Schedulability, Deadlock Freedom, and Performance
Analysis of Timed Actors

Marjan Sirjani

Reykjavik University, Iceland

DOP Center, EECS, UC Berkeley, June 2013

A joint work with

e Ramtin Khosravi e Luca Aceto

e Ehsan Khamespanah e Anna Ingolfsdottir
e Brynjar Magnusson * Matteo Cimini

e Haukur Kristinsson o Zeynab Sabahi

o Ali Jafari o Zeynab Sharifi

e Arni Herman Reynisson =~ ¢ Mohammad Javad Izadi

 Steinar Hugi Sigurdarson

From Reykjavik University and University of Tehran

QOutline

* Motivation (and where do we stand)
* Rebeca and Timed Rebeca — the language

» Semantics and Floating Time Transition
System

» Schedulability and Deadlock Freedom
 Simulation and Performance Analysis
e Conclusion and Future Work

Systems now-a-days

e Concurrent
e Event-based

* Based on message passing (distributed or
not)

e Timing is becoming more and more
Important

Questions to answer

* Are our systems correct?
* Are they performing well enough!?

Applications: correctness,
performance, and more ...

e A correct distributed ticket service
e A correct distributed battleship game

* A reliable control program for Toyota brake
system

* A sound program for the traffic lights on a
crossing

* The best scheduling for multiple elevators in a
building
e The best strategy for the European fishing market

e The most efficient rescue plan for a set of fire
engines

* The best routing algorithm in a network

Analyzing Techniques

 Testing

e Simulation

* Analytical Techniques (performance analysis)
e Model checking (correctness)

e Theorem proving (correctness)

 Alternative approach:

o State-based simulation and verification:

Performance Evaluation and Model Checking Join Forces

Baier, Haverkort, Hermanns, Katoen
Communications of the ACM, 2010

A Good Model

A good model has to be:
* Analyzable:

> have a solid basis
e Usable:

> capture all we need,

> understandable for the developer

Tradeoff!

Different approaches

Modeling languages

CCS CSP
op-° :
RML °
/O Automata
Verification Techniques: S o
e Deduction SMV
needs high expertise o
e Model checking Pere’Ia

causes state explosion

Java PathFinder

ge5S—=
Bandera
* dslam 5>

Programming langua

Too heavy
Informal

Our choice: Actors

o A reference model for concurrent
computation

> Consisting of concurrent, distributed active
objects

Proposed by Hewitt as an agent-based
language (MIT, 1971)

Developed by Agha as a concurrent object-
based language (UIUC, since 1984)

Formalized by Talcott (with Agha, Mason and
Smith): Towards a Theory of Actor
Computation (SRI, 1992)

Why actors!?

» Usable: a nice language!
> OO is familiar for practitioners
> Simple and intuitive model of concurrency

* Analyzable: formal basis
> we will provide a model checker

> Loosely coupled actors will help in developing
more efficient analysis techniques, like for
compositional verification

So, ...

* We designed Rebeca language
» Developed model checking tools for it

» Established theories and tools for
compositional verification and reduction
techniques

Rebeca: The Modeling Language

» Reactive object language
(Sirjani-Movaghar, Sharif U. of Technology, 2001)

* Imperative Actor-based language
> Concurrent reactive objects (OO)
> Java like syntax
> Simple core

(Hewitt-Agha Actors)

Rebeca models

 Communication:
Asynchronous message passing: non-blocking send
Unbounded message queue for each rebec

No explicit receive

e Computation:

Take a message from top of the queue and execute
it
Event-driven

Non-preemptive (atomic execution)

Ticket Service model

reactiveclass TicketService {
knownrebecs {
Agent a;
Y
statevars {
int issueDelay;

}

msgsrv initial(int myDelay) {

issueDelay = myDelay;

servers

| Actor type and
msgsrv requestTicket() { its message
delay(issueDelay);
a.ticketlssued(1);
Y

}
reactiveclass Agent {
knownrebecs {
TicketService ts;
Customer c;

}

msgsrv requestTicket() {
ts.requestTicket() deadline(5);

}

msgsrv ticketlssued(byte id) {
c.ticketlssued(id);

}
}

reactiveclass Customer {
knownrebecs {

Agent a;
}
msgsrv initial() { Asynchronous
} self.try(); message sending

msgsrv try() {
a.requestTicket();

}

msgsrv ticketlssued(byte id) {
self.try() after(30);

}
}
main {
Agent a(ts, ¢):();
TicketService ts(a):(3); Instan.ces of
Customer c(a):(); three different

} actors

More on Rebeca ...

* Model checking support

» Compositional verification
e Symmetry and partial order
e Slicing

e Used to model check SystemC

* Now working on MPI (ongoing)

* Extended for self-adaptive systems
* Product line software

References

M. Sirjani, A. Movaghar, and M.R. Mousavi, Compesitional
Verification of an Actor-Based Model for Reactive Systems, in
Proceedings of Workshop on Automated Verification of Critical

Systems (AVoCS'01), Oxford University, April 2001.

M. Sirjani, M. M. Jaghoori, Ten Years of Analyzing Actors: Rebeca
Experience, LNCS 7000, pp. 20-56, 201 |.

M. Sirjani, A. Movaghar, A.Shali, FS. de Boer, Modeling and
Verification of Reactive Systems using Rebeca, Fundamenta
Informaticae,Volume 63, Number 4, ISSN 0169-2968, pp. 385-410,

2004.

M . M. Jaghoori, M. Sirjani, M. R. Mousavi, E. Khamespanah, A. Movaghar,
Symmetry and Partial Order Reduction Techniques in Model
Checking Rebeca, Acta Informatica,Volume 47, Issue |, pp. 33-66,

20009.

N. Razavi, R. Behjati, H. Sabouri, E. Khamespanah, A. Shali, M. Sirjani,
Sysfier:Actor-based Formal Verification of SystemC,ACM
Transactions on Embedded Computing Systems,Vol. 10, No. 2, Article

19,2010.

Rebeca Formal Modeling Language

Rebeca

View Edit History Print

Home« Rebeca (Reactive Objects Language) is an actor-based language with a formal foundation, designed in an
Documentation effort to bridge the gap between formal verification approaches and real applications. It can be considered as
a reference model for concurrent computation, based on an operational interpretation of the actor model. It

RCIECE is also a platform for developing object-based concurrent systems in practice.

Tools

Publications Besides having an appropriate and efficient way for modeling concurrent and distributed systems, one needs
a formal verification approach to ensure their correctness. Rebeca is supported by Rebeca Verifier tool, as a
front-end, to translate the codes into existing model-checker languages and thus, be able to verify their
Downloads properties. Modular verification and abstraction techniques are used to reduce the state space and make it
possible to verify complicated reactive systems.

Members

Examples

Rebeca is an actor-based language for modeling and verification of reactive systems. Modeling a system in
Rebeca requires one to specify reactive-object templates and a finite set of object instances that run in
parallel. Properties can be specified in temporal logic. Different approaches are proposed for verifying
correctness of these properties.

The key features of Rebeca are:

¢ using actor-based concepts for the specification of reactive systems and their communications;

¢ introducing components as an additional structure for verification purposes;

¢ providing a formal semantics for the model and components, comprising their states, communications,
state transitions, and the knowledge of accessible interfaces;

¢ using different abstraction techniques which preserve a set of behavioral specification in temporal logic,
and reduce the state space of a model, making it more suitable for model checking techniques;

¢ establishing the soundness of these abstraction techniques by proving a weak simulation relation
between the constructs;

¢ applying a compositional verification approach, using the specified abstraction techniques;

¢ translating Rebeca models into target languages of existing model checkers, enabling model checking of
open, distributed systems.

¢ direct model checking using RMC.

Rebeca, is inspired by the actors paradigm, but goes beyond it by adding the concept of components and
the ability to analyze a group of reactive objects as a component. Also, we have classes that reactive
objects are instantiated from. Classes serve as templates for state, behavior, and the interface access;
adding reusability in both modeling and verification process.

I ||

T Afra =

File Edit Source Refactor Windnw: *° " “-=rch
- B 1 PrOJeCtS Ej‘ [Rebeca ‘
[% package Explorer B rowser zModel.rebeca &2
= SamplePR] ~eactiveclass SampleReactiveClass(3) {
+ out msgsry initial() |
P isampleModel. property self.initial(): MOdeI & Property
SampleModel.rebeca } .
) Editor
main {
SampleReactiveClass s(): ()
}
3 Problems | & Console | @ Verification Result &2 . rs ' : . v
e value Model-Checking 2
=[] Checked Property Resu It View
Algorithm Mested-DFS
Mame System default deadlock
Result satisfied
Type LTL —
= @ Model Checking Information
Consumed Memary 38
Hashtable Size 2720

€

Timed-Rebeca

* An extension of Rebeca for real time
systems modeling
- Computation time (delay)
> Message delivery time (after)
> Message expiration (deadline)
> Periods of occurence of events (after)

Timed-Rebeca Example

* Example of ticket service system
* A Customer wants to buy a ticket

> There are time constraints for issuing ticket

Customer Agent Ticket service

Request TICket) Request TicketE
T|cI<et Issued ETicket Issued

suun 5 $67 e

Ticket Service model

reactiveclass TicketService { msgsrv ticketlssued(byte id) {
knownrebecs { c.ticketlssued(id);
Agent a; }
} }
statevars { reactiveclass Customer {
int issueDelay; knownrebecs {
} Agent 3a;
msgstrv initial(int myDelay) { }
issueDelay = myDelay; initial() { Asynchronous
Acto g : :
) - | Communication () message sending
msgsrv requestTicket() { ItS delay or
delay(issueDelay); S try() {

periodic tasks

icketlssued(1); estTicket();

Time progress
because of
computation delay

msgsrv treketlssued(byte id) {

lass Agent { \\ customer happy
ebecs { self.try() after(30);

: : Deadline for the
TicketService ts;
Customer c: message release
} main { | P
msgsrv requestTicket() { Agent a(ts,):(); nstan.ces 2
ts.requestTicket() deadline(5); TicketService ts(a):{2: three different
} Customer c(2):(); actors

}

Semantics of a simple Timed-Rebeca Model:
Timed Transition System

reactiveclass RCI (3) {
knownrebecs {
RC2 r2;

1

|

Line number as {

program counter |yt | 0;

reactiveclass RC2 (4) {

knownrebecs {

RCI rl;

}
RC2() { }

msgsrv m2() { }

\n%v

d

T URE Oy

S¢

msgsrv m1 () {
delay(2);
r2.m2();
delay(2);
r2.m3();
self.ml() after (10);

{}

.
)

’

: time=4
time =2

msgsrv mi () Sc] Of The
| delay(2); queielE
2 r2.m2(); i e — Bmcoiceres

3 delay(2); Tl ' I

4 r2.m3(); |

5 self.m() af e

ltime = time + 2

l(rl = rl.m1(),0,»)

r2

: l ime = time + 2
} 7(rl) F I
— | time=0 gn==
56 lr(rl)
queue | - | —
‘:’ pC _ | ; Egeue i[’érl':14—‘:'2,r112(),0,w)l
queue | [(r1 = r2.m3(),0,)] }f”)
e | Bl
(r1 - r2.m3(),0,) <fef
| B
S7 |
queue - : Z:eue](y-1ay-z.»:x3(),0,m)l
—i | S
[- pc - l(n - r2.m3(),0,)
queue | - | [efe==t—
~ | o [laveve |-
~ | pc - | —

114 ltime = time + 10

tlme = 2 I : - [EEE '[(rlsirl.ml(),lﬂ,w)]
time=4 | time =14 time = time + 10 ra

Transitions in TTS

* In TTS the transitions are of three types:
> Passage of time

> Taking a message from the queue to execute:
event

o Silent transition T:internal actions in an actor

Properties in an event-based system

* Properties that we care about the most:
> Distance of occurrence of two events
> Event precedence

Real-time Patterns

(Koymans, 1990), (Abid et al., 201 1), (Bellini et al., 2009) and (Konrad et al.,
2005), (Dwyer et al., 1999)

* Maximal distance
> Every el is followed by an e2 within x time units
» Exact distance
> Every el is followed by an €2 in exactly x time units
e Minimal distance
> Two consecutive events of e are at least x time units apart
 Periodicity
> Event e occurs regularly with a period of x time units
e Bounded response

> Each occurrence of an event e is responded within a
maximum number of time units

e Precedence

> Within the next x time units, the occurrence of el
precedes the occurrence of e2

S0, we proposed

e An event-based semantics for Timed
Rebeca

Timed-Rebeca Semantics

* We introduced: Floating Time Transition
System

* Formal semantics given as SOS rules

e The main rule is the schedular rule:

(ar, (m), oy, [rtime = maz(TT, 0, (now)), [arg = 7], sender = r;], Env, B) 3 (a.f,i Ent,B')

()
({or, } UEnv,{(ri,m(v),r;,TT, DL)} U B) = ({0}, } U Em', B)

The schedular and progress of time

The scheduler picks up messages from the bag and execute the
corresponding methods.

delay statements change the value of the current local time,
now, for the considered rebec.

The time tag for the message is the current local time (now),
plus value of the after

The scheduler picks the message with the smallest time tag of all
the messages (for all the rebecs) in the message bag.

The schedular checks if a deadline is missed.

The variable now is set to the maximum between the current
time of the rebec and the time tag of the selected message.

Floating-Time Transition System:
FTTS

» A state contains
> Rebecs’ state variables valuation
> Rebecs’ message bags
> Local time of rebecs

* Example of initial state

> its rebecs have initial message in their

SQ
message bags S
. a | Message Bag: [(null — a.initial(),0,)]
> Local times are O e .
State vars: issueDelay=?
ts | Message Bag: [(null - ts.initial(),0,)]
Now: 0
State vars:

¢ | Message Bag: [(null - c.initial(),0,0)]

Now: 0

Floating-Time Transition System:
rebecs with different local times

 Called floating-time because of different
local times of rebecs

° There is no global time in each state

» Example of a state in which the rebecs
are in different local times

S1s5

State vars:

a | Message Bag: [|

Now: 3

State vars: issueDelay=3

ts | Message Bag: [|

Now: 3

State vars:

¢ | Message Bag: [(a — c. ticketIssued(1),3,)]

Now: 0

Transition in FTTS

* Releasing and executing a messages
> Assign new values to state variables
> Sending some new messages

> Changing the local time of the rebec because
of the delay statement

Bounded Floating-Time Transition
System

* A new notion of state equivalence by
shifting the local times of rebecs
e Time in Timed-Rebeca models is relative

> Uniform shift of time to past or future has no
effect on the execution of statements

Bounding the Floating-Time
Transition System

S20
State vars:
a | Message Bag: | |
Now: 36
State vars: issueDelay=3
ts | Message Bag: [|
Now: 36
State vars:
¢ | Message Bag: [(a — c.ticketlssued(1),36,0)]

Now: 3

Ticket Issued, 33

Toctboed By,

S16

State vars:
a | Message Bag: | |

Now: 3

State vars: issueDelay=3
ts | Message Bag: [|

Now: 3

State vars:

Message Bag: [(c — c.try(),33,0)]

Now: 3

Bounded Floating-Time Transition
System: an example T

 Ticket service system
complete transition
system

e A shift-time transition,
between states |6 and

20

[(c = c.try(), 33,001 a - c.ticketIssued(1),36,x),33]

[(c » a.issueTicket())\33,), 0] [(ts - a.ticketIssued(1),36,x),0]

[(a > ts.issueTicket(),33,»),0]

Bounded FTTS and FTTS

* Bounded floating-time transition system
and floating-time transition system are
bisimilar — (if we define a correct
equivalency relation for the timing values)

» Two following conditions should be satisfied for
two bisimilar states s and s’

|.If s has a successor state q then s’ has a successor
state @’ which g and q’ are bisimilar and vice versa

2. Labels of s and s’ are the same

e Condition | holds because

> The execution of a message is the same in FTTS and
Bounded FTSS

> The message bag contents are the same

» Condition 2 holds because we are abstracting
timing values

Deadlock and schedulability check

> We keep the relative distance between values
of all the timing values of each state (relative
timing distances are preserved)

> Deadlines are set relatively so time shift has
no effect on deadline-miss

° For checking “deadline missed” and
“deadlock-freedom” relative time is enough

State space reduction:
a simple Timed-Rebeca Model

reactiveclass RCI (3) { reactiveclass RC2 (4) {
knownrebecs { knownrebecs {
RC2 r2; RCI rl;
\ }
Line number as { RC2())
program counter o¢ o | (y. msgsrv m2() { }
\ msgsrv m1 () { {}
e . N delay(2);
| 2 r2.m2();
;‘ 3 delay(2);
4 r2.m3(); !
5 self.m1() after (10); |’
J)

msgsrv ml () {
delay(2);
r2.m2();
delay(2);
r2.m3();
self.m1() after
(10);

}

time=0

time =2

time =2 v
S5
queue | -
< pc ml:4
queue | -
(]
— pc -
lr(rl)
S6
queue | -
i
L - pc -
queue | [(r1 = r2.m3(),0,)]
T pc -
(r1 - r2.m3(),0,00) | [fmme
S7
queue | -
i
| . pc -
queue | -
oN
— pc -
I
time=4 | time=14 time = time + 10

| teve | [(r1 » r1.m1(),10,0)]

>f The

{ SO
| teve | [(r1 > r1.m1(),0,0)]

eeeeee

l(rl = rl.m1(),0,»)

S1
eeeeee

eeeeee

eeeeee

eeeeee

: lr(rl)

S3

tieue | [(r1 = r2.m2(),0,)]

l(rl - r2.m2(),0,)

s4

eeeee

ml:4

S5

ml:4

: lr(rl)

S6

teue | [(r1 = r2.m3(),0,=)]

l(rl - 1r2.m3(),0,)

s7

eeeeee

|
ltime = time + 10

S8

)]

time=0 S0 SO
ueue | [(r1 - r1.m1(),0,%)]
e T — | queue [(r1 - r1.m1(),0,0)]
e ~ | now 0
F l(rl—-rl.ml(),O,m) 'h ‘ o queue -
I - " now 0
queue | -
i ni:2 l[(rl - 7rl.m1(),0,)]
2 pe
time=2 time = time + 2 Sl
: o queue [(r1 - r1.m1(), 14,)]
TIE now 4
[| — e L ’te queue [(r1 - r2.m2(),2,)]
o o r;: [(r1 - r2.m3(),4,)]
lr(rl) d now 0
5 N
Sl l[(n S r2.m20),2,0)]
-, |aueue [(r.l-»rZ,mZ()‘Olm)]
o T- s2
¢ l(rl—n‘Z.mZ().O.OO) O I — | queue [(r1 - r1.m1(), 14, 0)]
% ~ | now 4
o ‘;:e“e — ~ | queue [(r1 - r2.m3(), 4,)]
q o [l de ~ | now 2
time =4 time = time + 2 l[(,l - 7r2. 7113()’ 4’ OO)]
S5 :
o ';‘c‘e”e — .ad S3
= — | Queue [(r1 > r1.m1(), 14,)]
now 4
lr(m ~ | queue |-
— ~ | now 4
= pc R
- [l[(rl - rl.m1(), 14,
l(rl - r2.m3(),0,») 54
T — | queue [(r1 - r1.m1(),28,)]
= L “ | now 18
& [pe queue [(r1 > r2.m2(),16,)]
time=14 lltime:time+10 o [(7‘1 -2 7713()’ 18’ OO)]
A now 4
_, |aueue [(r1 - r1.m1(),10,)] '
< [pc . :
- |queue |- '
T [pc *

del

for

SO
— | queue [(r1 - r1.m1(),0,0)]
“ | now 0
~ | Queue -
“ | now 0
l[(rl - 1r1.m1(),0,)]
S1
- | queue [(r1 - r1.m1(), 14,0)]
“ | now 4
queue [(r1 = r2.m2(),2,)]
N [(r1 5 12.m3(),4,)]
now 0
l[(rl —-12.m2(),2,»)]
S2
_ | queue [(r1 - r1.m1(), 14,)]
~ | now 4
~ | queue [(r1 - 72.m3(),4,)]
~ | now 2
l[(n - r2.m3(),4,%0)]
S3
- | aueue ((r1,m1), 14, -)
“ | now 4
~ | Queue -
~ | now 4
l[(rl - 1r1.ml(),14,)]
S4
— | queue [(r1 > r1.m1(),28,)]
“ | now 18
queue [(r1 - r2.m2(), 16,)]
o [(r1 > 12.m3(),18,0)]
now 4

v

Bounde

e Boul
Syst

e Con
state
as F

[(r1 - r2.m2(),16,2)], 14

SO

)]

— | queue [(r1 - r1.m1(),0,0)]
~ | now 0
~ | queue -
“loow o xdel
l[(rl > rLml(),0,0)] &
- r1.m1(),0,0)]
S1
— | queue [(r1 - r1.m1(), 14,0)]
~ | now 4
queue [(r1 - r2.m2(),2,0)] l[(rl - r1.m1(),0,0)]
N [(r1 - r2.m3(),4,0)] n
now 0 - rl.ml1(),14,»)]
l[(rl - 1r2.m2(),2,0)] -r2zm2(),2»)]
- 1r2.m3(),4,)]
S2
— | queue [(r1 - r1.m1(), 14, 0)] l[(rl >12.m2(),2,0)]
~ | now 4 B
~ | queue [(r1 = r2.m3(), 4,)] S rLmi(), 14,0)]
~ | now 2
- 1r2.m3(), 4,)]
l[(rl - r2.m3(),4,0)]
l[(rl - 1r2.m3(), 4,)]
S3
s3
o | Queue [(r1 - r1.m1(), 14,)] L), 14 oo
now 4
~ | queue -
~ | now 4
1-7rl.mi(), 14,
l[(rl - rl.m1(), 14,)] l[(r rLmi0)
54
S4 - 1r1.m1(),28,)]
o queue [(r1 - r1.m1(),28,0)] S 2.m20.16,9)]
now 18 - 12.m3(),18,)]
queue [(r1 - r2.m2(),16,0)]

r2

[(r1 - r2.m3(),18,0)]

now

4

msgsrv m () {
r2.m2() after (2);
delay(2);

r2.m3() after (2);
delay(2);
self.m1() after (I

}

Timed Transition System of a less simple model

time = 2 ltime = time + 2
S2
queue - B [(ns.;n.mm.o.mn
i
~ | pc ml:2
queue | [(r1 » r2.m2(), 2, »)] }f”"“”" -
e pc - It
7(rl) (r1 > r2.m2(),2,») }:"‘“'""”2
En_ I’(‘:;Z—rZ.mZ().Z.m)]
S3 S4 (1~ r2m2()2.%)
queue | - queue | - = e
- b :Z.m) = :cueue —
~ | pc ml:3 ~ | pc ml: 2 ol K
queue | [(r1 - r2.m2(), 2,)] queue | - =
~ pc = = pc - T
an;z
(T]. - r2m2(),2, OO) 7(rl) s s‘s
5: Tt sEmS0Zw
S5 = (1 = r2.m3()2.%)
queue | - | e —
i | Clec [mi:4
— [:]e ml:3 |2 =
queue = i - ‘s; .»-""'-r-\:;r,
(E pc -
time =4 time = time + 2 =0
quese | [(r1 — ri.m1().10.0)] |

More Details about Floating-Time

Trv'\ NneifiAN C\lafnm

reactive
knov

SO
— | queue [(r1 - r1.m1(),0,)]
~ | now 0
~ | queue [(r2 - 1r2.m2(),0,0)]
~ | now 0

(r2 - r2.m2(),0,) (r1 - rl.ml(),0,)

S1 S2
— | queue [(r1 - r1.m1(),0,0)] — | queue [(r1 - r1.m1(), 14,)]
“ | now 0 ~ | now 0
~ | Queue queue [(r2 > 1r2.m2(),0,0)]
~ | now 0 ~ [(r1 - r2.m2(),2,0)]
= [(r1 - r2.m3(), 4,)]

RCI

(r1 ->r1.m1(),0,)

(r2 > 1r2.m2(),0,0)

S3
— | queue [(r1 - r1.m1(), 14, 0)]
~ | now 0
queue [(r1 - r2.m2(),2,0)]
. [(r1 - r2.m3(),4,)]
now 0

Implementation and experimental
results

* Implemented over Rebeca model-
checking platform

* Explores transition system by Breadth
First Search (BFS) algorithm

* Added time bundle to the states to
include time specifiers

> There is tiny overhead because of time
bundles

e Embedded in Afra tool set

TTS vs FTTS State Space Size

e About 50% state space reduction

Model Name | Number of Rebecs FTTS State TTS State
Space Size Space Size
6 |2

3 ?

Z 4 43 86

A9

o 9 > 282 532

L a

K 6 2035 3526
7 17849 31500

CSMA/CD 4 54 108

47

Implementation and experimental
results

e Three different models have been
developed

Problem Size Using BFTTS Using Timed Automata Using McErlang
F#states time #states time #states time
1 customer 8 < 1 sec 801 <1 sec 150 <1 sec
2 customers 51 < 1 sec 19M 5 hours 4.5k 3 secs
3 customers 280 < 1 sec - >24 hours' 190K 5.1 mins
Ticket Service 4 customers | 1.63K < 1 sec - >24 hours' > 4M? -
5 customers 11K < 1 sec - >24 hours' > AM? -
6 customers 83K 2 secs - >24 hours' > AM# -
7 customers 709K 3 mins - >24 hours' > AM? -
8 customers 6.8M 9.7 hours - >24 hours' > AM# -
1 sensor 183 < 1 sec - >24 hours! > 6.5M* —
Sensor 2 sensors 2.4K < 1 sec - >24 hours' > 6M?* -
Network 3 sensors 33.6K 1 sec - >24 hours' > 6M? -
4 sensors 588K 13 secs - >24 hours! > 6M? -
1 interface 68 < 1 sec - >24 hours! 153K 1.8 secs
, 2 interfaces 750 < 1 sec - >24 hours' > 2.8M# -
lsi’ll?cfttsgofx LOHA 3 interfaces 7.84K 1 sec - >24 hours! > 2.8M# -
4 interfaces 45. 7K 6 secs - >24 hours' > 2.8M# -
5 interfaces 331K 64 secs - >24 hours’ > 2.8M* -

Table 1: Model checking time and size of state space, using three different tools. The f sign on the reported time shows that
model checking takes more than the time limit (24 hours). The i sign on the reported number of states shows that state
space explosion occurs as the model checker want to allocate more than 16GB in memory which is more than total amount of
memory.

Implementation and experimental
results

e Some minor changes in timing and
behavior of models

Problem Size #states time result
1 customer 5 < 1 sec | deadlock
2 customers 25 < 1 sec | deadlock
3 customers 180 < 1 sec | deadlock
Ticket Service 4 customers 1.4K < 1 sec | deadlock
5 customers 11.7K < 1 sec | deadlock
6 customers 108K 2 secs deadlock
7 customers 1.14 22 secs | deadlock
8 customers 13M 7.6 mins | deadlock
1 sensor 19 < 1 sec | deadlock
Sensor 2 sensors 147K < 1 sec | deadlock
Network 3 sensors 23.7Tk < 1 sec | deadlock
4 sensors 1.14M 26 secs | deadlock
1 interface 57 < 1 sec | deadlock
. 2 interfaces 277 < 1 sec | deadlock
‘IS)lrc::jgofx LOHA 3 interfaces 1.2K 1 sec deadlock
4 interfaces 49K 1 sec deadlock
5 interfaces 20K 9 secs deadlock

T. Table 3: Model checking the modified version of the three case studies which have deadlock state. n some cases.

Timed Event-based Property
Language: TeProp

e Event-based rather than state-based
e Time intervals

* We chose / designed our operators based
on the timed patterns

° Trying to have simpler properties for each
pattern

> Close to MTL

Real-time Patterns

(Koymans, 1990), (Abid et al., 201 1), (Bellini et al., 2009) and (Konrad et al.,
2005), (Dwyer et al., 1999)

* Maximal distance
> Every el is followed by an e2 within x time units
» Exact distance
> Every el is followed by an €2 in exactly x time units
e Minimal distance
> Two consecutive events of e are at least x time units apart
 Periodicity
> Event e occurs regularly with a period of x time units
e Bounded response

> Each occurrence of an event e is responded within a
maximum number of time units

e Precedence

> Within the next x time units, the occurrence of el
precedes the occurrence of e2

We looked into Temporal Logic

* Metric Temporal Logic (MTL), real-time
extension of Linear Temporal Logic (LTL)

e Timed Computational Tree Logic (TCTL),
real-time extension of computational tree
logic

e TILCO, logic language used for both
specification and verification

P =
-P|PAP|PVP]|(P)]
F [i,j] e
F [i,j] (¢ —P)

G [i,j] (e —P)
el BJ[i,j] e2

Time interval: [i,j]

Interesting point

* For model checking TCTL or TLTL we
need the complete timed transition
system

e But we can check TeProp formulas on our
BFTTS

* Two independent works

e |n both the focus is on events and not the
states

QOutline

* Motivation (and where do we stand)
* Timed Rebeca — the language

» Semantics and Floating Time Transition
System

» Schedulability and Deadlock Freedom
e Simulation
e Conclusion and Future Work

Simulation

 Simulation gives us more space for
maneuver

* No state space explosion
 Trade off: no certain answer
* Good for prediction of performance

Simulation

e We translate Timed Rebeca models to
Erlang.

o Erlang is a functional programming language
for programming real-time distributed
systems.

> Actor-based

» Use McErlang for simulation (and also
model checking)

Using McErlang

 Variety of analysis techniques.
o Verification
> Visualization of simulations

> Be able to model larger set of behaviors:
extended Timed Rebeca

> More variety of data-types.
o Calling custom functions

e Add tracing capability to models to use
McErlang

> Checkpoints
> Events

McErlang Safety monitors

o Acts like a safety property.

e Can observe each generated program state by
McErlang.

° on-the-fly verification.
> violates or satisfies in each state
e Can access information from program states:
o process mailboxes
o status of the processes
° process actions (sending or receiving)
* Pre-defined monitors

o Deadlock detection
o queue size of each process

Tracability of Simulations

* Events
> Message send time
> Message release time
> Message expiration

* Checkpoints

> Check point label and terms: values of
variables

> Time of checkpoint

Case studies on hand

e Routing in a Network-on-Chip

> A joint work with the Hardware Department
at Univ. of Tehran

> Model checking and performance prediction

* Modeling the sensing application in
TinyOS

> Check the deadline miss

Probabilistic Timed Rebeca

* Model checking and performance analysis
of timed probabilistic Rebeca based on

PTA (and PFTTS?)

Back to Timed Rebeca and
concluding ...

Our reduction technique: distilled

* Event-based analysis - maximum progress of
time based on events (not timer ticks)

> Generating no new states because of delays, each
rebec has its own local time in each state

e Making use of isolated message server
execution of actors

> no shared variables, no blocking send or receive,
single-threaded actors, non-preemptive execution of
each message server
* A new notion of states equivalence by shifting
the local times of concurrent elements in case

of recurrent behaviors

Comparing to others

* Real-time Maude
> They have to tick — so, explosion
> Bounded model checking

e Timed Automata

> Come up with many automata and many
clocks for an asynchronous system - explode

Conclusion

* An actor-based modeling language for
modeling real-time concurrent event-
based systems

* Develop model checking and simulation
tools

* Schedulability and deadlock freedom
analysis

* State-space reduction techniques using
the specific semantics

Future work

e A lot!

