
Schedulability, Deadlock Freedom, and Performance 
Analysis of Timed Actors 

Marjan Sirjani  
Reykjavik University, Iceland 
 
DOP Center, EECS, UC Berkeley, June 2013 



A joint work with 
!  Ramtin Khosravi 
!  Ehsan Khamespanah 
!  Brynjar Magnússon 
!  Haukur Kristinsson 
!  Ali Jafari 
!  Arni Herman Reynisson 
!  Steinar Hugi Sigurdarson 

2 

!  Luca Aceto 
!  Anna Ingolfsdottir 
!  Matteo Cimini 
!  Zeynab Sabahi 
!  Zeynab Sharifi 
!  Mohammad Javad Izadi 

From Reykjavik University and University of Tehran 



Outline 

! Motivation (and where do we stand) 
! Rebeca and Timed Rebeca – the language 
!  Semantics and Floating Time Transition 

System 
!  Schedulability and Deadlock Freedom 
!  Simulation and Performance Analysis 
! Conclusion and Future Work 

3 



Systems now-a-days  

! Concurrent 
! Event-based 
! Based on message passing (distributed or 

not) 

! Timing is becoming more and more 
important 

4 



Questions to answer 

! Are our systems correct? 
! Are they performing well enough? 

5 



Applications: correctness, 
performance, and more ... 
!  A correct distributed ticket service 
!  A correct distributed battleship game  
!  A reliable control program for Toyota brake 

system 
!  A sound program for the traffic lights on a 

crossing 
!  The best scheduling for multiple elevators in a 

building 
!  The best strategy for the European fishing market 
!  The most efficient rescue plan for a set of fire 

engines 
!  The best routing algorithm in a network 

6 



Analyzing Techniques 
!  Testing 
!  Simulation 
! Analytical Techniques (performance analysis) 
! Model checking (correctness) 
!  Theorem proving (correctness) 
 
! Alternative approach: 
◦  State-based simulation and verification: 

Performance Evaluation and Model Checking Join Forces 
Baier, Haverkort, Hermanns, Katoen 
Communications of the ACM, 2010  

7 



A Good Model 

A good model has to be: 
! Analyzable:  
◦  have a solid basis 

! Usable:  
◦  capture all we need,  
◦  understandable for the developer 

Tradeoff! 

8 



CCS#

SMV#

Java#
###C#

Modeling#languages#

RML#
I/O#Automata#

CSP#

Promela#

Mocha#

FDR#

NuSMV#

Spin#

Java#PathFinder#

Bandera#

SLAM#

Abstract#

MathemaDcal#

Too#heavy#
Informal#

VerificaDon#Techniques:##
• #DeducDon#

• #Model#checking##

Programming#languages#

Petri#net#

needs#high#experDse#

causes#state#explosion#

Different#approaches#

9#



10 

Our choice: Actors 
◦ A reference model for concurrent 

computation 
◦ Consisting of concurrent, distributed active 

objects 

  Proposed by Hewitt as an agent-based 
language (MIT, 1971)  

  Developed by Agha as a concurrent object-
based language (UIUC, since 1984) 

  Formalized by Talcott (with Agha, Mason and 
Smith): Towards a Theory of Actor 
Computation (SRI, 1992) 



Why actors? 

! Usable: a nice language!  
◦ OO is familiar for practitioners 
◦  Simple and intuitive model of concurrency 

! Analyzable: formal basis 
◦ we will provide a model checker 
◦  Loosely coupled actors will help in developing 

more efficient analysis techniques, like for 
compositional verification 

11 



So, ... 

! We designed Rebeca language 
! Developed model checking tools for it 
! Established theories and tools for 

compositional verification and reduction 
techniques 

12 



Rebeca: The Modeling Language 
!  Reactive object language  

 
  (Sirjani-Movaghar, Sharif U. of Technology, 2001) 

!  Imperative Actor-based language 
◦ Concurrent reactive objects (OO) 
◦  Java like syntax 
◦  Simple core 

(Hewitt-Agha Actors) 

13 



Rebeca models 

! Communication: 
"  Asynchronous message passing: non-blocking send 
"  Unbounded message queue for each rebec 
"  No explicit receive 

! Computation: 
"  Take a message from top of the queue and execute 

it 
"  Event-driven  
"  Non-preemptive (atomic execution)  

14 



Ticket Service model 
reactiveclass TicketService { 
    knownrebecs { 
        Agent a; 
    } 
    statevars { 
        int issueDelay; 
    } 
    msgsrv initial(int myDelay) {   
        issueDelay = myDelay; 
    } 
    msgsrv requestTicket() { 
        delay(issueDelay); 
        a.ticketIssued(1); 
    } 
} 
reactiveclass Agent { 
    knownrebecs { 
        TicketService ts; 
        Customer c; 
    } 
    msgsrv requestTicket() { 
        ts.requestTicket() deadline(5); 
    } 

    msgsrv ticketIssued(byte id) { 
        c.ticketIssued(id); 
    } 
} 
reactiveclass Customer { 
    knownrebecs { 
        Agent a; 
    } 
    msgsrv initial() { 
        self.try(); 
    } 
    msgsrv try() { 
        a.requestTicket(); 
    } 
    msgsrv ticketIssued(byte id) { 
        self.try() after(30); 
    } 
} 
main { 
    Agent a(ts, c):(); 
    TicketService ts(a):(3); 
    Customer c(a):(); 
} 

15 

Instances of 
three different 

actors 

Actor type and 
its message 

servers 

Asynchronous 
message sending 



More on Rebeca … 
! Model checking support 
! Compositional verification 
!  Symmetry and partial order 
!  Slicing 

! Used to model check SystemC 
! Now working on MPI (ongoing) 
! Extended for self-adaptive systems 
! Product line software 

16 



References  
!  M. Sirjani, A. Movaghar, and M.R. Mousavi, Compositional 

Verification of an Actor-Based Model for Reactive Systems, in 
Proceedings of Workshop on Automated Verification of Critical 
Systems (AVoCS'01), Oxford University,  April 2001. 

!  M. Sirjani, M. M. Jaghoori, Ten Years of Analyzing Actors: Rebeca 
Experience, LNCS 7000, pp. 20-56, 2011. 

!  M. Sirjani,  A. Movaghar,  A. Shali, F.S. de Boer, Modeling and 
Verification of Reactive Systems using Rebeca, Fundamenta 
Informaticae, Volume 63, Number 4,  ISSN 0169-2968, pp. 385-410, 
2004. 

!  M . M. Jaghoori, M. Sirjani, M. R. Mousavi, E. Khamespanah, A. Movaghar, 
Symmetry and Partial Order Reduction Techniques in Model 
Checking Rebeca, Acta Informatica, Volume 47, Issue 1, pp. 33-66, 
2009. 

!  N. Razavi, R. Behjati, H. Sabouri, E. Khamespanah, A. Shali, M. Sirjani, 
Sysfier: Actor-based Formal Verification of SystemC, ACM 
Transactions on Embedded Computing Systems, Vol. 10, No. 2, Article 
19, 2010. 

17 



18 



19 



Timed-Rebeca 

! An extension of Rebeca for real time 
systems modeling 
◦ Computation time (delay) 
◦ Message delivery time (after) 
◦ Message expiration (deadline) 
◦  Periods of occurence of events (after) 

20 



Timed-Rebeca Example 

! Example of ticket service system 
! A Customer wants to buy a ticket 
◦ There are time constraints for issuing ticket 

Agent Customer Ticket service 
Request Ticket Request Ticket 

W
aits for 5 units 

Ticket Issued Ticket Issued 

21 



Ticket Service model 
reactiveclass TicketService { 
    knownrebecs { 
        Agent a; 
    } 
    statevars { 
        int issueDelay; 
    } 
    msgsrv initial(int myDelay) {   
        issueDelay = myDelay; 
    } 
    msgsrv requestTicket() { 
        delay(issueDelay); 
        a.ticketIssued(1); 
    } 
} 
reactiveclass Agent { 
    knownrebecs { 
        TicketService ts; 
        Customer c; 
    } 
    msgsrv requestTicket() { 
        ts.requestTicket() deadline(5); 
    } 

    msgsrv ticketIssued(byte id) { 
        c.ticketIssued(id); 
    } 
} 
reactiveclass Customer { 
    knownrebecs { 
        Agent a; 
    } 
    msgsrv initial() { 
        self.try(); 
    } 
    msgsrv try() { 
        a.requestTicket(); 
    } 
    msgsrv ticketIssued(byte id) { 
          \\ customer happy 
          self.try() after(30); 
    } 
} 
main { 
    Agent a(ts, c):(); 
    TicketService ts(a):(3); 
    Customer c(a):(); 
} 22 

Instances of 
three different 

actors 

Actor type and 
its message 

servers 

Asynchronous 
message sending 

Time progress 
because of 

computation delay 
Deadline for the 
message release 

Communication 
delay or 

periodic tasks 



Semantics of a simple Timed-Rebeca Model: 
Timed Transition System 
reactiveclass RC1 (3) { 

 knownrebecs { 
  RC2 r2; 
 } 
 RC1() { 
  self.m1(); 
 } 
 msgsrv m1() { 
  delay(2); 
  r2.m2(); 
  delay(2); 
   r2.m3(); 
  self.m1() after (10); 

 } 
} 

reactiveclass RC2 (4) { 
 knownrebecs { 
  RC1 r1; 
 } 
 RC2() { } 
 msgsrv m2() { } 
  
 msgsrv m3() { } 

} 
 
main { 

 RC1 r1(r2):(); 
 RC2 r2(r1):(); 

} 
 

 msgsrv m1() { 
1   delay(2); 
2   r2.m2(); 
3   delay(2); 
4   r2.m3(); 
5   self.m1() after (10); 

 } 

Line number as 
program counter 



Timed-Transition System of The 
simple model  

! Eight different 
states are generated 
for one round of 
execution 

! Unbounded 
transition system 

msgsrv m1() { 
 1 delay(2); 
 2 r2.m2(); 
 3 delay(2); 
 4 r2.m3(); 
 5 self.m1() after (10); 
} 



Transitions in TTS 

!  In TTS the transitions are of three types: 
◦  Passage of time 
◦ Taking a message from the queue to execute: 

event 
◦  Silent transition τ: internal actions in an actor 

25 



Properties in an event-based system 

! Properties that we care about the most: 
◦ Distance of occurrence of two events 
◦  Event precedence 

26 



Real-time Patterns 
(Koymans, 1990), (Abid et al., 2011), (Bellini et al., 2009) and (Konrad et al., 
2005), (Dwyer et al., 1999) 

!  Maximal distance 
◦   Every e1 is followed by an e2 within x time units 

!  Exact distance 
◦   Every e1 is followed by an e2 in exactly x time units 

!  Minimal distance 
◦  Two consecutive events of e are at least x time units apart 

!  Periodicity 
◦  Event e occurs regularly with a period of x time units 

!  Bounded response 
◦  Each occurrence of an event e is responded within a 

maximum number of time units 
!  Precedence 
◦  Within the next x time units, the occurrence of e1 

precedes the occurrence of e2 

27 



So, we proposed 

! An event-based semantics for Timed 
Rebeca 

28 



Timed-Rebeca Semantics 

! We introduced: Floating Time Transition 
System 

!  Formal semantics given as SOS rules 

! The main rule is the schedular rule: 

29 



The schedular and progress of time 

!  The scheduler picks up messages from the bag and execute the 
corresponding methods. 

!  delay statements change the value of the current local time, 
now, for the considered rebec. 

!  The time tag for the message is the current local time (now), 
plus value of the after 

!  The scheduler picks the message with the smallest time tag of all 
the messages (for all the rebecs) in the message bag. 

!  The schedular checks if a deadline is missed. 

!  The variable now is set to the maximum between the current 
time of the rebec and the time tag of the selected message. 

30 



Floating-Time Transition System: 
FTTS 
! A state contains 
◦ Rebecs’ state variables valuation 
◦ Rebecs’ message bags 
◦  Local time of rebecs 

! Example of initial state  
◦  its rebecs have initial message in their 

message bags 
◦  Local times are 0 

31 



Floating-Time Transition System: 
rebecs with different local times 

! Called floating-time because of different 
local times of rebecs 
◦ There is no global time in each state 

! Example of a state in which the rebecs 
are in different local times 

 

32 



Transition in FTTS 

! Releasing and executing a messages 
◦ Assign new values to state variables 
◦  Sending some new messages 
◦ Changing the local time of the rebec because 

of the delay statement 

33 



Bounded Floating-Time Transition 
System 
! A new notion of state equivalence by 

shifting the local times of rebecs 
! Time in Timed-Rebeca models is relative 
◦ Uniform shift of time to past or future has no 

effect on the execution of statements 

34 



Bounding the Floating-Time 
Transition System 

35 

Ticket Issued 

Ticket Issued, 33 



Bounded Floating-Time Transition 
System: an example 
! Ticket service system 

complete transition 
system 

! A shift-time transition, 
between states 16 and 
20 

36 



Bounded FTTS and FTTS 

! Bounded floating-time transition system 
and floating-time transition system are 
bisimilar – (if we define a correct 
equivalency relation for the timing values) 

37 



!  Two following conditions should be satisfied for 
two bisimilar states s and s’ 
1.  If s has a successor state q then s’ has a successor 

state q’ which q and q’ are bisimilar and vice versa 
2.  Labels of s and s’ are the same 

!  Condition 1 holds because  
◦  The execution of a message is the same in FTTS and 

Bounded FTSS 
◦  The message bag contents are the same 

!  Condition 2 holds because we are abstracting 
timing values  

38 



Deadlock and schedulability check 

 
◦ We keep the relative distance between values 

of all the timing values of each state (relative 
timing distances are preserved) 

◦ Deadlines are set relatively so time shift has 
no effect on deadline-miss 

◦  For checking “deadline missed” and 
“deadlock-freedom” relative time is enough 

39 



State space reduction:  
a simple Timed-Rebeca Model 
reactiveclass RC1 (3) { 

 knownrebecs { 
  RC2 r2; 
 } 
 RC1() { 
  self.m1(); 
 } 
 msgsrv m1() { 
  delay(2); 
  r2.m2(); 
  delay(2); 
   r2.m3(); 
  self.m1() after (10); 

 } 
} 

reactiveclass RC2 (4) { 
 knownrebecs { 
  RC1 r1; 
 } 
 RC2() { } 
 msgsrv m2() { } 
  
 msgsrv m3() { } 

} 
 
main { 

 RC1 r1(r2):(); 
 RC2 r2(r1):(); 

} 
 

 msgsrv m1() { 
1   delay(2); 
2   r2.m2(); 
3   delay(2); 
4    r2.m3(); 
5   self.m1() after (10); 

 } 

Line number as 
program counter 



Timed-Transition System of The 
simple model  

! Eight different 
states are generated 
for one round of 
execution 

! Unbounded 
transition system 

msgsrv m1() { 
 delay(2); 
 r2.m2(); 
 delay(2); 
 r2.m3(); 
 self.m1() after 
(10); 
} 



FTTS of the simple model 

!  Four states are generated for 
one round of execution 

! PCs are omitted 
! Unbounded state space is 

generated 

42 



Bounded FTTS of the simple model 

! Bounded transition 
system is generated 

! Contents of the 
states are the same 
as FTTS 

43 



Timed Transition System of a less simple model 

!  May have more unnecessary  
   interleaving 
 msgsrv m1() { 

  r2.m2() after (2); 
  delay(2); 
   r2.m3() after (2); 
  delay(2); 
  self.m1() after (10); 
 } 

!  The same floating-time  
   transition system as the 
   previous example 

 
44 

msgsrv m1() { 
 r2.m2() after (2); 
 delay(2); 
 r2.m3() after (2); 
 delay(2); 
  self.m1() after (10); 
} 
 



More Details about Floating-Time 
Transition System 
!  Floating-Time transition system may have 

non-determinism because of race in 
release time 

reactiveclass RC1 (3) { 
 knownrebecs { 
  RC2 r2; 
 } 
 RC1() { 
  self.m1(); 
 } 
 … 

} 

reactiveclass RC2 (4) { 
 knownrebecs { 
  RC1 r1; 
 } 
 RC2() {  
  self.m2(); 
 } 
 … 

} 

45 



Implementation and experimental 
results 
!  Implemented over Rebeca model-

checking platform 
! Explores transition system by Breadth 

First Search (BFS) algorithm 
! Added time bundle to the states to 

include time specifiers 
◦ There is tiny overhead because of time 

bundles 

! Embedded in Afra tool set 

46 



TTS vs FTTS State Space Size 

47 

! About 50% state space reduction 

Model Name Number of Rebecs FTTS State 
Space Size 

TTS State 
Space Size 

T
ic

ke
t 

Se
rv

ic
e 

Sy
st

em
 

3 6 12 
4 43 86 
5 282 532 
6 2035 3526 
7 17849 31500 

CSMA/CD 4 54 108 



Implementation and experimental 
results 
! Three different models have been 

developed 

48 



Implementation and experimental 
results 
!  Some minor changes in timing and 

behavior of models 

49 



Timed Event-based Property 
Language: TeProp 

! Event-based rather than state-based 
! Time intervals 

! We chose / designed our operators based 
on the timed patterns  
◦ Trying to have simpler properties for each 

pattern 
◦ Close to MTL 

50 



Real-time Patterns 
(Koymans, 1990), (Abid et al., 2011), (Bellini et al., 2009) and (Konrad et al., 
2005), (Dwyer et al., 1999) 

!  Maximal distance 
◦   Every e1 is followed by an e2 within x time units 

!  Exact distance 
◦   Every e1 is followed by an e2 in exactly x time units 

!  Minimal distance 
◦  Two consecutive events of e are at least x time units apart 

!  Periodicity 
◦  Event e occurs regularly with a period of x time units 

!  Bounded response 
◦  Each occurrence of an event e is responded within a 

maximum number of time units 
!  Precedence 
◦  Within the next x time units, the occurrence of e1 

precedes the occurrence of e2 

51 



We looked into Temporal Logic 

! Metric Temporal Logic (MTL), real-time 
extension of Linear Temporal Logic (LTL) 

! Timed Computational Tree Logic (TCTL), 
real-time extension of computational tree 
logic 

! TILCO, logic language used for both 
specification and verification 

52 



P ::= 
  ¬P | P ∧ P | P ∨ P | (P) | 

F [i,j] e 
F [i,j] (e →P) 
G [i,j] (e →P) 
e1 B[i,j] e2 

 
Time interval: [i,j] 
 

53 



Interesting point 

!  For model checking TCTL or TLTL we 
need the complete timed transition 
system 

! But we can check TeProp formulas on our 
BFTTS 

! Two independent works 
!  In both the focus is on events and not the 

states 
54 



Outline 

! Motivation (and where do we stand) 
! Timed Rebeca – the language 
!  Semantics and Floating Time Transition 

System 
!  Schedulability and Deadlock Freedom 
!  Simulation 
! Conclusion and Future Work 

55 



Simulation 

!  Simulation gives us more space for 
maneuver  

! No state space explosion 
! Trade off: no certain answer 
! Good for prediction of performance 

56 



Simulation 

!   We translate Timed Rebeca models to 
Erlang. 
◦  Erlang is a functional programming language 

for programming real-time distributed 
systems. 
◦ Actor-based 

! Use McErlang for simulation (and also 
model checking) 

57 



Using McErlang 
!  Variety of analysis techniques. 
◦   Verification 
◦   Visualization of simulations 
◦  Be able to model larger set of behaviors: 

extended Timed Rebeca 
◦ More variety of data-types. 
◦  Calling custom functions  

!   Add tracing capability to models to use 
McErlang 
◦   Checkpoints 
◦   Events 

58 



McErlang Safety monitors 
!  Acts like a safety property. 
!  Can observe each generated program state by 

McErlang. 
◦   on-the-fly verification. 
◦   violates or satisfies in each state 

!   Can access information from program states: 
◦  process mailboxes 
◦  status of the processes 
◦  process actions (sending or receiving) 

!   Pre-defined monitors 
◦   Deadlock detection 
◦   queue size of each process 

59 



Tracability of Simulations 

! Events   
◦ Message send time 
◦ Message release time 
◦ Message expiration 

! Checkpoints 
◦ Check point label and terms: values of 

variables 
◦ Time of checkpoint 

60 



Case studies on hand 

! Routing in a Network-on-Chip 
◦ A joint work with the Hardware Department 

at Univ. of Tehran 
◦ Model checking and performance prediction 

! Modeling the sensing application in 
TinyOS 
◦ Check the deadline miss 

61 



Probabilistic Timed Rebeca 

! Model checking and performance analysis 
of timed probabilistic Rebeca based on 
PTA (and PFTTS?) 

62 



Back to Timed Rebeca and 
concluding … 

63 



Our reduction technique: distilled 

!  Event-based analysis - maximum progress of 
time based on events (not timer ticks) 
◦  Generating no new states because of delays, each 

rebec has its own local time  in each state 
!  Making use of isolated message server 

execution of actors 
◦  no shared variables, no blocking send or receive, 

single-threaded actors, non-preemptive execution of 
each message server 

!  A new notion of states equivalence by shifting 
the local times of concurrent elements in case 
of recurrent behaviors 

64 



Comparing to others 

! Real-time Maude 
◦ They have to tick – so, explosion 
◦  Bounded model checking 

! Timed Automata 
◦ Come up with many automata and many 

clocks for an asynchronous system - explode 

65 



Conclusion 

! An actor-based modeling language for 
modeling real-time concurrent event-
based systems 

! Develop model checking and simulation 
tools 

!  Schedulability and deadlock freedom 
analysis 

!  State-space reduction techniques using 
the specific semantics 

66 



Future work 

! A lot! 

67 


