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Abstract: Aggregate models are used in the analysis and control of large populations of thermostatically
controlled loads (TCLs), such as air-conditioners and water heaters. The fidelity of such models is
studied by analyzing the influences of noise and parameter heterogeneity on TCL aggregate dynamics.
While TCLs can provide valuable services to the power systems, control may cause their temperatures
to synchronize, which may then lead to undesirable power oscillations. Recent works has shown that
the aggregate dynamics of TCLs can be modeled by tracking the evolution of probability densities over
discrete temperature ranges or bins. To accurately capture oscillations in aggregate power, such bin-based
models require a large number of bins. The process of obtaining the Markov state transition matrix
that governs the dynamics can be computationally intensive when using Monte Carlo based system
identification techniques. Existing analytical techniques are further limited as noise and heterogeneity
in several thermal parameters are difficult to incorporate. These challenges are addressed by developing
a fast analytical technique that incorporates noise and heterogeneity into bin-based aggregate models.
Results show the identified and the analytical models match very closely. Studies consider the influence
of model error, noise and parameter heterogeneity on the damping of oscillations. Results demonstrate
that for a specific bin width, the model can be invariant to quantifiable levels of noise and parameter
heterogeneity. Finally, a discussion is provided of cases where existing bin models may face challenges
in capturing the influence of heterogeneity.
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1. INTRODUCTION

Thermostatically controlled loads (TCLs) offer tremendous po-
tential for enhancing power system responsiveness in the pres-
ence of fluctuating outputs from renewable generation (see
Callaway and Hiskens (2011)). Large groups of TCLs can be
controlled for providing various power systems services. How-
ever, controlling large groups of TCLs may cause their tempera-
tures to synchronize, which might then lead to undesired power
oscillations (see Thara and Schweppe (1981), Kundu and Sinit-
syn (2012), Perfumo et al. (2013)). Since aggregate models are
commonly used to characterize TCL dynamics and to control
their aggregate power (see Bashash and Fathy (2013), Mathieu
etal. (2013)), this paper focuses on analyzing the ability of such
models to capture power oscillations, especially in the presence
of noise and parameter heterogeneity. The need for analytical
approaches to modeling is addressed.

1.1 Literature review

Physically based models of TCLs were developed initially
by Chong and Debs (1979), Ihara and Schweppe (1981),
Mortensen and Haggerty (1988). Malhame and Chong (1985)
showed that the aggregate dynamics of TCLs can be modeled
using coupled Fokker-Plank equations. More recently, Bashash
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and Fathy (2013) modeled the aggregate dynamics of TCLs by
bilinear partial differential equations and used finite-difference
based discretization. Kundu et al. (2011) modeled the steady
state aggregate temperature densities for ON/OFF states and
applied it to develop controllers for set point variation. Koch
et al. (2011) presented a Markov chain based statistical model-
ing approach to describe the evolution of the probability masses
over “temperature bins”. Each bin is defined by a specified
temperature range and whether the TCLs in it are in ON/OFF
states. Such a model will from here on be referred to as a bin
model. Mathieu et al. (2013) used a similar model to design
state estimators and develop control strategies for large popula-
tion of TCLs. Recently, Ghaffari et al. (2014) also modeled tem-
perature evolution over discretized temperature ranges using
advection-diffusion PDEs and studied the model’s numerical
stability. A large body of recent work has been utilizing such
bin models in designing new control techniques (see for exam-
ple Crocker and Mathieu, 2016, Esmaeil Zadeh Soudjani and
Abate (2015), Nazir et al. (2016)). Our modeling and analysis
framework is consistent with these existing bin models.

TCLs are heterogeneous and their dynamic behavior is affected
by several sources of uncertainty. Therefore, aggregate models
need to capture those influences. Simulations have shown that
heterogeneity and noise can add additional desirable damping
to the system and the steady state is therefore reached faster
(see Malhame and Chong (1985), Callaway (2009), Perfumo
(2013), Ghaffari et al. (2014)). Perfumo (2013) provides an



analytical model to approximate the influence of heterogene-
ity, specifically for the thermal capacitance parameter. Ghaffari
et al. (2014) analyzes the impact of heterogeneity by consider-
ing different sub-groups of homogeneous TCLs. Several other
studies have also used the bin model to consider probabilistic
distributions of various parameters governing the TCL popula-
tion (see Koch et al. (2011), Mathieu et al. (2013)). However,
there remain ambiguities concerning the performance of bin
models when considering heterogeneity and noise.

To model the system behavior using a bin model, it is necessary
to find the Markov transition matrix that governs the popu-
lation dynamics. While system identification (SI), based on
sampling from Markov chains, may be used to identify the tran-
sition matrix (see Koch et al. (2011), Mathieu et al. (2013)), it
can be computationally intensive for reasonably large systems.
Moreover, the process must be repeated whenever parameters
change. While an analytical approach was presented by Koch
etal. (2011), it ignored noise and makes restrictive assumptions
on parameter heterogeneity. Hence, the objective of this paper
is to provide an analytical (though approximate) approach to
incorporating noise and heterogeneity into bin models. This
provides a basis for analyzing their impact on the population
performance.

1.2 Contributions

The primary contributions of the paper are:

e We highlight some key challenges in the use of system
identification (SI) based techniques to obtain the state
transition matrix and discuss limitations in existing analyt-
ical techniques. We then develop an analytical technique
to overcome such limitations, mainly by incorporating
noise and parameter heterogeneity in the bin model. Sim-
ulations show that the aggregate power output obtained
using the identified and analytical models match closely.
For large systems, solutions were obtained within sec-
onds using the proposed analytical technique, compared
to several hours using the SI approach, thus significantly
reducing the computational burden.

e Using the analytical modeling insights, it is shown that
state transition matrices can be invariant to changes in
noise, depending on the width of the temperature bins.

e The influence of model error, arising from temperature
discretization and probabilistic transitions, is highlighted.
A discussion suggests that certain temperature initial con-
ditions (such as if TCL temperatures are synchronized)
may require higher order bin models for accurately pre-
dicting oscillatory response.

e Finally, the relative effects of model error, noise and
heterogeneity are compared in terms of their influence
on aggregate power oscillations and damping. Important
distinctions in the modeling of noise and heterogeneity are
highlighted.

1.3 Organization

The remainder of the paper is organized as follows. Section 2
presents the model preliminaries, discusses the various ways of
obtaining the aggregate model and highlights their advantages
or disadvantages. Section 3 presents an analytical approach to
modeling the A-matrix taking into account noise and hetero-
geneity. Section 4 provides several analytical as well as ex-
perimental results on model performance, invariance properties
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Fig. 1. Temperature bin model.

of the bin model, and compares the influences of model error,
noise and heterogeneity. Section 5 concludes by summarizing
the main contributions and future directions.

2. MODELING
2.1 TCL model preliminaries

Consider a large population of N,;; TCLs. The set-point, dead-
band, internal and ambient temperatures corresponding to each
load i are denoted 6Oy, 0;, 6; and 6,;, respectively (°C). Each
load can be modeled as a thermal capacitance C; (kWh/°C) in
series with a thermal resistance R; (°C/kW). Finally, the binary
variable m; denotes the on or off status of the load, and P
(kW) is the energy transfer rate when a cooling (or heating)
TCL is switched on. The dynamic behavior of each TCL can be
modeled using a first-order difference equation Mortensen and
Haggerty (1988), Callaway (2009),

Oir+n = ai6;; + (1 —a;) (i —mi;0g;) +wiy (1)
where & is the time step, a; = exp(—h/C;R;) is the parameter
governing the thermal characteristics of each TCL, 6,; = PR;
is the temperature gain when a cooling TCL is on, and w is a
noise process (usually modeled as white noise with zero mean
and known standard deviation). To consider heterogeneity, the
parameters P, C and R may follow particular probability distri-
butions, rather than all TCLs having the same values. Addition-
ally, the variable m;, for TCL i captures the TCL’s switching
behavior according to,

0, if 6; < B,

if ei > 6max (2)
m;; otherwise

where 0,,;, = si — 6,/2 and 0,,;, = B_Y,,- + 51/2

Mjt+p = I,

With coefficients of performance 7);, the aggregate electrical
power consumed is given by,
Nyt

Pl = Z misP /.. 3)
i=1

Typical parameter values are given in Table 1 (similar to Call-
away (2009), Bashash and Fathy (2013)).

For dealing with a population of TCLs, Kundu et al. (2011),
Bashash and Fathy (2013) and Mathieu et al. (2013) showed

Table 1. TCL parameters.

Parameter Meaning Value Units

6 Temperature set-point 20 °C

S Temperature dead-band width 0.5 °C
6, Ambient air temperature 32 °C

P Energy transfer rate 14 kW

R Thermal resistance 2 °C/kW
C Thermal capacitance 10 kWh/°C
n Coefficient of performance 2.5




how to reduce the model from N,.; copies of (1) to a simplified
aggregate model by using discrete temperature bins. A bin is
defined by its temperature bounds as well as whether the TCLs
in it are on or off. As shown in Fig. 1, the normalized dead-
band can be discretized by uniformly dividing it into Np bins,
so in total 2Np bins are used. The system’s state x describes the
population density of each bin. The evolution of the population
can be expressed as,

x(k+1) = Ax(k). 4

2.2 Obtaining the A-matrix

Matrix A is the transpose of the Markov transition matrix that is
composed of the probabilities of transitioning from bin to bin.
Let p;; be the probability of transitioning from bin i to bin j.
The A-matrix has the form,

P11 P12 P1,2Ng
P21 P22 DP2,2Np

= . . . ®))
P2Ng.1 P2Np2 " P2Np2Ng

Two approaches to obtaining the A-Matrix are summarized
below.

System identification (SI) approach: By simulating a system
of TCLs using (1) and using full state information from all
of the simulated TCLs, the number of TCL transitions from
each starting bin to each ending bin can be counted. By col-
lecting a large number of samples, a Monte-Carlo estimate
of the Markov transition matrix can be obtained. To ensure
conservation of probability mass, the resulting matrix must be
normalized such that each column sums to one. Finally, the
transpose of the identified Markov matrix is the desired A-
matrix (see Koch et al. (2011), Mathieu et al. (2013)).

The main issue related to the SI approach is that it can be
computationally intensive, especially when one aims to obtain
a higher order A-matrix. With no noise or heterogeneity, we ran
experiments with 1000 TCLs over 24 hours with 4 = 10 second
time-steps and obtained the A-matrices for Np=10, 20, 40,
80, 160, and 320 bins. The process of obtaining the A-matrix
estimate with small Np was relatively fast, for Np = 10 it took
50 seconds. However, the required time increased significantly
for large Np, with Ng = 160 requiring 186 minutes.

Since the system identification process is parameter specific,
obtaining the A-matrix for a different set of parameters requires
repetition of the entire process. As will be shown in our pro-
posed approach, this often can be avoided if analytical insights
are used to obtain the A-matrix. It should also be noted that to
obtain a good estimate using the SI-based approach the sam-
pling process needs to be exhaustive. Depending on the initial
conditions, some bins may have a low number of samples and
therefore the transition rate is not truly indicative of behavior.
The identified A-matrix will perform poorly when it is applied
to a population with a different initial condition.

Analytical approach:  The A-matrix can also be built analyt-
ically by considering evolving probabilities. Koch et al. (2011)
proposed a technique which allowed heterogeneity in the C
parameter but ignored noise. In this case, the only uncertain
parameter in (1) is @;. Under these assumptions, the thermal
equation (1) can be used to establish transition probabilities.
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Fig. 2. Top figure: TCLs propagating over a time-step; Bottom
figure: Approximate probability distribution of TCLs at
the end of a time-step.

To summarize, the probability of TCLs evolving from a starting
temperature Oy,,+ to a different temperature 6,,; in one time
step is,
P(eend|95tart) = P(Cl,’), (6)
where a; can be obtained from (1) as,
0. — _
4= i — Oenag — My eg ) %)
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With known bin boundaries, the fraction of TCLs lying in a
specific receiving bin (indexed with j), given they all started at
0141+ can be expressed as,

P(ej < Gend < 9j+1|65tart) :/

ai
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pla)da (®)

where p(-) is the probability density function associated with
parameter a, 6; is the lower temperature boundary of bin j,
0;11 the upper end, a; and a; follow from (7) with 6; and
0,41 replacing 6,,,4, respectively. Repeating this process for all
sending and receiving bins gives the desired A-matrix (see Koch
etal. (2011)).

This technique cannot take into account noise w and hetero-
geneity in other important parameters such as P and R (see
Mathieu et al. (2013)). The next section presents an analytical
technique that incorporates noise and can also be extended to
parameter heterogeneity. The intuition obtained from this ap-
proach will be applied in Section 4 to study bin model fidelity,
the effects of bin widths, and to provide a comparison of the
influence of noise and heterogeneity.

3. ANALYTICAL MODELING WITH NOISE AND
HETEROGENEITY

3.1 Incorporating noise

Initially, consider a homogeneous TCL population. Figure 2
shows two specific OFF bins, indexed n and n+ 1, and their
contents at two subsequent time period #; and t, (where t, =t +
h). Assume all TCLs lie uniformly inside bin n at time #;, where
the uniform assumption inside any bin is consistent with Koch
et al. (2011), Mathieu et al. (2013). Then, at time #,, governed
by (7), TCLs will transition to a range of bins. If no noise
is present, the analytical approach described in the previous
section can be used to obtain the A-matrix. But with a non-
zero noise process, w ~ N(0, 62), the previous method cannot
be applied.

With noise, intuitively, the range of temperature reached at time
t, should be wider. Depending on the noise variance, TCLs may
reach the bins in different proportions to the noise-free and may



also reach neighboring bins not reached previously. Thus, there
is a need to compute the fractions that evolve to various bins
given that they all start from the same bin. At time #;, consider
a specific sending bin n. The probability of lying inside the
receiving bin j, with boundaries 6; and 9< 1) is,

P(Gj S eend Sej—‘rl‘en S estart < 6n+1)
= 1= (P(Buna < 04160 < Ouart < 6111)  (©)

+P(66nd > 6j+1|9n < Gstart < 9n+1))-

Instead of a continuous uniform distribution over the n-th bin,
consider the bin population concentrated at M discrete values
6,;,1 = 1,...,M that are evenly spaced across the width of the
bin, with 6,; = 6, and 6,y = 6,|. Hence, TCLs inside bin n
are equally distributed to each of these M discrete pulses. This
process can be thought of as subdividing the n-th bin into M
sub-bins. Inside each sub-bin, consider a TCL population with
the same parameters as considered for the bin.

Each of these pulses propagates forward in time accordin to (7).
With w = 0, the pulse at 6,;,, will move to énl’tz, which may or
may not lie in the n-th bin. With noise, w ~ N (0,6&,), there
will be a Gaussian distribution around each center, 6,;;,,/ =
1,...,M. This gives a Gaussian mixture distribution, i.e. a mix-
ture of N(0,14,,02),l=1,..., M.

The contribution to each of the recceiving bins must be com-
puted. This can be achieved by computing tail probabilities,
according to Q(+) = 1 — ®(-), where ®(+) is the Gaussian cu-
mulative distribution function (CDF).

Starting from bin 7, the probability of TCLs falling above the
upper boundary of receiving bin j at time #, can be computed
by summing over the tail probabilities of Gaussian distributions
centered at é,,l7,27l =1,...,M with variance O'M%,

1 & (61— By
M 1:21 Q( Oy ) '
(10)
Similarly, the probability of the tail falling below the lower
boundary is given by,
P(Gend §6]|6n < Gstarl < 6n+l)
=1-P(0 > 6|6, < Oyan < Oni1)

_1_7ZQ< nlt2>

This same process is repeated for every receiving bin, giving
the entries of the transition matrix for sending bin n. The overall
algorithm can be summarized as:

Algorithm I
For all sending binsn =1, ...,

P(Gend > 9j+1‘9n < estart < 9n+1) =

1)

ZNBZ

(i) For the specific sending bin 7, divide the bin population
evenly among M discrete temperature values at 8, ,/ =
1,...M.

(i) Using (7) and w = 0, find the corresponding time-
propagated values 9,117,2,1 =1,..M

(iii) With w ~ N(0,02), establish M normal distributions
N(8y,,02),0=1,...M

(iv) Given the pre-specified temperature boundaries for receiv-
ing bin j, use (9)-(11) to compute the fractions of TCLs
that propagate to each bin j = 1,....2Np.

Normalize all the propagated values to give the desired A-
matrix. m]

When noise is high, it may cause transitions from n to j < n,
i.e. in the opposite direction to normal. This must be handled
carefully at the switching thresholds, bins 1 and Np + 1. TCLs
falling below j=1 when starting from any off bin remain off.
Since we do not consider bins outside of the dead-band, this
fraction of TCLs is small and can be captured in bin j = 1.
Similarly, TCLs starting in bin Ng 4 1 and that experience a
temperature rise remain in that bin.

If noise is relatively low and the number of bins Np is small
(i.e. the bins are wide), we have observed that noise has limited
effect on the A-matrix coefficients. This suggests that given a
specific bin width, the A-matrix coefficients are invariant to
noise up to a certain level. This property is analyzed in Section 4
by varying the noise levels and the numbers of bins (i.e. the bin
widths).

3.2 Incorporating parameter heterogeneity

Algorithm I can be modified to consider parameter heterogene-
ity rather than noise. Consider heterogeneity only in P, and as-
sume P is distributed with N(up, GI%). Let op can be expressed
as a fraction o, of the mean value of P,

Op = Oy llp. (12)
Starting from temperature 6,,aTCL’s cooling and heating rates,

Oon, and OprF,, are given by the expressions (see Callaway
(2009), Bashash and Fathy (2011)):

9[_6A+PR

dons =~ (13)
6,—6
OoFF; = WA (14)

Given P ~ N(,uP, p) the expected value of apy, can be
computed using (13),

6, —6,+ PR
Elaon,] —E[ %= 8t PR]
(o] -
_ {91 — 5] (15)
CR C
_ 6,—0, Up
CR C
and the variance of ooy is,
6, —0s+PR\ O}
Y —vV ( ) =% 16
ar(Qon ;) ar R 5 (16)
2
Hence, oy is distributed as N (( CRG“) % C—P) From (14),

0orF, is independent of P.

Starting from a sending bin » at time #;, with 6,4,/ =1,...,M,
use (1) with up to obtain é,,/h. That again results in a mixture
of Gaussian distributions centered at énly,z, l=1,...,M and each
with variance o3/c2.

Following the same procedure for computing the tail proba-
bilities, using (9)-(11) but replacing Gv% by o3/c2, the fractions
inside each receiving bin can be computed. Repeating the pro-
cedure for all sending bins and normalizing gives the transition
matrix. Due to aprr being independent of P, the OFF-bin
transition probabilities are identical to the homogeneous case.
Hence, transitions through ON bins have variance Gﬁ/cz and
through OFF bins have zero variance.



Algorithm IT
Replace steps (iii)-(iv) in Algorithm I with:

(iii) With P~ N(up, G[%), establish M normal distributions:

(a) N(énl’tz,U%/Cz),l: 1,...,Mifénl7t2 €j=Np+1,....,2Np.

(b) N(6y1,,0),l =1,... ., M if 6, € j=1,...,Np.

(iv) With the variance terms in step (iii) for receiving bin j, use
(9)-(11) to compute the fractions of TCLs that propagate
to each bin j =1,....2Np.

While with high noise, it is possible for TCLs to move to a
lower indexed bin while remaining ON (or OFF), without noise,
transitions to lower indexed bins while remaining ON (or OFF)
should not occur. Otherwise, transitions would contradict the
thermal dynamics in (1). Hence, the level of heterogeneity that
is acceptable in P has a limit which will be discussed in Section
4.4,

Algorithm II allows for heterogeneity in P. Heterogeneity in
other parameters, such as 6,,C,R can be incorporated follow-
ing a similar approach. Depending on where each parameter
appears in (13) and (14), slight modifications may be necessary.
Additionally, if parameters appear in the denominator, dealing
with log-normal or uniform distributions may be easier since
their reciprocal distributions have closed form expressions.

4. ANALYSIS AND RESULTS
4.1 Model performance

To perform the experiment on TCLs, let us consider parameter
values according to Table 1. Let, ¢,, = 0.005. We obtained the
analytical Matrix for Np = 160 using Algorithm-I. Next, we
simulated 10,000 TCLs using 1 over 24 hours and obtained
the identified A-matrix. Aggregate power outputs using the
analytical matrix and the identified matrix against the output
using the full simulation are shown in Fig. 3. We see that the
aggregate power output matched exactly with the identified
and the analytical matrix and also agrees closely with the ref-
erence output from the full simulation. The analytical matrix
was obtained in 2.5 seconds, whereas the analytical one in 145
minutes. Thus, clearly demonstrating the significant computa-
tional benefit. Next, consider a heterogeneous population of
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—— Full simulation with sigma(n) = 0.005
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Fig. 3. Simulation of TCLs with identified, analytical and full
model with noise.

10,000 TCLs. Assume P is distributed with N(up, G,%), where
op = Upo, with up = 14 kW, o, = 0.02. We computed the
analytical matrix using Algorithm-II. Similarly as above, the
identified matrix was also obtained. Aggregate power output
using the analytical matrix and the identified matrix as well as

x10*

—— Full simulation with o= 0.02
6 —-—--With identified A-matrix (NB =160) |
— — —With analytical A-matrix (NE =160)

Aggregate Power (kW)

Y
0 500 1000 1500
Time (mins)

Fig. 4. Simulation of TCLs with identified, analytical and full
model with heterogeneity in P.

with full simulation of 10000 heterogeneous TCLs are shown in
Fig. 4. Again, we see that the aggregate power outputs from the
identified and the analytical matrix matched exactly. However,
when compared against the output from full simulation, we see
that results match closely up to 620 minutes, and then output
from full simulation starts to damp at a faster rate than obtained
by the bin model. This deviation is mainly due to bin model’s
limitations to deal with heterogeneity, as will be analyzed in
Section 4.4. Besides noise and heterogeneity, bin model is also
prone to model error due to temperature discretization, which
causes damping of oscillations. Hence, before analyzing the
influence of noise and heterogeneity, in the next section, we
briefly highlight some important features of the bin model and
discuss model error.

4.2 Influence of model error

Without any noise and heterogeneity, when a homogeneous
TCL population is simulated using (1), the power output shows
undamped oscillations (the rectangular pulse with Np=640 in
Fig. 5). Simulations with different Nz were carried out. The
responses are shown in Fig. 5. We see that for Ng= 320 and 640,
the response is accurately a rectangular pulse, whereas with Np
less than 160, there is considerable damping.

- ,NB:10 7NB: 20

Ng=40 —Ng=80 — Ng=160 Ng=320 ——N;= 640
T

T

08!

06 /7~

0.2}

Normalized Aggregate Power

. | .
0 120 240 360 480
Time (mins)

Fig. 5. Simulation of homogeneous TCLs with varying Np.

The primary sources contributing to model error are typically
in discrezation of time and temperature space. To avoid error
due to time discretization, (1) is solved using an exact model.
However, the bin model is prone to temperature discretization.
Since bin model is based on probabilistic transitions, using a
low number of bins cannot accurately capture the aggregate
dynamics. If a homogeneous group of TCLs start at same
temperature O,y = 0,45 (i.€. bin Np) at t1, with all in off states,



one time step later, by (4) states evolve. Using the A-matrix
coefficients (5), pn, N, fraction will stays at bin Np, whereas
(1 — pwg.n,) fraction moves to bin other bins. Thus, starting
from a single bin, the process of filling the bins is similar to a
geometric RV. Since we consider Ng bins over the dead-band
range, if all TCLs start at n = Np (OFF bin), within additional
Np time steps, all ON bins will have received some fraction of
TCLs. Subsequently OFF bins start to get filled which causes
damping in power. Thus, if Np is low, the damping will appear
sooner. Therefore, in Fig. 5, we that using lower number of bins
result in considerable damping.

Additionally, bin model performance also varies with temper-
ature initial conditions. For example, if TCL temperatures uni-
formly distributed over the dead-band range, the power output
is expected to have smoother transitions. Readers may refer to
Bashash and Fathy (2011) where authors compared the per-
formance of bin model similarly by varying Np. Since initial
conditions were dispersed, the resulting output power was trian-
gular shaped. With 200 bins outputs matched closely, whereas
for a rectangular shaped pulse more bins are necessary. Thus,
if temperatures are synchronized, it is advisable to use models
with larger number of bins to reduce the output error, again
demonstrating the need for fast computational tools to compute
such higher order models.

4.3 Comparing the influence of noise and heterogeneity on
damping

To analyze the influence of noise on damping, noise levels were
varied from o,, = 0 to 0.01 with 0.002 step increments and
10,000 TCLs were simulated using (1). Results are shown in
Fig. 6. To compare the decay of oscillations under the influence
of noise against decay due to model error (shown in Fig. 5), we
can use log decrement as a metric to see how fast oscillations
are decaying. Using the first peak and a subsequent peak after
n periods, the log decrement is defined as,

1 X1
6decay =-In— (17)
n xp
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Fig. 6. Aggregate power response with varying o,.

In our case, the first and the third peaks were chosen. We
compute gecqy’s for both cases (Fig. 5 and Fig. 6). In Fig. 7,
the influence of model error and noise on decay rates are shown.
The x-axis values, representing noise standard deviation and the
number of bins, are normalized so that we can visually compare
their influence on the same plot. The y-axis represents the log
decrements (i.e. damping). We see that when below o < 0.0025
and Np < 80 model error is more dominant. Any model of less
than 80 bins decays faster than the influence of having noise
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Fig. 8. Aggregate power response with varying o;.

of 0 <=0.0025. As noise level rises above 0.0025, noise has
increasingly higher impact on damping. This also implies that if
we arbitrarily choose Np = 40 for simulating a population with
known o,, = 0.003, the resulting damping in power would be
due to model error, hence, a larger order model should be used
to capture the influence of noise.

Similar to above, Fig. 8 shows the effect of heterogeneity in P
by varying o, and Fig. 9 compares relative damping due to o,
and Np. Notice that the oscillations due to heterogeneity are
asymmetric compared to the ones observed under noise and
in homogeneous case. Additionally, the period of oscillation
varies as we vary o,. Fig.9 suggests that with o < 0.0025
and Np < 80, the observed damping of oscillation should be
attributed to model error.

4.4 Noise invariance in bin model

In this section, we demonstrate that due to the fact that bins
have non-zero width, bins are inherently tolerant to some noise
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Fig. 9. Damping due to varying Np, G;.
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Fig. 10. Probability of TCLs self-transitioning to a bin.

level. In Fig. 10, the probability of self-transition to a bin (i.e.
one diagonal element of an A-matrix) is shown for varying Np,
and o,,. In our case, self-transition for bin j=3 was chosen.

Fig. 10 suggests that for a particular Np, where curve is flat, the
diagonal elements of A-matrix are invariant to noise change.
For example, when Np=5, 10, 20 and for 0 < o,, < 0.001, the
change in A-matrix diagonal elements is infinitesimally small.
Moreover, with Ng = 5,10, 20, diagonal elements are dominant.
Hence, we can assume that the effect is also negligible on off-
diagonal bins.

One the other hand, for models with very large number of
bins, the diagonal elements are sensitive to low noise. This is
because, without noise self-transition does not happen as bins
are very narrow. As noise level rises, the left tail of the normal
distribution (see Fig. 2) enters the bin, causing self-transition.
Also since diagonal elements are not dominant for large Np,
remarks on invariance cannot be readily made.

Following the same procedure shown for noise we can also
find tolerance to heterogeneity given the width of the bin. Note
that for TCLs starting at the same initial temperature, their
temperature distribution after one time step has a variance of
GV% under the noise process, whereas from (16), variance is Gﬁ/CZ
(only for ON-bins) under heterogeneity in P.

Assuming o, = 0.1 and pp = 14, standard deviation in tem-
perature is ortir/c = 0.00038 (comparable to c,, = 0.00038).
From analysis of Fig. 10, we expect such low value of standard
deviation will have negligible impact on A-matrix coefficients
(with Np less than 320). Such A-matrices are thus invariant to
o, =0.1.

Additionally, note that to preserve the natural thermal dynamics
in (1), heterogeneity in parameters should not cause shifts
from higher indexed ON bins to lower indexed ON bins. This
suggests (13) should be larger than 0. Then, using three sigma
of standard deviation of up and values from Table 1, we
find o, > 0.1905. Again, using (16), the standard deviation
in temperature is then 0.00074. From Fig. 10 we see again
that even at this level of uncertainty, A-matrices would still be
almost invariant to heterogeneity in P.

Note that the remarks about bin model performance apply to
both identified and analytical matrices whose responses match
closely in all cases. Our analysis of heterogeneity, at least in P,
suggests that in literature while heterogeneity is often included
in bin models, one should be aware of the limitations. Fig. 11
shows that with o, = 0.1, the output using Np=30, instead of
Np=80 is more similar to results obtained by full simulation of
TCLs using (1). This is because damping due to model error
with Np = 30 closely matches damping due to ¢, =0.1.
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Fig. 11. Aggregate power with full simulation of TCLs when
o, = 0.1 and with different order A-matrices.

The bin model treats noise and heterogeneity almost in a similar
way. The only notable differences are that for heterogeneity
in P, non-zero variance only occurs when transitioning to ON
bins, and variance is scaled compared to noise variance. How-
ever, we argue that the higher error in dealing with heterogene-
ity can be attributed fundamental differences in uncertainty due
to noise process vs. heterogeneity. Noise w is a truly random
process, hence the random transitions can be captured well us-
ing a Markov transition matrix (equivalently by A-matrix). The
uncertainty in heterogeneity, on the other hand, appears only
at the initial step when using the full model (1). But with bin
model it appears at each step since at end of each transition, bin
model assumes TCLs mix uniformly inside the bin. Addition-
ally, we saw from our above analysis that ¢, > 0.19 for valid
thermal dynamics in (1). This results in limited spreading of
temperature (standard deviation of less than 0.001), thus having
limited impacts of the coefficients of A-matrix, irrespective of
obtained analytically or by SI approach.

5. CONCLUSIONS

While there has been considerable work in modeling and con-
trol of TCLs using aggregate models, to our best knowledge,
there has been limited work that focus on identifying the vari-
ous sources of error when using bin based models, especially by
exploiting analytical based techniques. Hence, here we incor-
porate noise and parameter heterogeneity analytically in the A-
matrix governs the aggregate TCL dynamics, which is a unique
contribution compared to existing literature. We show that ma-
trices obtained under computationally intensive SI approach
can be obtained within seconds using our analytical approach.
Using insights gained through the analytical modeling, we then
study the influence of noise and parameter heterogeneity on bin
models. We showed how bins are invariant to varying levels
of noise. We compared damping of power oscillations due to
model error, noise and heterogeneity. By comparing the in-
fluence of different sources, we showed how an appropriate
number of bins should be chosen. Another implication of our
analysis is that if parameters change one can often avoid re-
identifying the bin model, thus saving valuable computational
resources, knowing that the set of new parameters would have
negligible impact on the existing model. We also pointed out
bin models limitations in healing with cases of heterogeneity,
irrespective of if A-matrix is obtained analytically or by system
identification.

Future work could include analyzing the impact of non-
Gaussian distributions of noise or parameter heterogeneity. We
are also interested in using the analytical tools developed in this



paper to predict, and thus, hopefully avoid load synchronization
and oscillations.
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