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Systems now-a-days  

! Concurrent 
! Event-based 
! Based on message passing (distributed or 

not) 

! Timing is becoming more and more 
important 
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Questions to answer 

! Are our systems correct? 
! Are they performing well enough? 

5 



Applications: correctness, 
performance, and more ... 
!  A correct distributed ticket service 
!  A correct distributed battleship game  
!  A reliable control program for Toyota brake 

system 
!  A sound program for the traffic lights on a 

crossing 
!  The best scheduling for multiple elevators in a 

building 
!  The best strategy for the European fishing market 
!  The most efficient rescue plan for a set of fire 

engines 
!  The best routing algorithm in a network 
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Analyzing Techniques 
!  Testing 
!  Simulation 
! Analytical Techniques (performance analysis) 
! Model checking (correctness) 
!  Theorem proving (correctness) 
 
! Alternative approach: 
◦  State-based simulation and verification: 

Performance Evaluation and Model Checking Join Forces 
Baier, Haverkort, Hermanns, Katoen 
Communications of the ACM, 2010  
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A Good Model 

A good model has to be: 
! Analyzable:  
◦  have a solid basis 

! Usable:  
◦  capture all we need,  
◦  understandable for the developer 

Tradeoff! 
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Our choice: Actors 
◦ A reference model for concurrent 

computation 
◦ Consisting of concurrent, distributed active 

objects 

  Proposed by Hewitt as an agent-based 
language (MIT, 1971)  

  Developed by Agha as a concurrent object-
based language (UIUC, since 1984) 

  Formalized by Talcott (with Agha, Mason and 
Smith): Towards a Theory of Actor 
Computation (SRI, 1992) 



Why actors? 

! Usable: a nice language!  
◦ OO is familiar for practitioners 
◦  Simple and intuitive model of concurrency 

! Analyzable: formal basis 
◦ we will provide a model checker 
◦  Loosely coupled actors will help in developing 

more efficient analysis techniques, like for 
compositional verification 
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So, ... 

! We designed Rebeca language 
! Developed model checking tools for it 
! Established theories and tools for 

compositional verification and reduction 
techniques 
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Rebeca: The Modeling Language 
!  Reactive object language  

 
  (Sirjani-Movaghar, Sharif U. of Technology, 2001) 

!  Imperative Actor-based language 
◦ Concurrent reactive objects (OO) 
◦  Java like syntax 
◦  Simple core 

(Hewitt-Agha Actors) 
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Rebeca models 

! Communication: 
"  Asynchronous message passing: non-blocking send 
"  Unbounded message queue for each rebec 
"  No explicit receive 

! Computation: 
"  Take a message from top of the queue and execute 

it 
"  Event-driven  
"  Non-preemptive (atomic execution)  
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Ticket Service model 
reactiveclass TicketService { 
    knownrebecs { 
        Agent a; 
    } 
    statevars { 
        int issueDelay; 
    } 
    msgsrv initial(int myDelay) {   
        issueDelay = myDelay; 
    } 
    msgsrv requestTicket() { 
        delay(issueDelay); 
        a.ticketIssued(1); 
    } 
} 
reactiveclass Agent { 
    knownrebecs { 
        TicketService ts; 
        Customer c; 
    } 
    msgsrv requestTicket() { 
        ts.requestTicket() deadline(5); 
    } 

    msgsrv ticketIssued(byte id) { 
        c.ticketIssued(id); 
    } 
} 
reactiveclass Customer { 
    knownrebecs { 
        Agent a; 
    } 
    msgsrv initial() { 
        self.try(); 
    } 
    msgsrv try() { 
        a.requestTicket(); 
    } 
    msgsrv ticketIssued(byte id) { 
        self.try() after(30); 
    } 
} 
main { 
    Agent a(ts, c):(); 
    TicketService ts(a):(3); 
    Customer c(a):(); 
} 
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More on Rebeca … 
! Model checking support 
! Compositional verification 
!  Symmetry and partial order 
!  Slicing 

! Used to model check SystemC 
! Now working on MPI (ongoing) 
! Extended for self-adaptive systems 
! Product line software 
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Timed-Rebeca 

! An extension of Rebeca for real time 
systems modeling 
◦ Computation time (delay) 
◦ Message delivery time (after) 
◦ Message expiration (deadline) 
◦  Periods of occurence of events (after) 
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Timed-Rebeca Example 

! Example of ticket service system 
! A Customer wants to buy a ticket 
◦ There are time constraints for issuing ticket 

Agent Customer Ticket service 
Request Ticket Request Ticket 

W
aits for 5 units 

Ticket Issued Ticket Issued 
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Ticket Service model 
reactiveclass TicketService { 
    knownrebecs { 
        Agent a; 
    } 
    statevars { 
        int issueDelay; 
    } 
    msgsrv initial(int myDelay) {   
        issueDelay = myDelay; 
    } 
    msgsrv requestTicket() { 
        delay(issueDelay); 
        a.ticketIssued(1); 
    } 
} 
reactiveclass Agent { 
    knownrebecs { 
        TicketService ts; 
        Customer c; 
    } 
    msgsrv requestTicket() { 
        ts.requestTicket() deadline(5); 
    } 

    msgsrv ticketIssued(byte id) { 
        c.ticketIssued(id); 
    } 
} 
reactiveclass Customer { 
    knownrebecs { 
        Agent a; 
    } 
    msgsrv initial() { 
        self.try(); 
    } 
    msgsrv try() { 
        a.requestTicket(); 
    } 
    msgsrv ticketIssued(byte id) { 
          \\ customer happy 
          self.try() after(30); 
    } 
} 
main { 
    Agent a(ts, c):(); 
    TicketService ts(a):(3); 
    Customer c(a):(); 
} 22 
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Semantics of a simple Timed-Rebeca Model: 
Timed Transition System 
reactiveclass RC1 (3) { 

 knownrebecs { 
  RC2 r2; 
 } 
 RC1() { 
  self.m1(); 
 } 
 msgsrv m1() { 
  delay(2); 
  r2.m2(); 
  delay(2); 
   r2.m3(); 
  self.m1() after (10); 

 } 
} 

reactiveclass RC2 (4) { 
 knownrebecs { 
  RC1 r1; 
 } 
 RC2() { } 
 msgsrv m2() { } 
  
 msgsrv m3() { } 

} 
 
main { 

 RC1 r1(r2):(); 
 RC2 r2(r1):(); 

} 
 

 msgsrv m1() { 
1   delay(2); 
2   r2.m2(); 
3   delay(2); 
4   r2.m3(); 
5   self.m1() after (10); 

 } 

Line number as 
program counter 



Timed-Transition System of The 
simple model  

! Eight different 
states are generated 
for one round of 
execution 

! Unbounded 
transition system 

msgsrv m1() { 
 1 delay(2); 
 2 r2.m2(); 
 3 delay(2); 
 4 r2.m3(); 
 5 self.m1() after (10); 
} 



Transitions in TTS 

!  In TTS the transitions are of three types: 
◦  Passage of time 
◦ Taking a message from the queue to execute: 

event 
◦  Silent transition τ: internal actions in an actor 
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Properties in an event-based system 

! Properties that we care about the most: 
◦ Distance of occurrence of two events 
◦  Event precedence 
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Real-time Patterns 
(Koymans, 1990), (Abid et al., 2011), (Bellini et al., 2009) and (Konrad et al., 
2005), (Dwyer et al., 1999) 

!  Maximal distance 
◦   Every e1 is followed by an e2 within x time units 

!  Exact distance 
◦   Every e1 is followed by an e2 in exactly x time units 

!  Minimal distance 
◦  Two consecutive events of e are at least x time units apart 

!  Periodicity 
◦  Event e occurs regularly with a period of x time units 

!  Bounded response 
◦  Each occurrence of an event e is responded within a 

maximum number of time units 
!  Precedence 
◦  Within the next x time units, the occurrence of e1 

precedes the occurrence of e2 
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So, we proposed 

! An event-based semantics for Timed 
Rebeca 
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Timed-Rebeca Semantics 

! We introduced: Floating Time Transition 
System 

!  Formal semantics given as SOS rules 

! The main rule is the schedular rule: 
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The schedular and progress of time 

!  The scheduler picks up messages from the bag and execute the 
corresponding methods. 

!  delay statements change the value of the current local time, 
now, for the considered rebec. 

!  The time tag for the message is the current local time (now), 
plus value of the after 

!  The scheduler picks the message with the smallest time tag of all 
the messages (for all the rebecs) in the message bag. 

!  The schedular checks if a deadline is missed. 

!  The variable now is set to the maximum between the current 
time of the rebec and the time tag of the selected message. 
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Floating-Time Transition System: 
FTTS 
! A state contains 
◦ Rebecs’ state variables valuation 
◦ Rebecs’ message bags 
◦  Local time of rebecs 

! Example of initial state  
◦  its rebecs have initial message in their 

message bags 
◦  Local times are 0 
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Floating-Time Transition System: 
rebecs with different local times 

! Called floating-time because of different 
local times of rebecs 
◦ There is no global time in each state 

! Example of a state in which the rebecs 
are in different local times 
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Transition in FTTS 

! Releasing and executing a messages 
◦ Assign new values to state variables 
◦  Sending some new messages 
◦ Changing the local time of the rebec because 

of the delay statement 
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Bounded Floating-Time Transition 
System 
! A new notion of state equivalence by 

shifting the local times of rebecs 
! Time in Timed-Rebeca models is relative 
◦ Uniform shift of time to past or future has no 

effect on the execution of statements 
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Bounding the Floating-Time 
Transition System 
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Bounded Floating-Time Transition 
System: an example 
! Ticket service system 

complete transition 
system 

! A shift-time transition, 
between states 16 and 
20 

36 



Bounded FTTS and FTTS 

! Bounded floating-time transition system 
and floating-time transition system are 
bisimilar – (if we define a correct 
equivalency relation for the timing values) 
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!  Two following conditions should be satisfied for 
two bisimilar states s and s’ 
1.  If s has a successor state q then s’ has a successor 

state q’ which q and q’ are bisimilar and vice versa 
2.  Labels of s and s’ are the same 

!  Condition 1 holds because  
◦  The execution of a message is the same in FTTS and 

Bounded FTSS 
◦  The message bag contents are the same 

!  Condition 2 holds because we are abstracting 
timing values  
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Deadlock and schedulability check 

 
◦ We keep the relative distance between values 

of all the timing values of each state (relative 
timing distances are preserved) 

◦ Deadlines are set relatively so time shift has 
no effect on deadline-miss 

◦  For checking “deadline missed” and 
“deadlock-freedom” relative time is enough 
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State space reduction:  
a simple Timed-Rebeca Model 
reactiveclass RC1 (3) { 

 knownrebecs { 
  RC2 r2; 
 } 
 RC1() { 
  self.m1(); 
 } 
 msgsrv m1() { 
  delay(2); 
  r2.m2(); 
  delay(2); 
   r2.m3(); 
  self.m1() after (10); 

 } 
} 

reactiveclass RC2 (4) { 
 knownrebecs { 
  RC1 r1; 
 } 
 RC2() { } 
 msgsrv m2() { } 
  
 msgsrv m3() { } 

} 
 
main { 

 RC1 r1(r2):(); 
 RC2 r2(r1):(); 

} 
 

 msgsrv m1() { 
1   delay(2); 
2   r2.m2(); 
3   delay(2); 
4    r2.m3(); 
5   self.m1() after (10); 

 } 

Line number as 
program counter 



Timed-Transition System of The 
simple model  

! Eight different 
states are generated 
for one round of 
execution 

! Unbounded 
transition system 

msgsrv m1() { 
 delay(2); 
 r2.m2(); 
 delay(2); 
 r2.m3(); 
 self.m1() after 
(10); 
} 



FTTS of the simple model 

!  Four states are generated for 
one round of execution 

! PCs are omitted 
! Unbounded state space is 

generated 
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Bounded FTTS of the simple model 

! Bounded transition 
system is generated 

! Contents of the 
states are the same 
as FTTS 
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Timed Transition System of a less simple model 

!  May have more unnecessary  
   interleaving 
 msgsrv m1() { 

  r2.m2() after (2); 
  delay(2); 
   r2.m3() after (2); 
  delay(2); 
  self.m1() after (10); 
 } 

!  The same floating-time  
   transition system as the 
   previous example 
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msgsrv m1() { 
 r2.m2() after (2); 
 delay(2); 
 r2.m3() after (2); 
 delay(2); 
  self.m1() after (10); 
} 
 



More Details about Floating-Time 
Transition System 
!  Floating-Time transition system may have 

non-determinism because of race in 
release time 

reactiveclass RC1 (3) { 
 knownrebecs { 
  RC2 r2; 
 } 
 RC1() { 
  self.m1(); 
 } 
 … 

} 

reactiveclass RC2 (4) { 
 knownrebecs { 
  RC1 r1; 
 } 
 RC2() {  
  self.m2(); 
 } 
 … 

} 
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Implementation and experimental 
results 
!  Implemented over Rebeca model-

checking platform 
! Explores transition system by Breadth 

First Search (BFS) algorithm 
! Added time bundle to the states to 

include time specifiers 
◦ There is tiny overhead because of time 

bundles 

! Embedded in Afra tool set 
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TTS vs FTTS State Space Size 

47 

! About 50% state space reduction 

Model Name Number of Rebecs FTTS State 
Space Size 

TTS State 
Space Size 

T
ic

ke
t 

Se
rv

ic
e 

Sy
st

em
 

3 6 12 
4 43 86 
5 282 532 
6 2035 3526 
7 17849 31500 

CSMA/CD 4 54 108 



Implementation and experimental 
results 
! Three different models have been 

developed 
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Implementation and experimental 
results 
!  Some minor changes in timing and 

behavior of models 
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Timed Event-based Property 
Language: TeProp 

! Event-based rather than state-based 
! Time intervals 

! We chose / designed our operators based 
on the timed patterns  
◦ Trying to have simpler properties for each 

pattern 
◦ Close to MTL 
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Real-time Patterns 
(Koymans, 1990), (Abid et al., 2011), (Bellini et al., 2009) and (Konrad et al., 
2005), (Dwyer et al., 1999) 

!  Maximal distance 
◦   Every e1 is followed by an e2 within x time units 

!  Exact distance 
◦   Every e1 is followed by an e2 in exactly x time units 

!  Minimal distance 
◦  Two consecutive events of e are at least x time units apart 

!  Periodicity 
◦  Event e occurs regularly with a period of x time units 

!  Bounded response 
◦  Each occurrence of an event e is responded within a 

maximum number of time units 
!  Precedence 
◦  Within the next x time units, the occurrence of e1 

precedes the occurrence of e2 
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We looked into Temporal Logic 

! Metric Temporal Logic (MTL), real-time 
extension of Linear Temporal Logic (LTL) 

! Timed Computational Tree Logic (TCTL), 
real-time extension of computational tree 
logic 

! TILCO, logic language used for both 
specification and verification 
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P ::= 
  ¬P | P ∧ P | P ∨ P | (P) | 

F [i,j] e 
F [i,j] (e →P) 
G [i,j] (e →P) 
e1 B[i,j] e2 

 
Time interval: [i,j] 
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Interesting point 

!  For model checking TCTL or TLTL we 
need the complete timed transition 
system 

! But we can check TeProp formulas on our 
BFTTS 

! Two independent works 
!  In both the focus is on events and not the 

states 
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Simulation 

!  Simulation gives us more space for 
maneuver  

! No state space explosion 
! Trade off: no certain answer 
! Good for prediction of performance 
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Simulation 

!   We translate Timed Rebeca models to 
Erlang. 
◦  Erlang is a functional programming language 

for programming real-time distributed 
systems. 
◦ Actor-based 

! Use McErlang for simulation (and also 
model checking) 
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Using McErlang 
!  Variety of analysis techniques. 
◦   Verification 
◦   Visualization of simulations 
◦  Be able to model larger set of behaviors: 

extended Timed Rebeca 
◦ More variety of data-types. 
◦  Calling custom functions  

!   Add tracing capability to models to use 
McErlang 
◦   Checkpoints 
◦   Events 
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McErlang Safety monitors 
!  Acts like a safety property. 
!  Can observe each generated program state by 

McErlang. 
◦   on-the-fly verification. 
◦   violates or satisfies in each state 

!   Can access information from program states: 
◦  process mailboxes 
◦  status of the processes 
◦  process actions (sending or receiving) 

!   Pre-defined monitors 
◦   Deadlock detection 
◦   queue size of each process 
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Tracability of Simulations 

! Events   
◦ Message send time 
◦ Message release time 
◦ Message expiration 

! Checkpoints 
◦ Check point label and terms: values of 

variables 
◦ Time of checkpoint 
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Case studies on hand 

! Routing in a Network-on-Chip 
◦ A joint work with the Hardware Department 

at Univ. of Tehran 
◦ Model checking and performance prediction 

! Modeling the sensing application in 
TinyOS 
◦ Check the deadline miss 
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Probabilistic Timed Rebeca 

! Model checking and performance analysis 
of timed probabilistic Rebeca based on 
PTA (and PFTTS?) 
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Back to Timed Rebeca and 
concluding … 
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Our reduction technique: distilled 

!  Event-based analysis - maximum progress of 
time based on events (not timer ticks) 
◦  Generating no new states because of delays, each 

rebec has its own local time  in each state 
!  Making use of isolated message server 

execution of actors 
◦  no shared variables, no blocking send or receive, 

single-threaded actors, non-preemptive execution of 
each message server 

!  A new notion of states equivalence by shifting 
the local times of concurrent elements in case 
of recurrent behaviors 
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Comparing to others 

! Real-time Maude 
◦ They have to tick – so, explosion 
◦  Bounded model checking 

! Timed Automata 
◦ Come up with many automata and many 

clocks for an asynchronous system - explode 
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Conclusion 

! An actor-based modeling language for 
modeling real-time concurrent event-
based systems 

! Develop model checking and simulation 
tools 

!  Schedulability and deadlock freedom 
analysis 

!  State-space reduction techniques using 
the specific semantics 
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Future work 

! A lot! 
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