
On the Verification of Timed Discrete-Event
Models?

Christos Stergiou, Stavros Tripakis, Eleftherios Matsikoudis, Edward A. Lee

University of California, Berkeley

Abstract. Timed discrete-event (DE) is an actor-oriented formalism
for modeling timed systems. A DE model is a network of actors consum-
ing/producing timed events from/to a set of input/output channels. In
this paper we study a basic DE model, called deterministic DE (DDE),
where actors are simple constant-delay components, and two extensions
of DDE: NDE, where actors are non-deterministic delays, and DETA,
where actors are either deterministic delays or timed automata. We in-
vestigate verification questions on DE models and examine expressive-
ness relationships between the DE models and timed automata.

1 Introduction

Timed automata, introduced by Alur and Dill [2,7] are one of the prominent for-
malisms for timed systems. In this paper we study another formalism for model-
ing dense-time systems, which we call timed discrete-event (DE). DE is inspired
by the DE domain of the tool Ptolemy [9], which is itself inspired by established
fields such as discrete-event simulation and queueing models. More recently, DE
has been proposed as a programming abstraction for cyber-physical systems and
used in the Ptides framework [8] for the design of distributed real-time systems,
e.g. control systems for electric power stations and correct shutdown mechanisms
for industrial controllers.

DE is an actor-oriented formalism, in the sense of Agha [1], where a model
consists of a collection of actors, each consuming and producing messages from
input and to output channels. In the case of DE a model is a network of actors.
Ptolemy DE models can be hierarchical, but for the purposes of this paper we
only consider flat models. We also abstract away message values, thereby leaving
actors to communicate only via timed events. A timed event is characterized by
a single value, its timestamp.

? This work was supported in part by TerraSwarm, one of six centers of STARnet, a
Semiconductor Research Corporation program sponsored by MARCO and DARPA.
It was also supported in part by the Center for Hybrid and Embedded Software
Systems (CHESS) at UC Berkeley (supported by NSF awards #0720882 (CSR-
EHS: PRET) and #0931843 (ActionWebs), the Naval Research Laboratory (NRL
#N0013-12-1-G015), and the companies: Bosch, National Instruments, and Toyota),
and the NSF Expeditions in Computing project ExCAPE: Expeditions in Computer
Augmented Program Engineering.

Even though discrete-event simulation is widespread in system design, in-
cluding, for instance, hardware system simulation methods based on languages
such as Verilog, VHDL, and SystemC, the exhaustive verification of DE mod-
els has received little attention, to our knowledge. In this paper we take a step
towards remedying this, by studying three versions of DE models in terms of
expressiveness and model-checking.

First, we introduce a basic, deterministic DE (DDE) model, where actors are
simple constant (and known) delays. An actor in DDE delays every input event
by a constant delay ∆, which means that if the input event has timestamp τ
then the actor produces a corresponding output event with timestamp τ +∆. A
constant delay actor cannot be represented by an equivalent timed automaton,
as the latter would need an unbounded number of clocks, one for every input
event that may arrive within an interval ∆.

Nevertheless, we can show that the strong deterministic properties of DDE
allow its state space to be reduced to a finite lasso. The latter can be used
for exhaustive model-checking of both signal and state queries. An example of
a signal query is “is there an execution where an event with timestamp > 10
occurs in channel c.” An example of a state query is “is there a reachable state
where channels c1 and c2 contain two events with timestamps τ1, τ2, such that
|τ1 − τ2| ≤ 2.” The lasso can also be used to show that every DDE model can
be transformed to an equivalent timed automaton (TA) model.

We also introduce two extensions to the basic DDE model: non-deterministic
DE (NDE) and DE with timed automata (DETA). In NDE, actors are non-
deterministic delays, specified by an interval, say, [l, u], so that an input event
is delayed by some arbitrary δ ∈ [l, u]. In DETA, actors are either constant
delays, or timed automata. A timed automaton M can be viewed as an actor
which reacts to input events arriving on a given channel c by taking a discrete
transition labeled with input c (we require that M be receptive, that is, always
be able to accept any input). M can spontaneously choose to generate an output
event on a given channel c′ by taking a discrete transition labeled with c′.

Finally, we discuss expressiveness of the above models. We show that DDE
⊂ NDE and DDE ⊂ TA ⊂ DETA, where all inclusions are strict. We also show
that NDE 6⊆ TA, and conjecture that TA 6⊆ NDE and NDE 6⊆ DETA.

2 Deterministic timed discrete-event models

We abstract away event values, so events are only timestamped tokens. Formally,
an event is represented by a timestamp τ ∈ R≥0, where R≥0 is the set of non-
negative reals. The set of naturals is denoted N = {0, 1, 2, ...}.

2.1 Syntax

A DDE model is a finite labeled directed graph G = (A,C,D) such that

– A is the set of nodes of G. Each node is called a DE actor or actor in short.

– C ⊆ A×A is the set of edges of G. Each edge c ∈ C is called a channel.
– D : A→ N is a (total) function mapping each actor a ∈ A to a non-negative

integer number called the delay of a. Note that D(a) may be 0.

Let c = (a, b) ∈ C. Then c is an output channel of a and an input channel of b.
We use Cin(a) and Cout(a) to denote the sets of input and output channels of an
actor a, respectively. Let C(a) = Cin(a) ∪ Cout(a). By definition, G is a closed
model, in the sense that all input channels are connected. In fact, every channel
has a unique writer and a unique reader. An actor without input (respectively,
output) channels is called a source (respectively, sink).

An example of a DDE model is given Figure 1. The model has three actors,
a1, a2, a3, with delays 1, 1, 0, respectively, and four channels (the four arrows).

A channel state for a DE model G is a total function r : C → 2R≥0 which
maps every channel c ∈ C to a finite set of events initially pending on c. In
Figure 1, the bullets annotating channels c1, c2 specify an initial channel state.
In this case there are two initial events, both with timestamp 3.

1

a1

1

a2

0

a3

c1 : {3}

c2 : {3}

Fig. 1. A DDE model.

Partial order: Our model allows cyclic graphs and
zero-delay actors. However, we require that every cy-
cle visits at least one actor a such that D(a) > 0.
This condition effectively allows to “break” zero-delay
loops, and to define a partial order ≺ on the set of ac-
tors A, so that a ≺ a′ iff there exists a path from
a to a′ such that for any actor a′′ in the path (in-
cluding a but excluding a′) we have D(a′′) = 0. The
order ≺ is essential for ensuring that actors are fired
in timestamp order (Lemma 1) which in turn yields
important deterministic properties of the DDE model.
For the example of Figure 1, the order ≺ is a3 ≺ a2.

2.2 Operational Semantics

To a given DDE model G and initial channel state r0, we will associate a timed
transition system TTS (G, r0) = (S, s0,→), where S is its set of states, s0 =
(r0, 0) is its (unique) initial state, and → ⊆ S ×A× S is its transition relation,
defined below. A state s ∈ S is a pair (r, t), where r is a channel state and
t ∈ R≥0 is a global timestamp. The initial global timestamp is 0.

Given a channel state r : C → 2R≥0 , let τmin(r) = min
⋃
c∈C r(c). That

is, τmin(r) is the minimum timestamp among all currently pending events in
r. Given actor a ∈ A and r, we denote by τmin(a, r) the minimum timestamp
among all currently pending events in the input channel(s) of a at r. That is,
τmin(a, r) = min

⋃
c∈Cin(a) r(c). Note that τmin(a, r) ≥ τmin(r) for any a, r. By

convention we set min ∅ = ∞. This implies that for an empty channel state r,
we have τmin(r) = ∞. Also, if Cin(a) = ∅, that is, if a has no input channels,
then τmin(a, r) =∞ for all r.

We say that an actor a ∈ A is enabled at state s = (r, t), denoted enabled(a, s),
if τmin(a, r) = τmin(r) = t. That is, a is enabled at s if there is at least one event

pending in one of the inputs of a which has timestamp τ no greater than the
smallest timestamp in r and τ agrees with the global time t. We say that a
is strongly enabled at s if enabled(a, s) and there is no actor b 6= a such that
enabled(b, s) and b ≺ a. That is, a is strongly enabled at s if it is enabled and
there is no actor b which is also enabled at s and which comes before a according
to ≺.

We next define the operation of firing an actor, and the effect that this has
on the state. Intuitively, firing an actor a at state s = (r, t) consists in removing
the event τmin(a, r) from all input channels of a that contain this event, and
adding the event τmin(a, r) + D(a) to each output channel of a. Formally, we
define an auxiliary function f(a, r, d) which, given actor a ∈ A, channel state r,
and delay d ∈ R≥0, returns a channel state r′ defined as follows:

r′(c) =

 r(c)− {τmin(a, r)} if c ∈ Cin(a)
r(c) ∪ {τmin(a, r) + d} if c ∈ Cout(a)
r(c) otherwise.

(1)

We are now ready to define the transition relation → of TTS (G, r0). → has

two types of transitions: discrete transitions of the form s
a→ s′, such that a is

strongly-enabled in state s = (r, t) and s′ = (r′, t) with r′ = f(a, r,D(a)), and

timed transitions of the form s
δ→ s′, where s, s′ ∈ S, a ∈ A, and δ ∈ R≥0.

Timed transitions are enabled at a state s = (r, t) when no discrete transition is
enabled at s and when r is not empty. In that case, it must be t < τmin(r) and

τmin(r) 6= ∞. Then, a timed transition s
δ→ (r, t′) occurs, with δ = τmin(r) − t

and t′ = t+ δ = τmin(r).
Remarks: (1) Global time is not affected by a discrete transition and channel

state is not affected by a timed transition. (2) In TTS (G, r0) there cannot be
two timed transitions in a row. (3) According to the rule τmin(a, r) =∞, source
actors are never enabled, and therefore never fire. We use source actors simply
to allow for initial events at the inputs of some actors.

A state s = (r, t) is a deadlock, that is, has no outgoing transitions, iff r is
empty, that is, for every c ∈ C, r(c) = ∅.

An execution of TTS (G, r0) is a sequence of states ρ = s0, s1, ... such that
there is a (discrete or timed) transition from every si to si+1. We require ρ to
be maximal, that is, either infinite or ending in a deadlock state. Note that if
the DDE model contains a loop that is reachable from some initial event, there
will not be a deadlock state.

Lemma 1. Let ρ = s0, s1, ... be an execution of TTS (G, r0) and let a be an actor

of G. For any transitions si
a→ si+1 and sj

a→ sj+1 in ρ such that si = (ri, ti),
sj = (rj , tj), and i < j, we have ti < tj.

Lemma 1 states that every actor is fired in timestamp order, and in particular,
that it cannot be fired more than once before time elapses.

TTS (G, r0) has several deterministic properties. First, by definition, if s
a→ s′

then there is no s′′ 6= s′ such that s
a→ s′′. Second, TTS (G, r0) has the so-called

“diamond property”:

Lemma 2. If s
a→ s1 and s

b→ s2, then there is a unique s′ such that s1
b→ s′

and s2
a→ s′.

Let ρ = s0, s1, . . . be an execution of TTS (G, r0) where G = (A,C,D) and
si = (ri, ti). The signal of a channel c ∈ C under execution ρ, denoted σρc ,
is defined to be the set of all events occurring in c along the entire execution:
σρc =

⋃
i∈N ri(c).

Lemma 3 (Kahn property [12]). For any c ∈ C and any two executions ρ1
and ρ2, σρ1c = σρ2c .

Because of the Kahn property, we can write σc for the unique signal of a
channel c. This can be viewed as the denotational semantics of DDE models.

3 Boundedness of DDE

P

a1
a2

c1

{0}

c2

Fig. 2. Periodic clock.

In this section we study boundedness of the state-
space of DDE models. Let us begin with an illustrative
example. Figure 2 shows a DDE model G = (A,C,D),
with A = {a1, a2}, C = {c1 : (a1, a1), c2 : (a1, a2)},
D(a1) = P , and D(a2) = 0. This model captures a
periodic source with period P , generating events at
times P, 2P, · · · . The model includes actor a1 which
delays its input by P and a sink actor a2. If the delay
of an actor is non-zero, it is drawn inside the actor.
Zero delays are not drawn. The model has two channels, c1, c2. Channel c1, a
self-loop of a1, contains an initial event with timestamp 0. This is the only initial
event in the system (empty initial event sets on channels are not drawn). The
initial event models the seed of the periodic source. Actor a1 adds a delay of P
to the event’s timestamp, outputs the event to c2, which represents the source’s
output, and starts anew a cycle where the initial event is replaced with an event
with timestamp P .

The initial channel state is r0 = {(c1, {0}), (c2, {})}. A prefix of a path in the
transition system TTS (G, r0) is the following:

s0 : (c1 : {0}, c2 : {}, t = 0)
a1→ s1 : (c1 : {P}, c2 : {P}, t = 0)

P→
s2 : (c1 : {P}, c2 : {P}, t = P)

a2→ s3 : (c1 : {P}, c2 : {}, t = P)
a1→

s4 : (c1 : {2P}, c2 : {2P}, t = P)
P→ s5 : (c1 : {2P}, c2 : {2P}, t = 2P)

a1→
s6 : (c1 : {3P}, c2 : {2P, 3P}, t = 2P)

a2→ s7 : (c1 : {3P}, c2, {3P}, t = 2P)
P→ · · ·

Note that in state s2 there are two events with timestamps equal to τmin = P
but they are both strongly enabled since it is neither the case that a1 ≺ a2 nor
a2 ≺ a1. Furthermore, it is easy to see that the signal in c1 is σc1 = {i ·P | i ∈ N}
and the signal in c2 is σc2 = {i · P | i ∈ N>0}.

As it can be seen from the above example, TTS (G, r0) is generally infinite-
state. There are two potential sources of infinity of state-space in DE models.

First, the timestamps may grow unbounded, as is the case with the above ex-
ample. Second, it is unclear whether the set of events on each channel remain
bounded. This is true in the above example, but is it generally true? In Sec-
tion 3.1 we show that this is true for all DDE models. Then in Section 3.2 we
show how timestamps can also be bounded.

3.1 Bounding the number of events in the channels

Let us begin by providing some intuition about why the number of events in an
execution of TTS (G, r0) remains bounded.

P D

c2c1

{0}

loop1 loop2

Fig. 3. Loop example.

Consider the example in Figure 3. The set of
events produced by “loop1” in channel c1 is {i ·
P | i ∈ N}. Each new event with timestamp t
that enters “loop2” from “loop1”, will result in
an infinite set of events {t + j · D | j ∈ N>0}
in channel c2. Therefore the set of all events in
channel c2 will be {i · P + j ·D | i, j ∈ N>0}.

Because P,D ∈ N, the timestamp of any event
that appears in c2 can be written as k · gcd(P,D)
for some k. In fact, there exists n, such that for
all k > n, there exist positive i and j such that
k · gcd(P,D) = i · P + j ·D. So eventually all multiples of gcd(P,D) appear as
timestamps of events in c2.

Note that in every reachable state s = (r, t) of TTS (G, r0), for G = (A,C,D),
an upper bound on the timestamp of any event is τmin(r) + max{D(a) | a ∈
A}, and a lower bound is τmin(r). Hence, because event timestamps in c2 are
separated by at least gcd(D,P), the number of events in c2 satisfies

|r(c2)| ≤
⌈

max{D(a) | a ∈ A}
gcd(D,P)

⌉
in any state s = (r, t).

In general, let G = (A,C,D) be a DE model and let r0 be an initial channel
state for G. Let TTS (G, r0) = (S, s0,→). Consider a state s = (r, t) ∈ S. Recall
that r is a function r : C → 2R≥0 . The size of r, denoted |r|, is defined to be

|r| :=
∑
c∈C
|r(c)|

Theorem 1 (Boundedness of channels). There exists K ∈ N such that for
every reachable state s = (r, t) of TTS (G, r0), |r| ≤ K.

3.2 Bounding timestamps

In TTS (G, r0) timestamps of events can still grow unbounded. Moreover, there
is the additional global timestamp which grows unbounded too. Nevertheless,
it is easy to see how to transform TTS (G, r0) in order to obtain an equivalent

bounded timed transition system, which we will denote BTS (G, r0). To define
BTS (G, r0), we introduce some notation. Let s = (r, t) be a state of TTS (G, r0).
Let δ ∈ R≥0 be such that δ ≤ τmin(r). Then we denote by r− δ the new channel
state r′ obtained from r by decrementing all timestamps in r by δ.

We are now ready to define BTS (G, s0). Its states are channel states, that
is, the global timestamp is dropped. On the other hand, BTS (G, r0) has both
discrete and timed transitions, like TTS (G, r0). A timed transition in BTS (G, r0)

has the form r
δ−→b r

′ where δ = τmin(r) and r′ = r − τmin(r). A discrete

transition in BTS (G, s0) has the form r
a−→b r

′ with r′ = f(a, r,D(a)), such
that τmin(a, r) = τmin(r) = 0. That is, in BTS (G, r0), we keep track of time
elapsing by appropriately decrementing the timestamps of pending events.

Theorem 2. The set of reachable states of BTS (G, r0) is finite.

Is it easy to show that a bisimulation exists between TTS and BTS. In
particular, let s = (r, t) be a reachable state of TTS (G, r0). It can be easily
shown, by induction on the transition relation of TTS (G, r0), that s satisfies
t ≤ τmin(r). We define the relation R between states of TTS (G, r0) and states
of BTS (G, r0), so that R contains all pairs ((r, t), r − t). It can be checked that
R is a bisimulation relation.

4 Extended discrete-event models

In this section we introduce extensions to the DDE model.

4.1 Non-deterministic DE

The non-deterministic DE model (NDE) extends DDE by allowing actors with
variable delays, specifically intervals.

The syntax of an NDE model is almost the same as that of a DDE model.
It is a labeled graph G = (A,C,D), with A and C being as in a DDE model,
and D associating an interval instead of a fixed value to each actor. Intervals
must be non-empty, and can be of the form [l, u], (l, u), (l,∞), and so on, for
l, u ∈ N. When the interval is [l, l] we simply write D(a) = l. We allow loops,
but require that every loop visits at least one actor a such that l(a) ≥ 1, where
l(a) is the lower bound of D(a). The partial order ≺ is also defined in NDE, so
that a ≺ a′ iff there exists a path from a to a′ such that for any actor a′′ in the
path (including a but excluding a′) we have l(a′′) = 0.

The semantics of NDE is defined as a timed transition system, as with DDE.
Given an NDE graph G, and an initial channel state r0, TTS (G, r0) is defined
to be the tuple (S, s0,→) where S and s0 are as in DDE, and the transition
relation→ contains both discrete and timed transitions. A discrete transition of
TTS (G, r0) is of the form (r, t)

a→ (r′, t) where a is strongly enabled in (r, t) and
r′ = f(a, r, d), for some d ∈ D(a). The definition of strongly enabled for NDE is
the same as in DDE and uses the partial order ≺ as defined above. The timed
transitions of TTS (G, r0) are defined in the same way as in DDE.

We point out that the above semantics allows to “reorder” events, in the
sense that an event produced in a channel could have timestamp smaller than
the events already in the channel. However, execution of actors is still guaranteed
to happen in timestamp order. Also, since we are not currently using multisets,
if an event is added to a channel which already has an event with the same
timestamp then the two events are merged into one.

4.2 DE with timed automata

The DE with timed automata model (DETA) extends DDE by allowing actors to
be modeled as timed automata. This extension allows actors in a discrete-event
program to model environment behavior as well as have more elaborate internal
behavior than DDE and NDE.

Like DDE and NDE, a DETA model is represented by a labeled graph. In
the case of DETA, a label is either a fixed delay or a timed automaton (TA).
Formally, a DETA model is a graph G = (A,C,L), with A and C being as in a
DDE model, and L being a labeling function which maps every actor a ∈ A to
either a delay d ∈ N, or a TA M = (Q, q0, X, I, E), where:

– Q is the set of locations of M , and q0 ∈ Q is its initial location.
– X is the set of clocks of M . Both Q and X are finite sets.
– I is the invariant function which maps every q ∈ Q to a simple convex

constraint of the form
∧
i xi ≤ ki, where xi ∈ X are clocks and ki ∈ N are

constants.
– E is the set of transitions of M . A transition is a tuple h = (q, c, q′, φ,X ′)

where:
• q, q′ ∈ Q: q is the source and q′ the destination location of h.
• c ∈ C(a), i.e., c is either an input or an output channel of actor a.
• φ is a simple constraint on clocks, called the guard of h.
• X ′ ⊆ X is a subset of clocks to be reset by h.

We require that every TA M in a DETA model be receptive, that is, able to
accept any input event at any state. Formally, for every location q of M , and
for every input channel c of a, the union of all guards of all outgoing transitions
from q labeled with c must cover the whole space of clock valuations, that is,
must be equivalent to the guard true.

We allow loops in DETA models, but we assume conservatively that the
delay introduced by TA actors could be zero. Therefore we require that every
loop visits at least one constant delay actor with delay ≥ 1. The partial order
≺ is defined for DETA in the same way as for DDE, by treating TA actors like
zero-delay actors.

Before defining the semantics of DETA models we briefly recall the semantics
of TA. A state of a TA M is a pair (q, v) where q ∈ Q is a location and v is a
clock valuation, that is, a function v : X → R≥0 mapping every clock of M to a
non-negative real value. We will use the term TA state for a pair (q, v), to avoid
confusion with states of DE models, which we sometimes for clarity call channel

states. The initial TA state of M is defined to be (q0,0), where 0 is the valuation
assigning 0 to all clocks. M defines two types of transitions on this state-space:
discrete and timed transitions. A discrete transition is possible from TA state
(q, v) to TA state (q′, v′), denoted (q, v)

c→M (q′, v′), if M has a transition
h = (q, c, q′, φ,X ′) such that: (1) v satisfies the guard φ, denoted v |= φ; (2)
v′ = v[X ′ := 0], which means that v′(x) = 0 if x ∈ X ′ and v′(x) = v(x)
otherwise; and (3) v′ satisfies the invariant of the destination location q′, denoted
v′ |= I(q′). A timed transition of delay δ ∈ R≥0 is possible from TA state (q, v)

to TA state (q, v′), denoted (q, v)
δ→M (q, v′), if: (1) v′ = v+δ, which means that

v′(x) = v(x) + δ for all x ∈ X; and (2) v′ |= I(q). The latter condition, together
with our assumption on the form of invariants, ensures that the progress of time
from v to v′ does not violate any urgency constraints at location q. Note that,
since I(q) is downwards-closed, v+ δ |= I(q) implies that for any δ′ ≤ δ, we also
have v + δ′ |= I(q).

We are now ready to define the semantics of DETA models. Consider a DETA
model G = (A,C,L) and an initial channel state r0. Let ATA be the subset of
A such that a ∈ ATA iff L(a) is a TA. For a ∈ ATA, we denote the TA L(a) by
Ma. Then, G and r0 define the timed transition system TTS (G, r0). A state of
TTS (G, r0) is a triple (r, w, t) where r is a channel state, w is a total function
mapping actors in ATA to TA states, and t ∈ R≥0 is a global timestamp. For
given a ∈ ATA, w(a) represents the TA state which Ma is currently at.

Like the other timed transition systems defined earlier, TTS (G, r0) has two
types of transitions: discrete and timed. A discrete transition has the form
(r, w, t)

a→ (r′, w′, t), for a ∈ A, and is possible if:

– either a 6∈ ATA, that is, L(a) ∈ N, in which case r′ = f(a, r, L(a)) and
w′ = w;

– or a ∈ ATA, in which case

1. either a has an input channel c such that t ∈ r(c), in which case:
(a) r′ is obtained from r by removing the event with timestamp t from

c, that is, r′(c) = r(c)− {t} and r′(c′) = r(c′) for all c′ 6= c.
(b) w′ is obtained from w by having Ma take the discrete transition

w(a)
c→Ma

w′(a) in reaction to the event in c, and having all other
TA retain their state, that is, w′(a′) = w(a) for all a′ ∈ ATA, a

′ 6= a.

2. or a has an output channel c such that w(a)
c→Ma

w′(a) and for all
a′ ∈ ATA s.t. a′ 6= a, we have w′(a′) = w(a). In this case, r′(c) = r(c)∪{t}
and r′(c′) = r(c′) for all c′ 6= c.

The case a 6∈ ATA corresponds to the case where a standard DDE actor fires,
that is, an actor introducing a deterministic delay. The case a ∈ ATA corresponds
to the case where a TA actor fires, that is, makes a discrete transition. In this
case, the following subcases are possible:

– Either a consumes an event from an input channel and reacts to it (Case 1).

Note that since Ma is assumed to be receptive, the transition w(a)
c→Ma

w′(a) is guaranteed to exist. Also note that it is by definition impossible for

a TA actor to consume multiple events from multiple input channels in a
single transition. This is true even when all these events may have the same
timestamp. On the other hand, in that case the TA actor will consume all
these events in a series of discrete simultaneous transitions, that is, without
time passing in-between these transitions.

– Or a “spontaneously” produces an event to an output channel (Case 2).

A timed transition in TTS (G, r0) has the form (r, w, t)
δ→ (r, w′, t + δ), for

δ ∈ R≥0, and is possible if:

1. t+ δ ≤ τmin(r); and

2. for all a ∈ ATA, Ma has a timed transition by δ, that is, w(a)
δ→Ma w

′(a) is
a valid transition.

That is, a timed transition by δ is possible if it is possible for every TA in the
system to let time elapse by δ, and also if this does not violate the urgency of any
pending event in the system. Note that it is possible in DETA to have several
timed transitions in a row.

An example of a DETA model is provided in the left part of Figure 4. There
are four actors in this model, one of which, a2, is a TA actor. The automaton for
a2 has two locations, q0, q1, and a single clock x. The invariant at q1 is x ≤ 1,
whereas the invariant at q0 is true and therefore not shown. The guard in the
transition from q0 to q1 is also true, and not shown either. The label x := 0
means that x is reset on the corresponding transition (absence of such a label
means that the clock is not reset). In the transitions of the automaton, we use
the label c? instead of c when c is an input channel, to emphasize the fact that
the actor consumes an event from c. Similarly, we use c! when c is an output
channel, to emphasize the fact that the actor produces an event in c. A sample
execution of this DETA model is provided in the right part of Figure 4.

Executions and signals in NDE and DETA: The notions of executions and signals
can be easily extended from DDE to NDE and DETA models. Because of non-
determinism in both NDE and DETA, Lemmas 2 and 3 do not hold in neither

2

a1 a2c0

{1}

c1 c2

q0 q1

x ≤ 1

c1?
x := 0

c2!
x = 1

c1?

s0 = c0 : {1} / q0 / t = 0

s1 = c0 : {1} / q0 / t = 1

s2 = c0 : {}, c1 : {3} / q0 / t = 1

s3 = c1 : {3} / q0 / t = 3

s4 = c1 : {} / q1, x = 0 / t = 3

s5 = c1 : {} / q1, x = 1 / t = 4

s6 = c2 : {4} / q0 / t = 4

δ = 1

a1

δ = 2

a2

δ = 1

a2

Fig. 4. A DETA model (left) and a sample execution (right).

NDE nor DETA. This means in particular that the signal σρc of a given channel
c in these models generally depends on the execution ρ. For NDE and DETA
models, we define σc to be the union of σρc over all executions ρ.

Unboundedness of NDE and DETA: Boundedness does not hold for neither NDE
nor DETA models. We can show that if we feed a variable delay with a periodic
stream of events we can construct a sporadic stream which, in turn, if fed into
a periodic loop causes Theorem 1 to fail. Figure 5 illustrates the idea. In this
model, the variable delay is implemented as a TA, resulting in a DETA model.
The variable delay can also be implemented as an NDE actor a withD(a) = [l, u],
resulting in an NDE model.

More precisely, assume that the input stream of a has period P , as shown in
Figure 5, and that P > u. Then the TA shown in the figure correctly implements
a variable delay and every event coming out of the loop with period P will be
given a variable delay [l, u]. Let a add delay l + u−l

i to its ith input event. This

will result in an output stream of events {l+u− l, P + l+ u−l
2 , 2 ·P + l+ u−l

4 , . . .}.

P D

a
c1 c2

{0}

q0 q1

x ≤ u

c1?
x := 0

c2!
x ≥ l

c1?

Fig. 5. Unbounded DETA model.

In general, if a signal of the form {i · P +
x
2i | i ∈ N} is fed into a loop with delay D,
then the signal in the loop will contain events
{i ·D+ j ·P + x

2j | i, j ∈ N}. This set of events
has the property that there is no boundK ∈ N
such that for every n the number of events in
window [n, n+1] is less than K. Intuitively the
reason is that for any K, an n can be found
such that the equation i · D + j · P = n has
more than K solutions, and since, for large
enough j, x/2j < 1, the window [n, n+ 1] will
contain more than K events.

5 Verification

We begin by defining the types of verification queries that we are interested in.
Let G be a DE model (i.e., a DDE, NDE, or DETA model) with set of

channels C and let r0 be an initial channel state. Let ρ be an execution of
TTS (G, r0). Recall that σρc , for channel c ∈ C, denotes the set of all events
(timestamps) that occur in c along execution ρ in TTS (G, r0). A signal query is
a query of the form “does σρc satisfy some property φ?”, where φ is a property
written in (some subclass of) first-order logic. For instance, the property “an
event occurs in c” can be written as φ := ∃τ : τ ≥ 0. The property “two
events occur in c at two distinct times in the interval [1, 2]” can be written as
∃τ1, τ2 : τ1 6= τ2 ∧ 1 ≤ τ1, τ2,≤ 2. The property “two events occur in c separated
by at most 1 time unit” can be written as ∃τ1, τ2 : |τ1 − τ2| ≤ 1.

We are also interested in queries which involve states of TTS (G, r0). A state
query asks whether there exists a reachable state s = (r, t) such that r satisfies
some property ψ. Again, we can imagine various types of properties ψ. For

example, given constant k ∈ N, ψ could be the expression |r| > k, which states
that there are more than k events pending in the system, or the expression
|r(c)| > k, for given c ∈ C, which states that there are more than k events
pending on channel c. ψ could also be an expression such as those mentioned for
signal queries above, stating, for example, that r contains an event with a certain
timestamp or timestamp bounds, two events with a certain time difference, etc.

Channel signals are denotational semantics of DE models and signal queries
allow to express natural properties on these. State queries are also important, as
they refer to system snapshots as well as to implementation properties such as
buffer space requirements. In the rest of this section we discuss how signal and
state queries can be automatically checked on DDE models.

First, consider signal queries. They can be checked with the help of a lasso
derived from BTS. This lasso is a finite and deterministic transition system (de-
terministic in the sense that every state has at most one successor), derived from
BTS by merging all enabled discrete transitions from a given state s into a sin-
gle supertransition where all corresponding actors fire. The diamond property
(which by the bisimulation property also holds on BTS) ensures that this trans-
formation is valid. We can analyze this lasso and compute, for every channel c, an
affine expression that describes σc. Then we can reduce the problem of checking
whether σc satisfies a signal query φ to an SMT (satisfiability modulo theory)
problem. For example, the affine expression for channel c2 for the example of
Figure 3 is i ·P + j ·D, with i, j ∈ N>0. Checking whether there exist two events
τ1, τ2 in σc2 such that τ1 − τ2 = 5, can then be reduced to checking satisfiability
of the expression τ1 = i1 · P + j1 ·D ∧ τ2 = i2 · P + j2 ·D ∧ τ1 − τ2 = 5.

Second, for state queries, we can again use the lasso and the bisimulation of
BTS and TTS to compute an affine expression characterizing the set of times-
tamps on a per state basis. We can then reduce the problem of whether there
exists a reachable state satisfying a property ψ to a series of SMT problems, one
for every affine expression computed for every state in the lasso.

6 Expressiveness

In this section we discuss how the various DE models introduced above are
related to each other, as well as to timed automata, in terms of expressiveness.
We write A ⊆ B if for every model G in formalism A there exists a model
G′ in formalism B such that G and G′ are equivalent in terms of denotational
semantics, i.e., channel signals. More precisely, G and G′ are equivalent if they
refer to the same set of channels C, and for every c ∈ C, σGc = σG

′

c , where
σGc , σ

G′

c are the signals of c in G,G′, respectively.
To be able to compare the DE models with timed automata, we view TA as

a subclass of DETA models. Concretely, suppose M is a TA whose transitions
are labeled with c1, c2, ..., cn. Then M can be seen as a DETA model with n+ 1
actors, a, a1, ..., an, where a is a source actor labeled by M , and a1, ..., an are
sink actors connected to a. In this interpretation, every label ci of M is seen as
a distinct output channel of a.

[0, 1]
{0}

c
1c1 c2

q0

c1!

1[0, 1]
c3

c1
{0}

c2

(a) NDE 6⊆ DDE (b) DETA 6⊆ TA (c) NDE 6⊆ TA

x ≤ 2

x ≤ 2

a

x := 0
b

c

x ≥ 1
[0, 1] [1, 2]

{0}
DDE TA DETANDE

(d) TA 6⊆ NDE (e) NDE 6⊆ DETA (f) Model expressiveness

Fig. 6. Models used in expressiveness discussion.

The expressiveness results, summarized in Figure 6(f), are as follows:

DDE NDE: DDE ⊆ NDE because the fixed delay d can be expressed as the
interval [d, d]. NDE 6⊆ DDE because NDE allows non-deterministic behavior but
DDE does not. Indeed, the NDE model of Figure 6(a) produces a single event
on channel c at time t ∈ [0, 1], but this is impossible to express in DDE.

DDE TA: TA 6⊆ DDE because TA allows non-deterministic behavior but
DDE does not. The example of Figure 6(a) can be easily constructed with TA.
To see why DDE ⊆ TA, consider the lasso defining the signals of a DDE model,
discussed in Section 5. The affine expressions describing the channel signals can
be directly transformed into parallel compositions of simple TA with periodic
self-loops. For example, (2 + 3 · i) ∪ (3 + 7 · j) can be trivially transformed into
the parallel composition of two TA.

DDE DETA: DDE ⊆ DETA because every DDE model is by definition a
DETA model (one that has no TA actors). DETA 6⊆ DDE again because of
non-determinism.

TA DETA: As defined above, TA is by definition a subclass of DETA. To
see that DETA 6⊆ TA, consider the DETA model shown in Figure 6(b). In this
model, every event produced by the TA on channel c1 is delayed by the constant
delay actor by exactly 1 time unit. Since there is no bound on the number of
events that can be produced on c1 in a time interval of size 1, an equivalent TA
model would require an unbounded number of clocks.

NDE 6⊆ TA: To see this, consider the example of Figure 6(c). Similarly to the
model of Figure 6(b), in this model the number of events that can be produced
in an interval of size 1 on channel c2 is unbounded, and for every such event a
TA implementation would require a separate clock to produce the corresponding
event on channel c3.

We also conjecture that the TA of Figure 6(d) cannot be implemented in
NDE. This TA produces three events, a, b, c, in that order, with the constraint
that the distance between a and c is in the interval [1, 2]. This behavior requires

both non-deterministic delays and some form of synchronization to ensure that
b occurs before c, which does not appear to be implementable in NDE.

We finally conjecture that the NDE model of Figure 6(e) cannot be imple-
mented in DETA. The loop in the model can produce unbounded bursts of events
in a finite window. A variable delay needs to be introduced for every such event.
In DETA, variable delays can only be implemented using timed automata, which
only have a finite number of clocks.

7 Related work

The term discrete-event systems (DES) is often used to denote untimed models
based on automata, Petri nets, and related formalisms, with a focus on controller
synthesis and similar problems [17,4]. In this paper we study timed DE models.

Timed and actor-oriented DE models have been considered previously in a
number of works, but with a different focus than that of our paper. [20,14,16,5,15]
focus on the semantics of timed systems. [10] focuses on compositionality and
preservation of properties such as worst-case throughput or latency. [3] presents
a translation of Ptolemy DE models to Real-Time Maude for the purposes of ver-
ification, but does not study the verification problem per se. Rebeca is an actor-
oriented language where actors can specify timed behavior using statements such
as delay [18]. However, decidability of model-checking for timed Rebeca has not
been investigated. [6] extends finite-state automata with delay blocks and exam-
ines the expressiveness of the resulting timed languages.

A large body of research exists on the real time calculus (RTC) [19]. RTC
focuses on performance properties for which interesting analytic and modular
techniques can be derived. On the other hand, RTC models have relatively lim-
ited expressiveness compared to state-based models such as TA and the analysis
results are generally approximations. Recent works on RTC include techniques
for models combining analytic components as used in standard RTC with TA [13]
and techniques to handle networks with cyclic dependencies [11].

DE models have a significant difference from time(d) Petri nets, even though
at first sight they may appear similar. In Petri nets, a transition fires only if
enough tokens are available in every input place, whereas in DE, an actor fires
in timestamp order, and may consume tokens only from some input channels.

8 Perspectives

The verification problems for NDE and DETA remain open. We are currently
exploring ideas to constrain the model to regain, or statically check for, bound-
edness, which would enable transformation of bounded DETA models to timed
automata. We are also currently working on extracting affine expressions di-
rectly from DDE models (without the use of lassos) and then extending this
technique to NDE, which would allow verification of signal queries on NDE de-
spite unboundedness. TA are another possible symbolic representation of signals,
natural in DETA models. It is easy to see how to transform TA signal representa-
tions by fork, join, constant- and variable-delay actors, but not how to compute
fixpoints which seems needed for general cyclic networks.

Another direction for future work is investigating model-checking of general
temporal logics against DE models, or coming up with new logics especially
designed for DE models.

Another direction is to enrich expressiveness of DDE and NDE models, for in-
stance, by adding control-expressive actors such as synchronizers, which from the
comparison between NDE and TA appear important. Adding values to events is
another possibility for extending DE models in general, including DETA models.

References

1. G. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems.
The MIT Press Series in Artificial Intelligence. MIT Press, Cambridge, MA, 1986.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

3. K. Bae, P. Csaba Olveczky, T. H. Feng, E. A. Lee, and S. Tripakis. Verifying
Hierarchical Ptolemy II Discrete-Event Models using Real-Time Maude. Science
of Computer Programming, 77(12):1235 – 1271, 2012.

4. C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer
Academic Publishers, 1999.

5. A. Cataldo, E. Lee, X. Liu, E. Matsikoudis, and H. Zheng. A constructive fixed-
point theorem and the feedback semantics of timed sy stems. In WODES, 2006.

6. Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S. Prabhu. Finite
automata with time-delay blocks. In EMSOFT ’12, pages 43–52. ACM, 2012.

7. D. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Automatic Verification Methods for Finite State Systems. Springer, 1989.

8. J.C. Eidson, E.A. Lee, S. Matic, S.A. Seshia, and J. Zou. Distributed real-time
software for cyber-physical systems. Proceedings of the IEEE, 100(1):45–59, 2012.

9. J. Eker, J. Janneck, E. A. Lee, et al. Taming heterogeneity – the Ptolemy approach.
Proc. IEEE, 91(1), 2003.

10. M. Geilen, S. Tripakis, and M. Wiggers. The Earlier the Better: A Theory of
Timed Actor Interfaces. In HSCC. ACM, 2011.

11. B. Jonsson, S. Perathoner, L. Thiele, and W. Yi. Cyclic dependencies in modular
performance analysis. In EMSOFT ’08, pages 179–188. ACM, 2008.

12. Gilles Kahn. The semantics of a simple language for parallel programming. 1974.
13. K. Lampka, S. Perathoner, and L. Thiele. Analytic real-time analysis and timed

automata: a hybrid method for analyzing embedded real-time systems. In EM-
SOFT, pages 107–116. ACM, 2009.

14. E.A. Lee. Modeling concurrent real-time processes using discrete events. Annals
of Software Engineering, 7(1):25–45, 1999.

15. X. Liu and E. A. Lee. CPO semantics of timed interactive actor networks. Theo-
retical Computer Science, 409(1):110–125, 2008.

16. X. Liu, E. Matsikoudis, and E. A. Lee. Modeling timed concurrent systems. In
CONCUR, volume LNCS 4137. Springer, 2006.

17. P. Ramadge and W. Wonham. The control of discrete event systems. Proceedings
of the IEEE, January 1989.

18. M. Sirjani and M. M. Jaghoori. Ten Years of Analyzing Actors: Rebeca Experience.
In Formal Modeling: Actors, Open Systems, Biological Systems, pages 20–56, 2011.

19. L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard
real-time systems. In ISCAS, pages 101–104, 2000.

20. R. K. Yates. Networks of real-time processes. In CONCUR. Springer, 1993.

	On the Verification of Timed Discrete-Event Models

