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Control Systems Design
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Technically, hybrid systems integrating continuous dynamics, switching
logics, computations, etc.
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Model-Based Design

Specification Deployment
Modeling and HIL
Si ion Simulation

Rapid SIL

Prototyping Simulation
Product Code
Generation

The model-based design (MBD) V design process.
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Model-Based Design
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The actual design process.

i

> Alternation between specification and design,

» A flavor of chicken and egg problem...
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Motivations for Specification Mining

Specification should be objects of equal importance as the design itself.
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Motivations for Specification Mining

Specification should be objects of equal importance as the design itself.

This enables

» co-developement of design and specification

» automatization of verification and testing

However

» this is not (yet) the case: specification are often high level, vague
textual/oral /implicit requirements

» this was not the case: problems of reusability of older component
(legacy code).
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Motivations for Specification Mining

Specification should be objects of equal importance as the design itself.

This enables
» co-developement of design and specification

» automatization of verification and testing

However

» this is not (yet) the case: specification are often high level, vague
textual/oral /implicit requirements

» this was not the case: problems of reusability of older component
(legacy code).

To construct/reconstruct formal and usable specifications, there is a need
specification mining techniques.
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Challenges

Closed-loop setting very complex

v

nonlinear dynamics

v

look-up tables

> large amounts of switching

» components with no models

» unclear semantics of modeling
language

What can we do, as formally as possible if all we have is
> the ability to simulate the system
> some vague idea of what the system should satisfy

> the ability to check if simulation traces satisfy properties
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@ Specification Using Signal Temporal Logics

© Mining Algorithm

© Experimental Results
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Temporal logics in a nutshell

Temporal logics allow to specify patterns that timed behaviors of systems may or
may not satisfy.

The most intuitive is the Linear Temporal Logic (LTL), dealing with discrete
sequences of states.

Based on logic operators (=, A, V) and temporal operators: “next”, “always”
(alw), “eventually” (ev) and “until” (U)
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From LTL to STL

Extension of LTL with real-time and real valued constraints
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From LTL to STL

Extension of LTL with real-time and real valued constraints

LTL G(a=> F b)
Boolean predicates, discrete-time

MITL G( a => Flo,59 b )
Boolean predicates, real time

STL G( f(=[t]) > 0 => Fp,599(y[t]) >0)
Predicates over real values , real time
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Formal Definitions

Definition (STL Syntax)

p=p|=p oA | Upy ¥
where p is a predicate of the form p: u(z[t]) > 0
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Formal Definitions

Definition (STL Syntax)

p=p|-ploAY ]| Ugy
where p is a predicate of the form p: u(z[t]) > 0

Definition (STL Semantics)

The validity of a formula ¢ with respect to a signal z at time ¢ is

(z,t) & p(aft]) >0

@ EeAY & (@) EeAEDEY

(z,1) & ((z,1) =)

() EolUey v & elttat+b]st (z,t)E=9A

vt e [t t], (z,t") E ¢}

Additionally: evigy ¢ = T Uy » and alw, 50 = = (evab—yp).

v
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STL Examples
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STL Examples

“The signal is never above 3.5"
v :=alw (z[t] < 3.5)
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STL Examples

“After 2s, the signal is never above 3"
@ = evyg alw (z[t] < 3)

N | T 1 O
l' '
|

|
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STL Examples

“Between 2s and 6s the signal is never above 2"
= alwpg (2[t] <2)

No
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STL Examples

“Always when x >0.5, 0.6s later it settles under 0.5 for 1.5s”
@ :=alw(z[t] > .5 = evy g (alwy.5 z[t] <0.5))
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Quantitative Satisfaction

Given ¢, a signal = and a time ¢, define a function p:

plp,z,t) > 0=z, tF ¢
plp,z,t) <0= 3, tF ¢

p(p, -, ) transforms z into a satisfaction signal, sometimes noted o (z)[t].
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STL Transducers

STL Monitor

Formula ¢

o B N 0w A 0 o

|
o

Specification Mining for Industrial-scale Designs



STL Transducers

STL Monitor

Formula ¢
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|
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STL Transducers
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STL Atomic Transducers

Predicate z > 5
u(z) =z —5
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STL Atomic Transducers

y Predicate z > 5 ) N5
x[t] @) =15 ,_) xt] —
Negation —p ) —ols

pla)lf ~>[ IS
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STL Atomic Transducers

Predicate z > 5 N
x[t] ‘{ w(z) =z —5 )—) z[t] =5
Negation —p \ —ols
p(x)[t] ‘{ $(2) = —ol2) )—> p(x)[t]

Sol(l’)[t]_)( Conjunction @1 A @g .
o)l 0(0) = min(ir (@) o)) [ MO
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STL Atomic Transducers

Eventually ev[1,.2]¥

o(z)[t] W(z) = [t—l—r.[ll%i(i-ﬁ] o(x) t'e[tril%f{t+.2]

o(z)[t']
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STL Atomic Transducers

Eventually ev[1,.2]¥

tl

o(z)[t] Y(z) = max o(z) t'E[tI-fI-l.al},(t-‘r-Z]SD(x)[]
[t+.1,t4.2]

Always alw( 1 2 . '

z t

p(x)[t] $(z) = min _o(z) el PO

[t4.1,¢4.2]
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STL Atomic Transducers

Eventually ev[1 o¢

/

p(o)[t] P(z) = max ¢(z) veitt e O]
[t+.1,t+.2]

Always alw( 1 2 . '

! t

p(o)[t] Y(z) = min o(z) el PO

[t4.1,¢4.2]

Note

> The “Until" can be computed by a combination of untimed timed ev and
alw.
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Computing the Robust Satisfaction Function
( Donze, Ferrere, Maler, Efficient Robust Monitoring of STL Formula, CAV’13)

» Atomic transducers can be computed in linear time in the size of the
input signals

» The function ¢(z)[t] is computed inductively on the structure of ¢
> linear time complexity in size of z is preserved
» exponential worst case complexity in the size of ¢

» Note: current implementation is off-line
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Dense-Time and Exponential Complexity

A theoretical example with exponential complexity
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Dense-Time and Exponential Complexity

A theoretical example with exponential complexity
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Experimental Results
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Parametric STL
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Parametric STL

“After 2s, the signal is never above 3"
@ = evyg alw (z[t] < 3)

w

—
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Parametric STL

“After T s, the signal is never above 1"
@ = evp, alw (z[t] <)

T

—
s
~
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© Mining Algorithm
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Specification Mining Framework

e u
- + Controller Plant Model

Y
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Specification Mining Framework

e u
- + Controller Plant Model

Y

|eV[O7T1](X1 <m A 3|W[0’7.2](X2 > 7T2)) |

Template Specification
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Specification Mining Framework
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Template Specification
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Specification Mining Framework
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Template Specification
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Specification Mining Framework
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Template Specification
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Specification Mining Framework
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Specification Mining Framework
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Specification Mining Framework
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Parameter synthesis

Problem

Given a system S with a PSTL formula with n symbolic parameters
©(p1,...,pn), find a tight valuation function v such that

T,t l: @(U(p1)7 ccog U(pn))7

Challenges

» Multiple solutions: equivalent to multi-objective problem

» We require tight specifications (avoid over-conservatism)
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Example

——
s
~
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Example

@ :=alw(z[t] > 7 — evjg ] (alwy ., z[t] <))
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Example

@ = alw(z[t] > m — evig - (alwjgr, z[t] < m2))
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Parameter synthesis: Monotonicity

Definition

A PSTL formula ¢(p1, -, pn) is monotonically increasing with respect to p; if
for every signal x,

Vo, o' sx E (..., v(pi),-..),
v'(ps) 2 v(p:) = x E (..., v (pa),..) (1)

It is monotonically decreasing if this holds when replacing v'(p;) > v(p;) with
v'(pi) < v(ps).
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Parameter synthesis: Monotonicity

Definition

A PSTL formula ¢(p1, -, pn) is monotonically increasing with respect to p; if
for every signal x,

Vo, o' sx E (..., v(pi),-..),
v'(pi) > v(pi) = x @, v (pa),--) (1)

It is monotonically decreasing if this holds when replacing v'(p;) > v(p;) with
v'(ps) < v(ps)-

» If a formula is monotonic, the parameter synthesis problem can be reduced
to a generalized binary search

> Deciding monotonicity can be encoded in an SMT query (however, the
problem is undecidable)
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Falsification problem

Problem

Given the system:

u(t) S(u()

Find an input signal w € U such that S(u(t)),0 = ¢
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Falsification problem

Problem
Given the system:

u(t) S(u()

Find an input signal w € U such that S(u(t)),0 = ¢

Approach: Solve p* = minyey p(p, S(u),0) (1) If p* <0, we
found a counterexample input.
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Falsification problem

Problem

Given the system:

u(t) S(u(t)

Find an input signal w € U such that S(u(t)),0 = ¢

Approach: Solve p* = minyey p(p, S(u),0) (1) If p* <0, we
found a counterexample input.

In practice:
» We parameterize U
» Try nonlinear, stochastic optimization methods

» Different algorithms implemented in S-TaLiRo (G. Fainekos et al) and
Breach
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© Experimental Results
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Automatic Transmission System
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Formulas

> the speed is always below 7, and RPM below 19
©sp_rpn(T1,T2) = alw ( (speed < 1) A (RPM < m3) ).
> the vehicle cannot reach 100 mph in T seconds with RPM always below 7
@rpmtoo(T, ) := =( evp ;) (speed > 100) A alw(RPM < 7)).

> whenever it shift to gear 2, it dwells in gear 2 for at least T seconds

Pstay(T) 1= alw (< gear 72 A > = alw|. ,jgear = 2) .

evip,s] gear = 2
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Results

S-Taliro-based falsification
Template Parameter values Fals.  Synth. #Sim. Sat./x

@sp_rpn(71,m2) | (155 mph, 4858 rpm) 555 12 s 255  0.004 s
@rpm100 (7, T) (3278.3 rpm, 49.915) 6422s 26.5s 9519 0.327s
gorpmloo(”r, ) (4997 rpm, 12.20 s) 8554 s 53.8s 18284 0.149s
Pstay () 1.79 s 18886 s 0.868s 130 147.2s

Breach-based falsification
Template Parameter values Fals.  Synth. #Sim. Sat./x

@sp_rpn(71,72) | (155 mph, 4858 rpm) 197.2s 23.1s 496 0.043 s
@rpm1o0 (7, T) (3278.3 rpm, 49.915) 267.7s 10.51s 709 0.026 s
@rpm100 (T, ) (4997 rpm, 12.20s) 147.8s 5.188s 411 0.021s
Pstay () 1.79 s 430.9s 2.157s 1015 0.032s
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Results on Industrial-scale Model

TOYOTA 4000+ Simulink blocks

A T A A 1 Look-up tables
nonlinear dynamics

Experimental Engine
Control Model

» Found max overshoot with 7000+ simulations in 13 hours
> Attempt to mine maximum observed settling time:

> stops after 4 iterations
> gives answer fseire = Simulation time horizon...
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Bug Finding

ittt

» The above trace found an actual (unexpected) bug in the model

» The cause was identified as a wrong value in a look-up table

Specification Mining for Industrial-scale Designs



Summary

» A general framework for specification mining of complex
cyber-physical systems

Outlook
Falsification /optimization of satisfaction functions

v

v

Online monitoring and speficition mining

\4

More elaborate templates mining (beyond parameters)

v

How to help designers writing and using temporal logics templates
and formulas 7

Thanks !
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