2, x(t) > �1.
The signal x1 satisfies ' = 3[1,2) x1 > 0.4 i↵ there exists
time t such that 1 t < 2 and x1(t) > 0.4. The two-
dimensional signal x = (x1, x2) satisfies the formula ' =
(x1 > 10) U[2.3,4.5] (x2 < 1) i↵ there is some time u where
2.3 u 4.5 and x2(u) < 1, and for all time v in [2.3, u),
x1(u) is greater than 10. Formally, the semantics are given
as follows:

(x, t) |= µ i↵ x satisfies µ at time t

(x, t) |= ¬' i↵ (x, t) |=/ '

(x, t) |= '1 ^ '2 i↵ (x, t) |= '1 and (x, t) |= '2

(x, t) |= '1 U[a,b] '2 i↵ 9t0 2 [t+ a, t+ b] s.t.
(x, t0) |= '2 and
8t00 2 [t+ a, t

0], (x, t00) |= '1

Extension of the above semantics to other kinds of inter-
vals (open, open-closed, and closed-open) is straightforward.
We write x |= ' as a shorthand of (x, 0) |= '.

Parametric Signal Temporal Logic (PSTL) [6] is an exten-
sion of STL introduced to define template formulas contain-
ing unknown parameters. Syntactically speaking, a PSTL
formula is an STL formula where numeric constants, either
in the constraints given by the predicates µ or in the time
intervals of the temporal operators, can be replaced by sym-
bolic parameters divided into two types:

• A Scale parameter ⇡ is a parameter appearing in predi-
cates of the form µ = f(x) ⇠ ⇡,

• A Time parameter ⌧ is a parameter appearing in an in-
terval of a temporal operator.

An STL formula is obtained by pairing a PSTL formula
with a valuation function that assigns a value to each sym-
bolic parameter. For example, consider the PSTL formula
'(⇡, ⌧) = 2[0,⌧]x > ⇡, with symbolic parameters ⇡ (scale)
and ⌧ (time). The STL formula 2[0,10]x > 1.2 is an instance
of ' obtained with the valuation v = {⌧ 7! 10, ⇡ 7! 1.2}.

Example 3.1. For the example from Sec. 2, suppose we
want to specify that the speed never exceeds 120 and RPM

never exceeds 4500. The predicate specifying that the speed is
above 120 is: speed>120 and the one for RPM is RPM>4500.
The STL formula expressing these to be always false is:

 = 2(speed 120) ^ 2(RPM 4500). (3.1)

To turn this into a PSTL formula, we rewrite by intro-
ducing parameters ⇡speed and ⇡RPM :

'(⇡speed ,⇡rpm) = 2(speed ⇡speed)^2(RPM ⇡rpm). (3.2)

The STL formula expressed in (3.1) is then obtained
by using the valuation v = (⇡

speed

7! 120,⇡rpm 7! 4500).
formulation.

Problem 3.1. Given (a) a system S with a set U of in-
puts, and, (b) a PSTL formula with n symbolic parameters
'(p1, . . . , pn) where pi could either be scale parameter ⇡ or

Simulink
Model

+
Controller

Plant

Model

e u

y

FindParam

Counter-

example

Traces

Simulation

Traces

Candidate

Requirement

FalsifyAlgo

2[0,⌧1](x1 < ⇡1 ^
3[0,⌧2](x2 > ⇡2))

Template Requirement

2[0,1.1](x1 < 3.2 ^
3[0,5](x2 > 0.1))

Inferred Requirement

Counter-

example

Found

No Counterexample

Figure 3: Flowchart for Requirement Mining

time parameter ⌧ , the objective is to find a tight valuation
function v such that

8u 2 U : S(u) |= '(v(p1), . . . , v(pn)).

Our focus on “tight valuations” is to avoid mining trivial
requirements or requirements that are overly conservative,
e.g. “the car cannot go faster than the speed of light.” We
make this notion more precise in Section 5.1.

3.3 Requirement Mining Algorithm: Overview
Our algorithm for mining STL requirements from the closed-

loop model in Simulink is an instance of a counterexample-
guided inductive synthesis procedure [29], shown in Fig. 3.
It consists of two key components:

1. A falsification engine, which, given a formula ' generates
an input u such that x(t) = S(u)(t) |=/ ' if there ex-
ists such a u, and returns ? otherwise. We denote this
functionality by FalsifyAlgo.

2. A synthesis function denoted FindParam that given a
set of traces x1, . . . ,xk, finds parameters p such that 8i,
xi |= '(p). We denote this function by FindParam.

4. FALSIFICATION PROBLEM
Recall that we need to implement a function

x = FalsifyAlgo(S,')
such that x is a valid output signal of a system S and x |=/ '.
Unfortunately, this is an undecidable problem for general
hybrid systems; letting ' be a simple safety property estab-
lishes a reduction from the reachability problem for general
hybrid systems, which is undecidable except for subclasses
such as initialized rectangular hybrid automata [16]. For
the latter subclasses the mining technique can be complete,
i.e., absence of a counterexample means that we have found
the strongest requirement. However, in general the falsifica-
tion tool may not be able to find a counterexample though
one exists. We argue that a requirement mined in this fash-
ion is still useful as it is something that FalsifyAlgo is
unable to disprove even after extensive simulations, and is
thus likely to be close to the actual requirement. An alterna-
tive is to use a sound verification tool that employs abstrac-
tion [15, 30]; however, in our experience, these tools have

stant. If I is an interval, then an STL formula is written
using the following grammar:

' := > | µ | ¬' | '1 ^ '2 | '1 UI '2

The always and eventually operators are defined as spe-
cial cases of the until operator as follows: 2I' , ¬3I¬',
3I' , >UI '. When the interval I is omitted, we use the
default interval of [0,+1). The semantics of STL formu-
las are defined informally as follows. The signal x satisfies
f(x) > 10 at time t (where t � 0) if f(x(t)) > 10. It satisfies
' = 2[0,2) (x > �1) if for all time 0 t < 2, x(t) > �1.
The signal x1 satisfies ' = 3[1,2) x1 > 0.4 i↵ there exists
time t such that 1 t < 2 and x1(t) > 0.4. The two-
dimensional signal x = (x1, x2) satisfies the formula ' =
(x1 > 10) U[2.3,4.5] (x2 < 1) i↵ there is some time u where
2.3 u 4.5 and x2(u) < 1, and for all time v in [2.3, u),
x1(u) is greater than 10. Formally, the semantics are given
as follows:

(x, t) |= µ i↵ x satisfies µ at time t

(x, t) |= ¬' i↵ (x, t) |=/ '

(x, t) |= '1 ^ '2 i↵ (x, t) |= '1 and (x, t) |= '2

(x, t) |= '1 U[a,b] '2 i↵ 9t0 2 [t+ a, t+ b] s.t.
(x, t0) |= '2 and
8t00 2 [t+ a, t

0], (x, t00) |= '1

Extension of the above semantics to other kinds of inter-
vals (open, open-closed, and closed-open) is straightforward.
We write x |= ' as a shorthand of (x, 0) |= '.

Parametric Signal Temporal Logic (PSTL) [6] is an exten-
sion of STL introduced to define template formulas contain-
ing unknown parameters. Syntactically speaking, a PSTL
formula is an STL formula where numeric constants, either
in the constraints given by the predicates µ or in the time
intervals of the temporal operators, can be replaced by sym-
bolic parameters divided into two types:

• A Scale parameter ⇡ is a parameter appearing in predi-
cates of the form µ = f(x) ⇠ ⇡,

• A Time parameter ⌧ is a parameter appearing in an in-
terval of a temporal operator.

An STL formula is obtained by pairing a PSTL formula
with a valuation function that assigns a value to each sym-
bolic parameter. For example, consider the PSTL formula
'(⇡, ⌧) = 2[0,⌧]x > ⇡, with symbolic parameters ⇡ (scale)
and ⌧ (time). The STL formula 2[0,10]x > 1.2 is an instance
of ' obtained with the valuation v = {⌧ 7! 10, ⇡ 7! 1.2}.

Example 3.1. For the example from Sec. 2, suppose we
want to specify that the speed never exceeds 120 and RPM

never exceeds 4500. The predicate specifying that the speed is
above 120 is: speed>120 and the one for RPM is RPM>4500.
The STL formula expressing these to be always false is:

 = 2(speed 120) ^ 2(RPM 4500). (3.1)

To turn this into a PSTL formula, we rewrite by intro-
ducing parameters ⇡speed and ⇡RPM :

'(⇡speed ,⇡rpm) = 2(speed ⇡speed)^2(RPM ⇡rpm). (3.2)

The STL formula expressed in (3.1) is then obtained
by using the valuation v = (⇡

speed

7! 120,⇡rpm 7! 4500).
formulation.

Problem 3.1. Given (a) a system S with a set U of in-
puts, and, (b) a PSTL formula with n symbolic parameters
'(p1, . . . , pn) where pi could either be scale parameter ⇡ or

Simulink
Model

+
Controller

Plant

Model

e u

y

FindParam

Counter-

example

Traces

Simulation

Traces

Candidate

Requirement

FalsifyAlgo

2[0,⌧1](x1 < ⇡1 ^
3[0,⌧2](x2 > ⇡2))

Template Requirement

2[0,1.1](x1 < 3.2 ^
3[0,5](x2 > 0.1))

Inferred Requirement

Counter-

example

Found

No Counterexample

Figure 3: Flowchart for Requirement Mining

time parameter ⌧ , the objective is to find a tight valuation
function v such that

8u 2 U : S(u) |= '(v(p1), . . . , v(pn)).

Our focus on “tight valuations” is to avoid mining trivial
requirements or requirements that are overly conservative,
e.g. “the car cannot go faster than the speed of light.” We
make this notion more precise in Section 5.1.

3.3 Requirement Mining Algorithm: Overview
Our algorithm for mining STL requirements from the closed-

loop model in Simulink is an instance of a counterexample-
guided inductive synthesis procedure [29], shown in Fig. 3.
It consists of two key components:

1. A falsification engine, which, given a formula ' generates
an input u such that x(t) = S(u)(t) |=/ ' if there ex-
ists such a u, and returns ? otherwise. We denote this
functionality by FalsifyAlgo.

2. A synthesis function denoted FindParam that given a
set of traces x1, . . . ,xk, finds parameters p such that 8i,
xi |= '(p). We denote this function by FindParam.

4. FALSIFICATION PROBLEM
Recall that we need to implement a function

x = FalsifyAlgo(S,')
such that x is a valid output signal of a system S and x |=/ '.
Unfortunately, this is an undecidable problem for general
hybrid systems; letting ' be a simple safety property estab-
lishes a reduction from the reachability problem for general
hybrid systems, which is undecidable except for subclasses
such as initialized rectangular hybrid automata [16]. For
the latter subclasses the mining technique can be complete,
i.e., absence of a counterexample means that we have found
the strongest requirement. However, in general the falsifica-
tion tool may not be able to find a counterexample though
one exists. We argue that a requirement mined in this fash-
ion is still useful as it is something that FalsifyAlgo is
unable to disprove even after extensive simulations, and is
thus likely to be close to the actual requirement. An alterna-
tive is to use a sound verification tool that employs abstrac-
tion [15, 30]; however, in our experience, these tools have

S-Taliro-based falsification Breach-based falsification

Template Parameter values Fals. Synth. #Sim. Sat./x Parameter values Fals. Synth. #Sim. Sat./x

'
sp_rpm

(⇡1,⇡2) (155 mph, 4858 rpm) 55 s 12 s 255 0.004 s (155 mph, 4858 rpm) 197.2 s 23.1 s 496 0.043 s

'
rpm100

(⇡, ⌧) (3278.3 rpm, 49.91 s) 6422 s 26.5 s 9519 0.327 s (3273 rpm, 49.92 s) 267.7 s 10.51 s 709 0.026 s

'
rpm100

(⌧,⇡) (4997 rpm, 12.20 s) 8554 s 53.8 s 18284 0.149 s (4997 rpm, 12.20 s) 147.8 s 5.188 s 411 0.021 s

'
stay

(⇡) 1.79 s 18886 s 0.868 s 130 147.2 s 0.102 s 430.9 s 2.157 s 1015 0.032 s

Table 2: Results on mining for the automatic transmission control model. We compare runs of the mining
algorithm using either S-Taliro or Breach as falsifiers. In each case and for each template formula, we give
the parameters valuations found, the time spent in falsification and in parameter synthesis, the number of
simulations and the averaged time spent computing the quantitative satisfaction of the formula by one trace.

If either of these queries is unsatisfiable, then it means
that satisfaction of ' is indeed monotonic in ⌧ . If both
queries are satisfiable, then it means that there is an inter-
pretation for the (uninterpreted) function representing the
signal x and valuations for ⌧, ⌧ 0 which demonstrate the non-
monotonicity of '. We conclude by presenting a small sam-
ple of formulas for which we could prove or disprove mono-
tonicity using the Z3 SMT solver [8] in Table 1. The symbols
+, –, and * represent monotonically increasing, decreasing
and non-monotonic formulas respectively.

6. CASE STUDIES
In what follows, we present our evaluation of both S-

Taliro and an extension of Breach for falsification. We
also show the performance of the parameter synthesis al-
gorithm implemented with the robust satisfaction engine
of Breach. We use the transmission controller model to
benchmark the di↵erent options within our approach.

6.1 Automatic Transmission Model
For the model described in Sec. 2, we tested di↵erent tem-

plate requirements:

1. Requirement '
sp_rpm

(⇡1,⇡2) specifying that always the speed
is below ⇡1 and RPM is below ⇡2 :

2 ((speed < ⇡1) ^ (RPM < ⇡2)) .

2. Requirement '
rpm100

(⌧,⇡) specifying that the vehicle can-
not reach the speed of 100 mph in ⌧ seconds with RPM

always below ⇡:

¬(3[0,⌧](speed > 100) ^ 2(RPM < ⇡)).

3. Requirement '
stay

(⌧) specifying that whenever the system
shifts to gear 2, it dwells in gear 2 for at least ⌧ seconds:

2

✓✓
gear 6= 2 ^
3[0,"]gear = 2

◆
) 2[",⌧]gear = 2

◆
.

Here, the left-hand-side of the implication captures the
event of the transition from gear 2 to another gear. The
operator 3[0,"] here is an MTL substitute for a next-time
operator. With dense time semantics, " should be an in-
finitesimal quantity, but in practice, we use a value close
to the simulation time-step.

The above requirements have strong correlation with the
quality of the controller. The first is a safety requirement
characterizing the operating region for the engine parame-
ters speed and RPM. The second is a measure of the perfor-
mance of the closed loop system. By mining values for ⌧ , we
can determine how fast the vehicle can reach a certain speed,
while by mining ⇡ we find the lowest RPM needed to reach

this speed. The third requirement encodes undesirable tran-
sient shifting of gears. Rapid shifting causes abrupt output
torque changes leading to a jerky ride.

Results on the mined specifications are given in Table 2.
We used the Z3 SMT solver [8] to show that all of the require-
ments were monotonic. As expected, the FindParam algo-
rithm takes only a fraction of the total time in the entire
mining process. For the second template, we tried two pos-
sible orderings for the parameters. By prioritizing the time
parameter ⌧ , we obtained the �-tight requirement that the
vehicle cannot reach 100 mph in less than 12.2s (we set �

to 0.1). As the requirement mined is �-tight, it means that
we found a trace for which the vehicle reaches 100 mph in
12.3 s. Similarly, by prioritizing the scale parameter ⇡, we
found that the vehicle could reach 100 mph in 50s keeping
the RPM below 3278 (� = 5 in that case). For the third re-
quirement, we found that the transmission controller could
trigger a transient shift as short as 0.112s. This corresponds
to the up-shifting sequence 1-2-3. Using a variant of the
requirement (not shown here), we verified that a (definitely
undesirable) short transient sequence of the form 1-2-1 or
3-2-3 was not possible.

The comparison between S-Taliro and Breach falsi-
fiers shows better overall performance with the extended
Breach-based falsifier, in the sense that it found stronger
requirements using less number of simulations and computa-
tional time. However, we cannot conclude that the new fal-
sifier will always outperform S-Taliro, due to the stochas-
tic nature of the problem and a lack of thorough compar-
ison with the di↵erent flavors of optimization used within
S-Taliro. Based on results shown in Table 2 and our expe-
rience, we make some observations:

• The space of input signals needs to be parameterized with
a sensible number of signal-parameters. If too many param-
eters are used, the search space is too big and falsification
becomes di�cult. For instance, the short transient shifting
of '

stay

was found by introducing a signal-parameter con-
trolling the time of initial acceleration, and by preventing
acceleration and braking at the same time. We remark that
extending Breach to enforce such constraints over the in-
put signal space is a key reason for its better performance,
and a fair comparison would be possible only after repeating
these steps for S-Taliro.

• Requirements involving discrete modes are challenging be-
cause they induce “flat” quantitative satisfaction functions
that are challenging to optimizers and thus have limited
value in guiding the falsifier. This is related to the prob-
lem of finding a good metric between discrete states in hy-
brid systems. This was particularly an issue when mining

Mining Algorithm
Iterative procedure alternating synthesis and falsification of
candidate specifications

Exploits the quantitative satisfaction of STL formulas

stant. If I is an interval, then an STL formula is written
using the following grammar:

' := > | µ | ¬' | '1 ^ '2 | '1 UI '2

The always and eventually operators are defined as spe-
cial cases of the until operator as follows: 2I' , ¬3I¬',
3I' , >UI '. When the interval I is omitted, we use the
default interval of [0,+1). The semantics of STL formu-
las are defined informally as follows. The signal x satisfies
f(x) > 10 at time t (where t � 0) if f(x(t)) > 10. It satisfies
' = 2[0,2) (x > �1) if for all time 0 t < 2, x(t) > �1.
The signal x1 satisfies ' = 3[1,2) x1 > 0.4 i↵ there exists
time t such that 1 t < 2 and x1(t) > 0.4. The two-
dimensional signal x = (x1, x2) satisfies the formula ' =
(x1 > 10) U[2.3,4.5] (x2 < 1) i↵ there is some time u where
2.3 u 4.5 and x2(u) < 1, and for all time v in [2.3, u),
x1(u) is greater than 10. Formally, the semantics are given
as follows:

(x, t) |= µ i↵ x satisfies µ at time t

(x, t) |= ¬' i↵ (x, t) |=/ '

(x, t) |= '1 ^ '2 i↵ (x, t) |= '1 and (x, t) |= '2

(x, t) |= '1 U[a,b] '2 i↵ 9t0 2 [t+ a, t+ b] s.t.
(x, t0) |= '2 and
8t00 2 [t+ a, t

0], (x, t00) |= '1

Extension of the above semantics to other kinds of inter-
vals (open, open-closed, and closed-open) is straightforward.
We write x |= ' as a shorthand of (x, 0) |= '.

Parametric Signal Temporal Logic (PSTL) [6] is an exten-
sion of STL introduced to define template formulas contain-
ing unknown parameters. Syntactically speaking, a PSTL
formula is an STL formula where numeric constants, either
in the constraints given by the predicates µ or in the time
intervals of the temporal operators, can be replaced by sym-
bolic parameters divided into two types:

• A Scale parameter ⇡ is a parameter appearing in predi-
cates of the form µ = f(x) ⇠ ⇡,

• A Time parameter ⌧ is a parameter appearing in an in-
terval of a temporal operator.

An STL formula is obtained by pairing a PSTL formula
with a valuation function that assigns a value to each sym-
bolic parameter. For example, consider the PSTL formula
'(⇡, ⌧) = 2[0,⌧]x > ⇡, with symbolic parameters ⇡ (scale)
and ⌧ (time). The STL formula 2[0,10]x > 1.2 is an instance
of ' obtained with the valuation v = {⌧ 7! 10, ⇡ 7! 1.2}.

Example 3.1. For the example from Sec. 2, suppose we
want to specify that the speed never exceeds 120 and RPM

never exceeds 4500. The predicate specifying that the speed is
above 120 is: speed>120 and the one for RPM is RPM>4500.
The STL formula expressing these to be always false is:

 = 2(speed 120) ^ 2(RPM 4500). (3.1)

To turn this into a PSTL formula, we rewrite by intro-
ducing parameters ⇡speed and ⇡RPM :

'(⇡speed ,⇡rpm) = 2(speed ⇡speed)^2(RPM ⇡rpm). (3.2)

The STL formula expressed in (3.1) is then obtained
by using the valuation v = (⇡

speed

7! 120,⇡rpm 7! 4500).
formulation.

Problem 3.1. Given (a) a system S with a set U of in-
puts, and, (b) a PSTL formula with n symbolic parameters
'(p1, . . . , pn) where pi could either be scale parameter ⇡ or

Simulink
Model

+
Controller

Plant

Model

e u

y

FindParam

Counter-

example

Traces

Simulation

Traces

Candidate

Requirement

FalsifyAlgo

2[0,⌧1](x1 < ⇡1 ^
3[0,⌧2](x2 > ⇡2))

Template Requirement

2[0,1.1](x1 < 3.2 ^
3[0,5](x2 > 0.1))

Inferred Requirement

Counter-

example

Found

No Counterexample

Figure 3: Flowchart for Requirement Mining

time parameter ⌧ , the objective is to find a tight valuation
function v such that

8u 2 U : S(u) |= '(v(p1), . . . , v(pn)).

Our focus on “tight valuations” is to avoid mining trivial
requirements or requirements that are overly conservative,
e.g. “the car cannot go faster than the speed of light.” We
make this notion more precise in Section 5.1.

3.3 Requirement Mining Algorithm: Overview
Our algorithm for mining STL requirements from the closed-

loop model in Simulink is an instance of a counterexample-
guided inductive synthesis procedure [29], shown in Fig. 3.
It consists of two key components:

1. A falsification engine, which, given a formula ' generates
an input u such that x(t) = S(u)(t) |=/ ' if there ex-
ists such a u, and returns ? otherwise. We denote this
functionality by FalsifyAlgo.

2. A synthesis function denoted FindParam that given a
set of traces x1, . . . ,xk, finds parameters p such that 8i,
xi |= '(p). We denote this function by FindParam.

4. FALSIFICATION PROBLEM
Recall that we need to implement a function

x = FalsifyAlgo(S,')
such that x is a valid output signal of a system S and x |=/ '.
Unfortunately, this is an undecidable problem for general
hybrid systems; letting ' be a simple safety property estab-
lishes a reduction from the reachability problem for general
hybrid systems, which is undecidable except for subclasses
such as initialized rectangular hybrid automata [16]. For
the latter subclasses the mining technique can be complete,
i.e., absence of a counterexample means that we have found
the strongest requirement. However, in general the falsifica-
tion tool may not be able to find a counterexample though
one exists. We argue that a requirement mined in this fash-
ion is still useful as it is something that FalsifyAlgo is
unable to disprove even after extensive simulations, and is
thus likely to be close to the actual requirement. An alterna-
tive is to use a sound verification tool that employs abstrac-
tion [15, 30]; however, in our experience, these tools have

not scaled to the complex control systems that we consider
here. In this paper, we follow the approach taken by the
developers of the tool S-Taliro [5] and propose a falsifica-
tion algorithm based on the minimization of the quantitative
satisfaction of a temporal logic formula.

4.1 Quantitative Semantics of STL
The quantitative semantics of STL are defined using a

real-valued function ⇢ of a trace x, a formula ', and time t

satisfying the following property:

⇢(',x, t) � 0 i↵ (x, t) |= '. (4.1)

Quantitative semantics capture the notion of robustness
of satisfaction of ' by a signal x, i.e., whenever the absolute
value of ⇢(',x, t) is large, a change in x is less likely to a↵ect
the Boolean satisfaction (or violation) of ' by x. In [11], dif-
ferent quantitative semantics for STL have been proposed.
We recall the most commonly used semantics defined induc-
tively from the quantitative semantics for predicates and
inductive rules for each STL operator.

Without loss of generality, an STL predicate µ can be
identified to an inequality of the form f(x) � 0 (the use of
strict or non strict inequalities is a matter of choice and other
inequalities can be trivially transformed into this form). From
this form, a straightforward quantitative semantics for pred-
icate µ is defined as

⇢(µ,x, t) = f(x(t)). (4.2)

Then ⇢ is defined inductively for every STL formula using
the following rules:

⇢(¬',x, t) = �⇢(',x, t) (4.3)

⇢('1 ^ '2,x, t) = min(⇢('1,x, t), ⇢('2,x, t)) (4.4)

⇢('1UI'2,x, t) = sup
t02t+I

�
min(⇢('2,x, t

0), inf
t002[t,t0)

⇢('1,x, t
00)
�

(4.5)

Then it can be shown [11] that ⇢ satisfies (4.1) and thus
defines a quantitative semantics for STL. Additionally, by
combining (4.5), and 2I' , ¬3I¬', we get

⇢(2I',x, t) = inf
t02t+I

⇢(',x, t0) (4.6)

For 3, we get a similar expression using sup instead of inf.

Example 4.1. Consider again the STL property:

' = 2(speed 120) ^ 2(RPM 4500).

It has two predicates, say µ1 : speed 120 and µ2 : RPM
4500. To put them into the standard form µi : fi(x) � 0, we
define x = (speed, RPM), f1(x) = 120 � speed and f2(x) =
4500� RPM. From (4.2), we get

⇢(speed 120,x, t) = 120� speed(t).

Applying rule (4.6) for the semantics of 2, we get:

⇢(2(speed 120),x, t) = inf
t2T

(120� speed(t)).

Similarly for µ2,

⇢(2(RPM 4500),x, t) = inf
t2T

(4500� RPM(t)).

Finally, by applying rule (4.4):

⇢(',x, t) = min(inf
t2T

(120� speed(t)), inf
t2T

(4500� RPM(t)).

Informally, the satisfaction function ⇢ looks for the max-
imum speed and RPMs over time and returns the minimum
of the di↵erences with the thresholds 120 and 4500.

4.2 STL vs. MTL Robust Satisfaction
In this section, we clarify the connection between the

quantitative semantics of STL defined above and the notion
of robust satisfaction of MTL as defined in [13] and used
in S-Taliro. The main di↵erence between STL and MTL
lies in the definition of predicates, and so does the di↵er-
ence between quantitative semantics. The robust semantics
of MTL is based on the definition of a metric on the state
space of signals and the fact that each predicate is identified
with a set where it holds true. Formally, let d be a metric
on Rn with the usual extension to the signed distance from
a point x 2 X to a set X 0 ✓ X :

d(x,X 0) =

8
<

:

� inf
x

02X
d(x,x0) if x /2 X 0

inf
x

02X\X 0
d(x,x0) otherwise

For each MTL predicate µ, define its truth set O(µ) as:

x, t |= µ i↵ x(t) 2 O(µ) (4.7)

and let

⇢d(µ,x, t) = d(x(t),O(µ)). (4.8)

Finally, the robust satisfaction ⇢d is defined using the same
inductive rules (4.3-4.5) as for an STL formula '. From
there, it is clear that the quantitative semantics of STL sub-
sumes the robust semantics of MTL. Indeed, as each predi-
cate in STL is associated with an arbitrary function f , this
function can implement the distance d. Then, if ⇢d and ⇢

coincide on a set of predicates, by induction they coincide
on all formulas defined on those predicates.

4.3 Solving the Falsification Problem
The objective of the falsification problem is: given an STL

formula ', find a signal u such that S(u) |=/ '. Following
the above definitions, this is equivalent to finding a trace
x such that ⇢(',x, 0) < 0. Hence FalsifyAlgo can be
implemented by solving

Solve ⇢

⇤ = min
u2U

⇢(',S(u), 0) (4.9)

Then if ⇢⇤ < 0, we return u⇤ = argmin
u2U

⇢(',S(u), 0), other-
wise, S |= '. The undecidability of the falsification problem
is reflected here in the fact that the minimization problem
(4.9) is a general non-linear optimization problem for which
no solver can guarantee convergence, uniqueness or even ex-
istence of a solution. On the other hand, many heuristics
can be used to find an approximate solution. In a series
of recent papers, the authors of S-Taliro proposed and
implemented di↵erent strategies, such as Monte-Carlo [22],
and the cross-entropy method [25]. In our implementation,
we first instrumented S-Taliro as a falsification tool (made
possible by the connection between STL and MTL described
in the previous section) and then extended Breach with a
new falsification engine which attacks (4.9) as follows:

1. Define the space of permissible input signals with the help
of m input parameters k = (k1, . . . , km) that take val-
ues from a set Pu, and a generator function g such that
u(t) = g(v(k))(t) is a permissible input signal for S for
any valuation v(k) 2 Pu.

Falsification of STL
Looking for an input of the system leading to a violation of
candidate specifications

Minimizing of the quantitative satisfaction function over the space of input signals

 Figure 1: The closed-loop Simulink model of an au-
tomatic transmission controller. The input to the
model is the throttle position and the brake torque.

The rest of the paper is as follows: In Sec. 2, we present a
transmission controller as a running example. Sec. 3 presents
the background, the problem formulation and an overview
of our technique. We discuss our approach for finding coun-
terexamples to candidate requirements in Sec. 4, and synthe-
sizing parameter values for templates in Sec. 5. We present
two case studies and experimental results for each in Sec. 6,
and conclude with related work in Sec. 7.

2. A RUNNING EXAMPLE
As an illustrative example throughout the paper, we con-

sider a closed-loop model designed for a four-speed auto-
matic transmission controller of a vehicle (shown in Fig. 1).
Although this model is not a real industrial model, it has all
necessary mechanical components: models for the engine,
the transmission, and the vehicle. The transmission block
computes the transmission ratio (Ti) using the current gear
status, and computes the output torque from the engine
speed (Ne), the gear status and the transmission RPM. The
other two blocks represent the gear shift logic and the related
threshold speed calculation. The model has two inputs: (1)
the percentage of the throttle position, and (2) the brake

torque.
We are interested in the following signals: the vehicle

speed, transmission gear position, and engine speed mea-
sured in RPM (rotations per minute). Suppose we want to
use this controller to ensure the requirement that the engine
speed never exceeds 4500 rpm, and that the vehicle never
drives faster than 120 mph. After simulating the closed-
loop system we can show that these requirements are not
met, as illustrated in Fig. 2.

However, this negative result does not provide further in-
sight into the model. If a requirement does not hold, we
would like to know what does hold for the controller, and
how narrowly the controller misses the requirement. Such
a characterization would shed more light on the working of
the system, especially in the context of legacy systems and
for reverse engineering the behavior of a very complex sys-
tem. In the context of this example, it would help to know
the maximum speed and RPM that the model can reach, or
the minimum dwell time that the transmission enforces to
avoid frequent gear shifts. In the next section, we present
a technique to automatically obtain such requirements from
the model.

0 5 10 15 20 25 30
0

50

100
Throttle

0 5 10 15 20 25 30
0

2000

4000

6000
RPM

0 5 10 15 20 25 30
0

50

100

150
Speed

Violation

Violation

Figure 2: Falsifying trace for the automatic trans-
mission controller and the requirement that RPM
never goes beyond 4500 or speed beyond 120 mph.

3. PRELIMINARIES AND OVERVIEW

3.1 Signals and Systems
The systems considered in this paper are hybrid dynami-

cal systems, that is systems mixing discrete dynamics (such
as the shifting logic of gears) and continuous dynamics (such
as the rotational dynamics of the car engine). Additionally,
the systems are closed-loop, meaning that they are obtained
by composing a controller and a plant in a loop.1

We define a signal as a function mapping the time domain
T = R�0 to the reals R. Boolean signals, used to represent
discrete dynamics, are signals whose values are restricted to
false (denoted ?) and true (denoted >). Vectors in Rn with
n > 1 are denoted in bold fonts and their components are
indexed from 1 to n, e.g., p = (p1, · · · , pn). Likewise, a
multi-dimensional signal x is a function from T to Rn such
that 8t 2 T, x(t) = (x1(t), · · · , xn(t)). A system S (such
as a Simulink model) is an input-output state machine: it
takes as input a signal u(t) and computes an output signal
x(t) = S(u(t)). It is common to drop time t, and say x =
S(u). A trace is a collection of output signals resulting from
the simulation of a system, i.e., it can be viewed as a multi-
dimensional signal. In the following, we use interchangeably
the words trace and signal.

3.2 Signal Temporal Logic
Temporal logics were introduced in the late 1970s [24]

to reason formally about the temporal behaviors of reac-
tive systems – originally input-output systems with Boolean,
discrete-time signals. Temporal logics to reason about real-
time signals, such as Timed Propositional Temporal Logic
[2], and Metric Temporal Logic (MTL) [17] were introduced
later to deal with dense-time signals. More recently, Signal
Temporal Logic [20] was proposed in the context of analog
and mixed-signal circuits as a specification language for con-
straints on real-valued signals. These constraints, or predi-
cates can be reduced to the form µ = f(x) ⇠ ⇡, where f is
a scalar-valued function over the signal x, ⇠2 {<,,�, >

,=, 6=}, and ⇡ is a real number.
Temporal formulas are formed using temporal operators,

“always” (denoted as 2), “eventually” (denoted as 3) and
“until” (denoted as U). Each temporal operator is indexed
by intervals of the form (a, b), (a, b], [a, b), [a, b], (a,1) or
[a,1) where each of a, b is a non-negative real-valued con-

1Note that such systems can have exogenous inputs, e.g.
a human controlling brakes provides inputs to the vehicle
engine and controller system. The term “closed-loop” di↵ers
from “closed systems,” which are systems with no inputs.

not scaled to the complex control systems that we consider
here. In this paper, we follow the approach taken by the
developers of the tool S-Taliro [5] and propose a falsifica-
tion algorithm based on the minimization of the quantitative
satisfaction of a temporal logic formula.

4.1 Quantitative Semantics of STL
The quantitative semantics of STL are defined using a

real-valued function ⇢ of a trace x, a formula ', and time t

satisfying the following property:

⇢(',x, t) � 0 i↵ (x, t) |= '. (4.1)

Quantitative semantics capture the notion of robustness
of satisfaction of ' by a signal x, i.e., whenever the absolute
value of ⇢(',x, t) is large, a change in x is less likely to a↵ect
the Boolean satisfaction (or violation) of ' by x. In [11], dif-
ferent quantitative semantics for STL have been proposed.
We recall the most commonly used semantics defined induc-
tively from the quantitative semantics for predicates and
inductive rules for each STL operator.

Without loss of generality, an STL predicate µ can be
identified to an inequality of the form f(x) � 0 (the use of
strict or non strict inequalities is a matter of choice and other
inequalities can be trivially transformed into this form). From
this form, a straightforward quantitative semantics for pred-
icate µ is defined as

⇢(µ,x, t) = f(x(t)). (4.2)

Then ⇢ is defined inductively for every STL formula using
the following rules:

⇢(¬',x, t) = �⇢(',x, t) (4.3)

⇢('1 ^ '2,x, t) = min(⇢('1,x, t), ⇢('2,x, t)) (4.4)

⇢('1UI'2,x, t) = sup
t02t+I

�
min(⇢('2,x, t

0), inf
t002[t,t0)

⇢('1,x, t
00)
�

(4.5)

Then it can be shown [11] that ⇢ satisfies (4.1) and thus
defines a quantitative semantics for STL. Additionally, by
combining (4.5), and 2I' , ¬3I¬', we get

⇢(2I',x, t) = inf
t02t+I

⇢(',x, t0) (4.6)

For 3, we get a similar expression using sup instead of inf.

Example 4.1. Consider again the STL property:

' = 2(speed 120) ^ 2(RPM 4500).

It has two predicates, say µ1 : speed 120 and µ2 : RPM
4500. To put them into the standard form µi : fi(x) � 0, we
define x = (speed, RPM), f1(x) = 120 � speed and f2(x) =
4500� RPM. From (4.2), we get

⇢(speed 120,x, t) = 120� speed(t).

Applying rule (4.6) for the semantics of 2, we get:

⇢(2(speed 120),x, t) = inf
t2T

(120� speed(t)).

Similarly for µ2,

⇢(2(RPM 4500),x, t) = inf
t2T

(4500� RPM(t)).

Finally, by applying rule (4.4):

⇢(',x, t) = min(inf
t2T

(120� speed(t)), inf
t2T

(4500� RPM(t)).

Informally, the satisfaction function ⇢ looks for the max-
imum speed and RPMs over time and returns the minimum
of the di↵erences with the thresholds 120 and 4500.

4.2 STL vs. MTL Robust Satisfaction
In this section, we clarify the connection between the

quantitative semantics of STL defined above and the notion
of robust satisfaction of MTL as defined in [13] and used
in S-Taliro. The main di↵erence between STL and MTL
lies in the definition of predicates, and so does the di↵er-
ence between quantitative semantics. The robust semantics
of MTL is based on the definition of a metric on the state
space of signals and the fact that each predicate is identified
with a set where it holds true. Formally, let d be a metric
on Rn with the usual extension to the signed distance from
a point x 2 X to a set X 0 ✓ X :

d(x,X 0) =

8
<

:

� inf
x

02X
d(x,x0) if x /2 X 0

inf
x

02X\X 0
d(x,x0) otherwise

For each MTL predicate µ, define its truth set O(µ) as:

x, t |= µ i↵ x(t) 2 O(µ) (4.7)

and let

⇢d(µ,x, t) = d(x(t),O(µ)). (4.8)

Finally, the robust satisfaction ⇢d is defined using the same
inductive rules (4.3-4.5) as for an STL formula '. From
there, it is clear that the quantitative semantics of STL sub-
sumes the robust semantics of MTL. Indeed, as each predi-
cate in STL is associated with an arbitrary function f , this
function can implement the distance d. Then, if ⇢d and ⇢

coincide on a set of predicates, by induction they coincide
on all formulas defined on those predicates.

4.3 Solving the Falsification Problem
The objective of the falsification problem is: given an STL

formula ', find a signal u such that S(u) |=/ '. Following
the above definitions, this is equivalent to finding a trace
x such that ⇢(',x, 0) < 0. Hence FalsifyAlgo can be
implemented by solving

Solve ⇢

⇤ = min
u2U

⇢(',S(u), 0) (4.9)

Then if ⇢⇤ < 0, we return u⇤ = argmin
u2U

⇢(',S(u), 0), other-
wise, S |= '. The undecidability of the falsification problem
is reflected here in the fact that the minimization problem
(4.9) is a general non-linear optimization problem for which
no solver can guarantee convergence, uniqueness or even ex-
istence of a solution. On the other hand, many heuristics
can be used to find an approximate solution. In a series
of recent papers, the authors of S-Taliro proposed and
implemented di↵erent strategies, such as Monte-Carlo [22],
and the cross-entropy method [25]. In our implementation,
we first instrumented S-Taliro as a falsification tool (made
possible by the connection between STL and MTL described
in the previous section) and then extended Breach with a
new falsification engine which attacks (4.9) as follows:

1. Define the space of permissible input signals with the help
of m input parameters k = (k1, . . . , km) that take val-
ues from a set Pu, and a generator function g such that
u(t) = g(v(k))(t) is a permissible input signal for S for
any valuation v(k) 2 Pu.

Parameter Synthesis
Looking for parameters values for a candidate specification
•  Exploits monotonicity of formulas with respect to its parameters

•  We developed an SMT-based approach to check monotonic i ty
=> Enables dramatically efficient binary search of parameters

•  Avoids over-conservative specifications by tightening around the satisfaction
boundary

Data: A trace x, a PSTL Formula ', and parameter
set P, � > 0

Result: A valuation v s.t. x |=� '(v)
Find v> s.t. x |= '(v>) or return ' unsat.;
Find v? s.t. x |=/ '(v?) or return v maybe not tight ;
Let v = v>;
for i = 1 to n do

Find vi and set v(pi) = vi s.t. x |=i
� '(v)

end
Algorithm 1: FindParam algorithm.

2. Sample signal-parameters in a uniform, random fashion
to obtain Ninit distinct valuations vi(k) 2 Pu.

3. For i Ninit, solve min
v(k)2Pu

⇢(',S(g(v(k))), 0) using Nelder-

Mead non-linear optimization algorithm and vi(k) as an
initial guess.

4. Return the minimum ⇢ thus found.

For example, if permissible input signals are step func-
tions, then the input parameters would characterize the am-
plitude of the step, and the time at which the step input
is applied. Note that g does not necessarily generate all
possible inputs to the system. However, it is useful in a
very generic way to restrict the search space of possible in-
put signals. One motivation for implementing a falsification
module in Breach has been to get more flexibility in the
definition of input parameters than available in the version
of S-Taliro that we used. In the experimental section, we
discuss some results using both S-Taliro-based falsification
and the above algorithm. We found in particular that the
choice of input parameters, ofNinit and the tuning of Nelder-
Mead algorithm (which provides a trade-o↵ between global
randomized exploration and local optimization) were crucial
for the performance of the falsifier.

5. PARAMETER SYNTHESIS

5.1 Parameter Synthesis Algorithm
We now discuss the function FindParam. Recall that

given a trace2 x, we need to find a valuation v for the param-
eters p1, . . . , pn, of ' such that x satisfies '(v(p1), . . . , v(pn))
(abbreviated as '(v) in the following). This problem is a
dual of the falsification problem (4.9) formulated as:

max
v

⇢('(v),x, 0). (5.1)

However, there is an important di↵erence that the cost
function can be expressed as a closed-form expression of the
decision variable v whereas for (4.9) as a function of u. By
taking advantage of this knowledge, (5.1) can be solved more
e�ciently, in particular as we will see, if formulas satisfy the
important property of monotonicity :

Definition 5.1. A PSTL formula '(p1, · · · , pn) is mono-
tonically increasing with respect to pi if for every signal x,

8v, v0 :

x |= '(. . . , v(pi), . . .)

^ v

0(pi) � v(pi)

!
) x |= '(. . . , v0(pi), . . .)

2We restrict our attention to one trace though in the mining
process, FindParam has to work on a set of traces. The
generalization to multiple traces is straightforward.

−10
0

−100

−5
0

−50

−50

−50

0

0

0

0

0
50

50
10
0

5 10 15 20 25 30 35

20

40

60

80

100

120

140

'(⇡, ⌧) = 2[0, ⌧](speed < ⇡)

x |=/ '(⇡, ⌧)

x |= '(⇡, ⌧)

time parameter ⌧

sc
al
e
p
ar
am

et
er

⇡
(s
p
ee
d
)

v1

v2

Figure 4: Validity domain of a simple formula for
a trace x obtained from the automatic transmission
model. The FindParam algorithm will return valu-
ation v1 (resp. v2) depending if time (resp. scale)
parameter is optimized first. The contour lines are
isolines for the satisfaction function ⇢.

It is monotonically decreasing if this holds when replacing
v

0(pi) � v(pi) with v

0(pi) v(pi).

In the second part of this section, we characterize this
notion more precisely. We impose an additional constraint
to the parameter synthesis problem: we require that the
STL formula mined be “tightly” satisfied by the system up
to a given precision � > 0. Formally,

Definition 5.2. The signal x �-satisfies '(v) for pi de-
noted by x |=i

� '(v) i↵ x |= '(v) and there exists a valua-
tion v

0 such that 8j 6= i, v

0(pj) = v(pj), |v(pi)� v

0(pi)| �

and x |=/ '(v0). The signal x �-satisfies '(v), denoted by
x |=� '(v) if 8i, x |=i

� '(v).

The rationale is that for a specification to be useful it
should not be too conservative. The implication is that it
is not enough to find a satisfying valuation, we also need
to optimize it for each parameter to get �-satisfaction. If
there is more than one parameter, then the solution is not
unique. In fact, all valuations that are at a distance � from
the boundary of the validity domain of ' and x (the set of
valuations v for which x |= '(v)) are valid solutions. In [6],
the authors note that if the formula is monotonic, then this
boundary has the properties of a Pareto surface for which
there are e�cient computational methods, basically equiva-
lent to multi-dimensional binary search. Here we propose an
algorithm (Algorithm 1) for monotonic formulas that takes
advantage of this property, and implement it in the Breach

tool. Algorithm 1 starts by trying to find a valuation v> that
satisfies the property and a valuation v? that violates it in
a parameter range P provided by the user. By property of
monotonicity, it is su�cient to check the corners of P for the
existence of v> and v?. Then, each parameter i is adjusted
using a binary search initialized with v>(pi) and v?(pi). The
user can choose which parameters to optimize first by speci-
fying a priority ordering for the input parameters. Note that
di↵erent orderings can give drastically di↵erent results.

Formula Monot. Time

2(0,1)(x < ⇡) + <0.09 s
2[s,s+1](x�3) 3(0,1)x<3) – 0.1 s
2(0,100)((x < ⇡)) 3(0,5)(x > ⇡)) – <0.09 s
geariU(s,s+5)geari+1 * 0.13 s

Table 1: Proving monotonicity with an SMT solver.

Example 5.1. Consider '(⇡, ⌧) = 2[0, ⌧](speed < ⇡)
and the scenario that the vehicle constantly accelerates with
the value of throttle set at 100. The validity domain of '
is plotted on Fig. 4. The algorithm will return di↵erent val-
ues depending on the tightness parameter � and if we order
the parameters as (⇡,⌧) or (⌧,⇡). Here, the order represents
the preference in optimizing a parameter over the other when
mining for a tight specification.

5.2 Satisfaction monotonicity
We first show that checking if an arbitrary PSTL formula

is monotonic in a given parameter is undecidable.

Theorem 5.1. The problem of checking if a PSTL for-
mula '(p) is monotonic in a given parameter pi is undecid-
able.

Proof. First, we observe that STL is a superset of MTL.
We know from [1] that the satisfiability problem for MTL is
undecidable. Thus, it follows that the satisfiability problem
for STL is also undecidable. This, in turn, implies unde-
cidability of the satisfiability problem of PSTL with at most
one parameter (denoted as PSTL-1-SAT). We now show that
PSTL-1-SAT can be reduced to a special case of the problem
of checking monotonicity of a PSTL formula.

Let '(p) be an arbitrary PSTL formula where the set of
parameters p is the singleton set with one time parameter ⌧
(thus, ⌧ � 0). Construct the formula (p)

.

= (⌧=0)_'(p).
Consider the monotonicity query for (p) in parameter ⌧ :

8v, v0,x : [x |= (v(⌧)) ^ v(⌧)v

0(⌧)]) x |= (v0(⌧)).
Consider the specialization of this formula for the case

v(⌧) = 0. Note that, in this case, (0) = >, and that v0(⌧) �
0 for all v0. Thus, the query simplifies to 8v0,x : x |= (v0(⌧)),
i.e., checking the validity of the PSTL formula (⌧).
Thus, to check monotonicity of PSTL formula ' in one

parameter ⌧ one needs to check that the negation of (⌧)
is unsatisfiable. Thus the above specialization of the prob-
lem of checking the monotonicity of PSTL formulas is also
undecidable, implying undecidability of the general case.

Monotonicity is closely related to the notion of polarity
introduced in [6], in which syntactic deductive rules are
given to decide whether a formula is monotonic based on
the monotonicity of its subformulae. Thus, one way to tackle
undecidability is to first query if the given PSTL formula be-
longs to the syntactic class described in [6]. Unfortunately,
the syntactic rules described therein are not complete; there
are monotonic PSTL formulas that do not belong to this
syntactic class, for instance, formulas with intervals in which
both end-points are parameterized, such as the following:

2[⌧,⌧+1]((x � 3)) 3(0,1)(x < 3)) (5.2)

Next, we show how we can use SMT solving to query
monotonicity of a formula. If the SMT solver succeeds, it
tells us that the formula is monotonic and allows us to use a

more e�cient search in the parameter space. For instance,
we were able to show that the PSTL formula represented in
(5.2) is monotonically decreasing in the parameter ⌧ .

Encoding PSTL as constraints. Given a PSTL formula
', we define the SMT encoding of ' in a fragment of first-
order logic with real arithmetic and uninterpreted functions.
Let E(') denote the encoding of ', which we define induc-
tively as follows:

• Consider a constraint µ
.

= g(x) > ⌧ , where x = (x1, . . . , xn).
We model each signal xi as an uninterpreted function �i

from R to R. We create a new free variable t of the type
Real and replace each instance of the signal xi in g(x) by
�i(t). We assume that the function g itself has a standard
SMT encoding. For example, consider the formula g(x) > ⌧ ,
where x = {x1, x2}, and g(x) = 2 ⇤ x1 + 3 ⇤ x2. Then E(µ)
is: 2 ⇤ �1(t) + 3 ⇤ �2(t) > ⌧ .

• For Boolean operations, the SMT encoding is inductively
applied to the subformulas, i.e., if ' = ¬'1, then E(') =
¬E('1). If ' = '1^'2, then first we ensure that if E('1) and
E('2) both have a free time-domain variable, then we make
it the same variable, and then, E(') = E('1) ^ E('2). Note
that as a consequence, there is at most one free time-domain
variable in any subformula.

• Consider ' = H(a,b)('1), where a, b are constants or pa-
rameters, and H is a unary temporal operator (i.e., 3,2).
There are two possibilities:

(1) The SMT encoding E('1) has one free variable t. In this
case, we bound the variable t over the interval (a, b) using a
quantifier that depends on the type of the temporal operator
H. With 3 we use 9 as the quantifier, and with 2 we use 8.
E.g., let ' = 3(2.3,⌧)(x > ⇡), then E(') is:

9t : (2.3 < t < ⌧) ^ (�(t) > ⇡).

(2) The SMT encoding E('1) has no free variable. This
can only happen if '1 is > or ?, or if all variables in '1

are bound. In the former case, the encoding is done ex-
actly as in Case 1. In the latter case, the encoding proceeds
as before, but all bound variables in the scope are addi-
tionally o↵set by the top-level free variable. Suppose, ' =
2(0,1)3(1,2)(x > 10). Then, the encoding of the inner 3-
subformula has no free variable. Note how the bound vari-
able of this formula is o↵set by the top-level free variable in
the underlined portion in E(') below:

8t : [9u : [(t+ 1 < u < t+ 2) ^ (�(u) > 10)]].

• Consider ' = '1U(a,b)'2, where a, b are constants or pa-
rameters. For simplicity, consider the case where '1 and '2

have no temporal operators, i.e., E('1) and E('2) both have
exactly one free variable each. Let t1 be the free variable in
E('1) and t2 the free variable in E('2). Then E(') is given
by the formula:

9t2 : [(t2 2 (a, b)) ^ E('2) ^ 8t1 : [(t1 2 (a, t2))) E('1))].

If '1, '2 contain no free variables, then t1, t2 are respectively
used to o↵set all bound variables in their scope as before.

Using an SMT solver to check monotonicity. To check
monotonicity, we check the two assertions below:

E('(⌧)) ^ (⌧ > ⌧

0) ^ ¬E('(⌧ 0))
E('(⌧)) ^ (⌧ < ⌧

0) ^ ¬E('(⌧ 0))

Implementation and Results
Approach implemented as an extension of Breach toolbox
•  Provides Simulink models with a sophisticated test harness supporting PSTL

formulas and now specification mining

•  Approach validated on an industrial model from Toyota (~4000 blocks)

•  We found a suspicious behavior in a closed-loop prototype model of a diesel
engine and an actual bug that was causing it

the '

stay

requirement. We were able to tune our falsifier
by turning o↵ its local optimization phase, and using uni-
form random sampling, which led us to obtaining a tighter
requirement than with S-Taliro.

• We found that while both falsifiers are expected to ex-
hibit run-times linear in the size of the traces and the for-
mula [11,14], in some cases, Breach runs faster. In particu-
lar, S-Taliro is more sensitive to parameter priorities. For
the same template '

rpm100

, depending on which parameter ⌧
or ⇡ is prioritized, S-Taliro performs di↵erently. This can
be explained by the fact that ⌧ a↵ects the horizon of the
temporal operator 3. We conjecture that the di↵erence in
run-times and mined parameter values for the '

stay

template
is due to our inability to express signal-parameterization in
S-Taliro, but these comparisons require more dedicated
studies on various benchmarks before drawing firm conclu-
sions.

6.2 Diesel Engine Model
Next, we consider an industrial-scale, closed-loop Simulink

model of an experimental airpath controller for a diesel en-
gine. It has more than 4000 Simulink blocks such as data
store memories, integrators, 2D-lookup tables, functional
blocks with arbitrary Matlab functions, S-Function blocks,
and blocks that induce switching behavior such as level-
crossing detectors, multiports, and saturation blocks. The
models takes two signals as input: the fuel injection rate
and the engine speed. The output signal is the intake man-
ifold pressure denoted by x. For proprietary reasons, we
suppress the mined values of the parameters and the time-
domain constants from our requirements. We replace the
time-domain constants by symbols such as c1 and c2.
Discussions with control designers revealed that charac-

terizing overshoot behavior of the intake manifold pressure
is important. The inputs to the closed-loop model are a step
function to the fuel injection rate at time c1, and a constant
value for the engine speed. The first requirement is:

'

overshoot

(⇡) = 2(c1,1)(x < ⇡).

This template characterizes the requirement that the signal
x never exceeds ⇡ during the time interval (c1,1), i.e., it
finds the maximum peak value (i.e., ⇡) of the step response.
Our mining algorithm obtained 7 intermediate candidate re-
quirements that were falsified by S-Taliro, till we found a
requirement that it could not falsify in its 8th iteration. The
total number of simulations was 7000 over a period of 13
hours.
Next, we chose to mine the settling behavior of the signal.

The settling time is the time after which the amplitude of
signal is always within a small error from its calculated ideal
reference value. We wish to mine both the error and how
fast the signal settles. Such a template requirement is given
by the following PSTL formula:

'

settling_time

(⌧,⇡) = 2[⌧,1)(|x| < ⇡).

It specifies that the absolute value of x is always less than ⇡

starting from the time ⌧ to the end of the simulation. The
smaller the settling time and the error, the more stable is
the system. We found out from the control designer that a
smaller settling time needs to be prioritized over the error (as
long as the error lies within the 10% of the signal amplitude),
so we prioritize minimizing ⌧ over minimizing ⇡.

After 4 iterations, the procedure stops as the inferred
value for ⌧ is very close to the end of the simulation trace,

0

�

Time

P
re
ss
u
re

d
i↵
.
(x

)

0

Figure 5: The simulation trace x (in blue) de-
noting the di↵erence between the intake manifold
pressure and its reference value4 found when min-
ing '

settling_time

(⌧,⇡) displays unstable behavior. The
maximum error threshold is depicted in red.

but the error is still larger than the tolerance. The implica-
tion here is that the algorithm pushed the falsifier to find-
ing a behavior in the model that exhibits hunting behavior,
or oscillations of magnitude exceeding the tolerance. This
output signal is shown in Fig. 5. This behavior was unex-
pected; discussions with the designers revealed that it was
a real bug. Investigating further, we traced the root-cause
to an incorrect value in a lookup table; such lookup tables
are commonly used to speed up the computation time by
storing pre-computed values approximating the control law.
This experiment demonstrates the use of requirement min-

ing as an advanced, guided debugging strategy. Instead of
verifying correctness with a concrete formal requirement,
the process of trying to infer what requirement a model
must satisfy can reveal erroneous behaviors that could be
otherwise missed. In the course of our experiments, we en-
countered other suspicious (for instance Zeno-like) behav-
iors, which we suspect to be either an error in the model,
or an improper tuning of the numerical solver leading to
discontinuities in the dynamics.

7. RELATED WORK
Mining requirements from programs and circuits is well-

studied in the field of computer science [3, 4, 12, 18, 19, 26,
27, 32]. In computer science, the word “requirement” is of-
ten synonymous with “specification”. Specification mining
techniques vary based on the kind of specifications mined;
examples include automata, temporal rules, and sequence
diagrams. They also vary based on the input to the miner;
techniques based on static analysis or model checking op-
erate on the source code, while dynamic techniques mine
from execution traces. Mining temporal rules [3,27] involves
learning an automaton that captures the temporal behav-
ior and typically focusses on API usage in libraries. The
individual components within such libraries are often ter-
minating programs, and specification automata encode legal
interaction-patterns between components. In contrast to the
software world, where most programs have discrete-time se-
mantics, the behavioral requirements that we mine are for
systems with both continuous and discrete-time semantics.
It may be worthwhile to see if automata-based mining could
be adapted to the hybrid systems domain. The work clos-
est to the proposed approach appears in [33], in which the
authors introduce Parametric MTL (PMTL), which adds
a single time or scale parameter to MTL formulas. This
parameter is then estimated using stochastic optimization

4Note that the values along the axes have been suppressed
for proprietary reasons. We remark that the actual values
are irrelevant and the intention is to show an oscillating
behavior arising from a real bug in the design.

