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Abstract—While renewable generation sources provide many
economic and environmental benefits for the operation of power
systems, their inherent stochastic nature introduces challenges
from the perspective of reliability. Existing optimal power flow
(OPF) methods must therefore be extended to consider forecast
errors to mitigate in an economic manner the uncertainty that
renewable generation introduces. This paper presents an AC-
QP OPF solution algorithm that has been modified to include
wind generation uncertainty. We solve the resulting stochastic
optimization problem using a scenario based algorithm that is
based on randomized methods that provide probabilistic guar-
antees of the solution. The proposed method produces an AC-
feasible solution while satisfying reasonable reliability criteria.
Test cases are included for the IEEE 14-bus network that has been
augmented with 2 wind generators. The scalability, optimality and
reliability achieved by the proposed method are then assessed.

Index Terms—AC optimal power flow, renewable generation,
forecast uncertainty.

I. INTRODUCTION

The increasing penetration of Renewable Energy Sources
(RES) introduces challenges that require modifications to clas-
sical operational algorithms. A significant part of RES (e.g.
wind and solar power) is associated with inherently intermittent
generation, which is a major source of uncertainty in power
systems. Uncertainty can create serious vulnerabilities in the
reliable operation of power systems if not taken into account
properly in the planning process. In this paper, we deal with
the stochastic AC Optimal Power Flow (OPF) problem, and
aim to find a solution that satisfies the non-convex constraints
of the OPF problem while providing certain confidence on the
constraint violation level due to the uncertain realizations of
renewable generation.

The non-convex nature of the AC OPF problem has initiated
the development of different algorithms that attempt to find an
optimal solution in a scalable manner. The most commonly
used simplification of the problem is the DC power flow
approximation, which results in a quadratic program (QP)
[1],[2]. This method achieves the scalability objective, as reli-
able solvers are readily available for large-scale QPs. However,
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the solution may not meet the desired reliability levels, due to
the fact that it does not satisfy the AC power flow constraints
[3]. Another more recent direction focuses on convex relax-
ations of the OPF problem, which result in semidefinite and
second-order cone programs (SOCP) [4], [5]. These relaxations
guarantee a globally optimal solution when tight; however,
for arbitrary networks, tightness cannot be guaranteed [6],[7].
Moreover, current solvers do not support those problems in
a scalable way. Another solution method is the AC-QP OPF
algorithm [8], which is a successive linearization algorithm
that alternates between solving a simple QP to minimize cost
of generation and running an AC power flow to ensure AC-
feasibility. This method has the benefit that it provides an AC-
feasible solution, and moreover comes along with promising
scalability properties, as the QP of the algorithm can be solved
easily by current solvers even for very large networks. These
benefits do, however, come with the tradeoff that the algorithm
may converge to locally, rather than globally, optimal solutions
and convergence cannot be guaranteed. Due to the fact that it
guarantees an AC-feasible solution and scales better than the
relaxation methods, this solution method forms the basis for
this paper.

To address the uncertainty problem, we need to reformulate
the AC OPF problem to provide a solution that satisfies the
constraints in a probabilistic sense. There are many approaches
that try to incorporate the stochasticity of the problem as-
suming the DC power flow model [9], [10], [11], [12], [13].
However, as mentioned above, the lack of AC feasibility may
result in violation of the desired reliability levels. Numerous
works consider the uncertainty by including in the optimization
problem a certain set of scenarios that is heuristically chosen
[9], [10], [11], usually using a scenario reduction technique.
However, the latter does not provide any solution performance
guarantees. Moreover, different directions look into analytical
reformulations that mainly assume a closed form for the
uncertainty distribution (e.g Gaussian) [13], [14] and hence
can provide solutions with probabilistic performance. However,
the uncertainty realizations (e.g wind power forecast errors)
cannot be accurately described by analytical distributions, and
moreover the complexity of those methods may increase dra-
matically when the non-convex OPF nature is considered. Fur-
thermore, many formulations are based on robust optimization
[15], where it is difficult to quantify the solution performance
since (similar to the heuristic scenario techniques) the selected
uncertainty set might end up being overly conservative or too
risky.
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We seek an OPF methodology which finds solutions that
come with guarantees, does not require a specific distribution
of the uncertainty, and maintains reasonable complexity and
solution time for real-time operation. Randomized optimization
techniques like [16], [17], [18] satisfy those objectives. Those
techniques are basically scenario based methods; however, their
solution is a-priori guaranteed to satisfy the system constraints
with certain probability. These techniques were first applied in
the stochastic DC OPF problem in [12] and later, using the
SDP relaxation of the power flow constraints, in the stochastic
AC OPF in [19]. In this paper we will use the AC-QP OPF
to achieve better scalability properties. As this is a non-convex
problem, the methods in [16], [17] cannot be used, since they
require the convexity of the underlying problem. Additionally,
[18] cannot be practically applied since it requires finding the
optimal solution of a robust counterpart of the initial problem,
which cannot be easily achieved in the AC-QP OPF algorithm.
We therefore rely on a recent algorithm presented in [20]
that does not require convexity of the problem, but requires
identifying the so called support set of the scenarios used in
the optimization.

The remainder of the paper is organized as follows. Section II
provides the formulation of the deterministic AC-QP OPF
algorithm, introduces an extension of it to a scenario based
formulation considering a finite number of scenarios of the
uncertain variables, and proposes a probabilistic formulation
of the problem that can provide a solution with a-posteriori
performance guarantees. Section III then provides simulation
results that validate the theoretical expectations, and conclu-
sions are offered in Section IV.

II. AC-QP PROBABILISTIC OPF ALGORITHM

A. Notation

The notation used in the formulation of a probabilistic
optimal power flow (pOPF) is summarized in Table I.

B. Overview of the basic AC-QP OPF method

The AC-quadratic program OPF (AC-QP OPF) algorithm,
which has been adopted from [8], is an iterative algorithm that
consists of two parts. Firstly, an AC power flow is solved using
an approximate initial operating point given by the solution of
an SOCP relaxation of the AC OPF problem [4]. Secondly, a
QP is solved to minimize the generation cost, while enforcing
the linearized power balance and line flow constraints. The QP
solution provides new generation and voltage schedules that
are used in the next AC power flow. The AC power flow –
QP iterations continue until the difference between the QP
and power flow solutions agrees to within a specified tolerance
(10−3 p.u. is considered sufficiently accurate in this case). A
slight difference compared to [8] is that line flow constraints
are only included in the QP for a subset of lines, rather than
for all branches in the network. In practice, this has offered
significant execution time and convergence improvements, as
discussed in [21]. The modified algorithm is summarized in
Fig. 1.

TABLE I
NOTATION.

Control Variables:
∆Pg,i change in active power generation at node i ∈ G
∆Qg,i change in reactive power generation at node i ∈ G

∆Vi, ∆θi change in voltage magnitude, angle at node i ∈ N
∆Qmg,i change in reactive power generation at node i ∈ G

in scenario m ∈ S
∆Vmi , ∆θmi change in voltage magnitude, angle at node i ∈ N

in scenario m ∈ S

Parameters :

G set of conventional generation nodes
Ci(Pg,i) quadratic cost curve for each generator i ∈ G

W set of wind nodes
S set of wind power scenarios
N set of nodes in the network
d participation vector of generators

slack slack node in the network
pv set of PV (generator) nodes in the network
Pw,i base case wind forecast at node i ∈ W
Pmw,i wind forecast at node i ∈ W in scenario m ∈ S
Smaxij maximum apparent power flow in line from

node i to node j
Pming,i , Pmaxg,i minimum, maximum active power limits when

generator at node i ∈ G in service

Qming,i , Qmaxg,i minimum, maximum reactive power limits when
generator at node i ∈ G in service

∂Sij

∂θk
,
∂Sij

∂Vk
AC line flow sensitivity factors

J AC power flow Jacobian matrix
Vmini , Vmaxi minimum, maximum voltage magnitude at

node i ∈ N

The QP solved at each iteration uses a linearization of the
power balance and line flow constraints around the previous
AC power flow solution. To do so, the Jacobian of the power
flow equations, J, as well as the line-flow sensitivity factors
∂Sij

∂θk
and ∂Sij

∂Vk
are updated after each power flow. To improve

convergence, a “trust-region” step based on the formulation
in [22] is added to check the accuracy of this linearization
before the QP is solved; the details of this step can be found
in [21].

The superscript ‘◦’ denotes values obtained from the con-
verged AC power flow, which are updated after each AC power
flow computation. The notation ∆ denotes a change from the
converged power flow value of the corresponding variable at
the current iteration of the AC-QP algorithm.

The QP is then formulated as:

min
∑
i∈G

Ci
(
P ◦g,i + ∆Pg,i

)
subject to (1a)

J∆x = ∆S (1b)

Pming,i ≤ P ◦g,i + ∆Pg,i ≤ Pmaxg,i ∀i ∈ G (1c)

Qming,i ≤ Q◦g,i + ∆Qg,i ≤ Qmaxg,i ∀i ∈ G (1d)
∆θslack = 0 (1e)

V mini ≤ V ◦i + ∆Vi ≤ V maxi ∀i ∈ N (1f)

S◦ij +
∑
k∈N

∂Sij
∂θk

∆θk +
∑
k∈N

∂Sij
∂Vk

∆Vk ≤ Smaxij

∀ (i, j) ∈ L∗ and ∀ (j, i) ∈ L∗ (1g)
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Fig. 1. AC-QP OPF algorithm.

where

J =

[
∂P
∂θ

∂P
∂V

∂Q
∂θ

∂Q
∂V

]
, ∆x =

[
∆θ
∆V

]
, ∆S =


∆Pg
0

∆Qg
0


where the 0 entries in ∆S correspond to non-generator buses.

The cost function Ci(·) is a quadratic function of the con-
ventional generation dispatch, P ◦g,i + ∆Pg,i, and is minimized
subject to the linearized power balance constraints (1b), gener-
ation active and reactive power limits (1c),(1d), bus voltage
magnitude limits (1f), and linearized line flow limits (1g).
Constraint (1e) represents the reference angle, restricting our
solution to a finite solution space. Note that the linearized line-
flow constraints (1g) are initially enforced for all lines that are
at or above 95% of their line-flow limit, the set of which is
denoted L∗. This set is then updated at the beginning of each
outer loop of the AC-QP algorithm to include any lines that
are overloaded but have not yet been added to the set (bolded
in Fig. 1).

C. Introducing scenarios into the AC-QP OPF

The solution of the AC-QP OPF of the previous subsection
is deterministic in the sense that it does not take into account
the uncertainties of the system. In this subsection, we consider
wind power uncertainty, and we reformulate the algorithm
shown in Fig. 1 to provide a solution that is robust over a finite
set of possible wind power scenarios. This results in a proba-
bilistic AC-QP OPF algorithm (AC-QP pOPF). The base case
generation dispatch will satisfy the balance constraints for a
given wind power forecast. Any wind power scenario differing
from the forecast will then drive the system to a new operating

point due to the created generation-load mismatch. This power
mismatch is assumed to be compensated by adjusting the power
of the generators based on a distribution (or participation)
percentage vector [12], [8]. Each scenario will also incur
different losses in the network, so the generated power should
be adjusted accordingly to cover this loss variation. Note that
here we have assumed the generator voltages remain constant
through deviations from the wind power forecast.

The robust (over the scenarios) reformulation is again based
on a series of iterations between an AC power flow and a QP, as
in the deterministic algorithm shown in Fig. 1. The initialization
of the AC power flow is now given by a reformulation of the
SOCP relaxation where constraints are added for each new
operating point due to a scenario. This reformulation takes
into account, through the distribution vector, the coupling of
the generation dispatch between the base case (wind power
forecast) and all the scenario cases. This ensures an appropriate
distribution of the wind power forecast error to the generators.
After the QP is solved, a separate AC power flow is solved
for the base case and each scenario. In all cases, the power
dispatch is adjusted according to the distribution factors to meet
the network losses. Within the QP, a separate linearization is
formed for each scenario, with the Jacobian matrix and line
flow sensitivities obtained from the corresponding power flow.

Let S represent the set of scenarios to be included in the
optimization problem. For every scenario m ∈ S, we add the
following set of operational constraints in line with the base
case description (1b)-(1g):

J̃m∆xm = ∆Sm (2a)

Pming,i ≤ P ◦,mg,i + ∆Pg,i ≤ Pmaxg,i ∀i ∈ G (2b)

Qming,i ≤ Q◦,mg,i + ∆Qmg,i ≤ Qmaxg,i ∀i ∈ G (2c)
∆θmslack = 0 (2d)

V mini ≤ V ◦,mi + ∆V mi ≤ V maxi ∀i ∈ N (2e)
∆Vi = ∆V mi ∀i ∈ G (2f)

S◦,mij +
∑
k∈N

∂Sij
∂θk

m

∆θmk +
∑
k∈N

∂Sij
∂Vk

m

∆V mk ≤ Smaxij

∀ (i, j) ∈ L∗,m and ∀ (j, i) ∈ L∗,m. (2g)

The modified linearization for each scenario is given by

J̃m =

[
∂P
∂θ

m
0

0 ∂Q
∂V

m

]
,∆xm =

[
∆θm

∆V m

]
,∆Sm =


∆Pg
0

∆Qmg
0

 .
Each scenario m introduces extra variables, namely the

reactive power output of each generator (∆Qmg ) and the voltage
at each bus (∆V m, ∆θm). We force the deviation of the active
power generation, ∆Pg , to take the same value for the base case
and all scenarios. Note that the mismatch due to the scenarios is
already incorporated in the generation dispatch, P ◦,mg , obtained
from the previous AC power flow. Moreover, we enforce the
same generator voltage magnitude setpoints in the base case
and each scenario through constraint (2f).

Once the algorithm has converged, the final solution guaran-
tees that the operating point of the base case and the operating
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points for the considered scenarios will satisfy the non-convex
AC power flow constraints. However, there is no guarantee
that the constraints will be satisfied for arbitrary scenarios. To
achieve generalization properties, we will employ a randomized
optimization technique, which is presented in Section II-E.

D. Improving the scalability of the AC-QP pOPF

The previous subsection presented the pOPF for the general
case where a finite number of wind power scenarios are
considered. To make this method more scalable with respect
to the number of scenarios that can be incorporated, the
modified algorithm shown in Fig. 2 is proposed. This algorithm
is based on ranking the scenarios according to the absolute
value of the difference between the scenario and the forecast,
|
∑
i∈W(Pmw,i − Pw,i)|. This updated method adds only the

highest ranked wind scenario to the pOPF at the beginning
of each outer loop. Then, if the solution results in constraint
violations for any of the remaining scenarios, one more scenario
from those with violations is added in the same way to the
pOPF at the next iteration. In practice, we have observed that
relatively few of these outer loops are necessary to satisfy the
constraints for even a very large number of scenarios. Limiting
the size of the subset of wind power scenarios explicitly added
to the pOPF problem reduces the number of variables and
constraints in the QP, making the AC-QP pOPF faster to
achieve a feasible solution for all the considered scenarios.

E. Providing a-posteriori probabilistic guarantees

The algorithm presented in the previous subsection can pro-
vide a feasible solution to the pOPF problem for a large number
of scenarios. At the same time, we identify a very small number
of scenarios with which the algorithm provides an identical
feasible solution. This is a crucial property of the algorithm,
since it implies that a feasible solution generated from a small
fraction of the available scenarios exhibits good generalization
properties. It results in zero empirical probability of constraint
violation, i.e, it satisfies the constraints for all other scenarios
even though they were not used when constructing the solution
[23].

The recently presented work in [20] provides a framework
for finding a solution of a non-convex problem that is accom-
panied with a-posteriori probabilistic guarantees. This method
can be applied to any algorithm that takes as input a certain set
of scenarios and provides a feasible solution of the problem.
The critical point is the definition of the support set, also known
as a compression scheme in [23], which is the set of scenarios
that support the solution. In other words, if we consider the
solution of the problem using a set of N scenarios SN , and
we can achieve the same exact solution given a subset Sk of
SN that contains only k scenarios, the set Sk is a support set
of the problem with N scenarios.

In [20], given that we can identify the cardinality k of
the support set of the problem associated with N scenarios,
a theoretical upper bound of the probability of constraint

-Rank N Wind Scenarios 
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-Add 1st ranked scenario 

to SOCP

-Solve SOCP for 

initial operating point

-Set k= 1

Constraint 

violation in

      any 

scenario? 

No
End

Yes
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scenarios with 
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-Re-solve SOCP with

1 additional scenario, 

(the 1st ranked one 

with a violation)

-k = k+1

Solve AC-QP pOPF

(See Fig. 1) 

with k scenarios

Run AC Power 

Flows for all

N Scenarios

Fig. 2. AC-QP pOPF algorithm for N scenarios.

violation is provided by the formula:

ε(k) =

1, if k = N

1− N−k

√
β

N(N
k)
, otherwise (3)

where β ∈ (0, 1) is a design parameter that represents the
probability that the upper bound ε will be violated. In other
words, β is the probability that the probability of constraint
violation will be greater that ε. By choosing a very small β (e.g.
β = 10−4), the bound ε is true with “very high confidence”.

The only assumptions required for this to hold are that the
algorithm should map the scenario set to a ‘unique’ solution
that satisfies the constraints for all the scenarios in the set,
and that the solution is invariant to any permutation of the
scenarios taken into account. Both requirements are satisfied
for the proposed algorithm.

Since we can only identify the cardinality of the support set
after obtaining the solution, the provided guarantees are only
a-posteriori. The result will be less conservative if the support
set with minimum cardinality is identified.

In the following section, we will use the algorithm proposed
in Section II-D to obtain a solution, identify the cardinality
of the support set, and validate the aforementioned theoretical
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probabilistic bound via Monte Carlo simulations.

III. RESULTS AND DISCUSSION

A. An indicative example of the AC-QP pOPF

A first test case that uses the IEEE 14-bus network and unit
commitment [24] is presented to demonstrate the progression
of this method when including 1500 scenarios in the pOPF,
and how the resulting support set for this problem is identified.
The network has been augmented with two wind generators at
nodes 9 and 3; 40 MW of available wind power is assumed
at each node in the base case forecast. This corresponds to a
renewable penetration (calculated as the ratio of total available
wind generation to total generation capacity) of 9.4%. The
AC-QP method described in Fig. 2 is used to consider 1500
scenarios. The results are shown in Fig. 3.

The method begins by randomly choosing 1500 scenarios
from a set of 10,000 possible scenarios. These 1500 scenarios
are then ranked according to the criterion established in Sec-
tion II-D, the absolute value of the total mismatch. An SOCP
relaxation is solved including only the first scenario, which
corresponds to the scenario with the largest total mismatch,
to initialize the AC-QP algorithm. That single scenario is also
included in the QP of the AC-QP algorithm. After the AC-
QP method has terminated, an AC power flow is run for all
1500 scenarios being considered, and the set of scenarios with
constraint violations is identified.

After the AC-QP terminated with only one scenario included,
running the AC power flow for all 1500 scenarios revealed
that there are 226 scenarios with constraint violations. This is
shown as the initial point in the upper plot of Fig. 3. These 226
scenarios are again sorted with respect to the absolute mismatch
criterion, and the first ranked scenario (again corresponding
to the scenario with the largest mismatch that has constraint
violations) is now added to the set of scenarios included
in the AC-QP. The SOCP relaxation is again solved, now
with two scenarios, to reinitialize the AC-QP algorithm. The
process repeats, adding a single scenario to the AC-QP in each
outermost loop of the algorithm. This process identifies a very
small number of scenarios that must be explicitly included
in the AC-QP such that constraints are satisfied for all 1500
scenarios.

For this example, only 4 scenarios out of the 1500 pos-
sibilities needed to be included in the AC-QP such that the
resulting solution satisfied the constraints for all 1500 scenarios.
In other words, using just the 4 scenarios gave an identical
feasible solution to the problem that incorporated all 1500
scenarios. This further implies that the 4 scenarios comprise
the support set for this particular case. The resulting solution
is accompanied with a-posteriori probabilistic guarantees. Since
we have a feasible solution for the 1500 scenarios and we
identified that the same feasible solution exists for only 4
of the scenarios, we can claim with very high confidence
(β = 10−4) that the solution of our algorithm will satisfy the
system constraints with probability at least 97.2% over any
possible realization of the wind power. In fact, Monte-Carlo
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Fig. 3. Solving pOPF with 1500 scenarios.

simulation revealed that the empirical probability of violation
in this case is only 0.23%. The empirical violation probability is
evaluated by checking the violation of the constraints for 10000
scenarios. The scenarios are generated by a Markov Chain
Monte Carlo (MCMC) mechanism which builds a transition
probability matrix that suggests with what probability the
uncertain variables will move from one value to another in time
[25]. To train the model we used normalized hourly measured
wind power data, both forecasts and actual values, for the total
wind power infeed of Germany over the period 2006-2011.

The lower plot of Fig. 3 shows the AC-QP cost and cor-
responding SOCP lower bound after each additional scenario
is added. These results demonstrate the tradeoff between reli-
ability and optimality: each additional scenario increases the
cost of operation, until constraints have been satisfied for all
1500 scenarios and no further scenarios need be included in
the pOPF. Additionally, we notice that the AC-QP cost results
are sufficiently close to the SOCP lower bound, and therefore
also sufficiently close to the globally optimal solution.

B. Extended results

The previous example using the modified IEEE 14-bus
network is now expanded to assess the performance of the
proposed AC-QP pOPF method as the numbers of scenarios
included in the pOPF problem (the value of N in Fig. 2) is
increased from 10 to 15001. The choice of 1500 scenarios here
is sufficiently large to explore the impact on the empirical prob-
ability of violation of increasing numbers of scenarios included
in the pOPF problem. The quality of solution from the AC-QP
pOPF algorithm is assessed via Monte Carlo simulations using
10,000 possible scenarios. For each scenario, an AC power
flow is run and the violation of any constraint is checked. Out
of those 10,000 scenarios, those that result in any constraint
violations (including generator active and reactive power limits,
voltage magnitude limits, and line flow limits) are recorded to
provide an empirical probability of constraint violation. For
each choice of N , the number of scenarios included in pOPF,

1Recall that the N=1500 case was presented in Section III-A.
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500 repeated trials are then performed2, where each trial differs
in the specific set of N randomly chosen wind power scenarios
that are included in the pOPF problem.

The generation cost results and the corresponding empirical
probability of constraint violation are shown in Fig. 4(a) and
Fig. 5 respectively, for increasing N . These figures demon-
strate the inherent tradeoff between reliability and optimal cost
of operation. As more scenarios are included in the pOPF
problem, the cost of operation increases, resulting in a less
economic operating point. However, with an increasing number
of scenarios added to the algorithm, the solution is more robust
and fewer scenarios create constraint violations. Thus, although
less economic, operating points that consider larger numbers of
scenarios in the pOPF are more reliable. Furthermore, Fig. 4(b)
validates the quality of solution of these results: the cost of
generation in all cases is within 0.26% of the SOCP lower
bound, and is thus sufficiently close to the globally optimal
solution.

The empirical probability of violation in Fig. 5 does in fact
decrease significantly as the number of scenarios included in
the pOPF algorithm increases. Notice that with only 50 scenar-
ios included in the pOPF problem, the empirical probability of
violation is already below 5% for 75% of the trials.

Based on the theory discussed in Section II-E, the solution
of the proposed algorithm should verify the a-posteriori proba-
bilistic guarantees. To assess this, we identify the cardinality of
the support set for each case study and then calculate the upper
theoretical violation bound based on (3). Fig. 6 summarizes
the cardinality of the support set for each case study. As these
results show, a very small number of scenarios, on average
around 2, need to be explicitly enforced in the AC-QP problem
for all constraints to be satisfied for the remaining scenarios.

A comparison between the empirical and theoretical vi-
olation results is shown in Fig. 7, where the y-axis gives
the theoretical minus the empirical probability of violation.

2The results are gathered in boxplots which give several statistical quantities
of interest for each set of 500 trials, given the number of scenarios to be
included in the pOPF: the central line inside the box shows the median over
all 500 trials; the bottom and top edges of each box show the 25% and 75%
percentiles respectively; and the vertical lines show the extreme values.

0

5

10

15

20

25

30

10 50 100 200 300 600 900 1200 1500
Number of Scenarios in pOPF

%
 o

f 
1

0
k
 S

c
e

n
a

ri
o

s
 w

it
h

 A
C

 V
io

la
ti
o

n
s

14 Bus with 2 Wind Nodes: AC−QP Violation Probability (Empirical) − AC Power Flow

Fig. 5. AC-QP empirical violation.

1

2

3

4

5

6

7

10 50 100 200 300 600 900 1200 1500
Number of Scenarios in pOPF

N
u

m
b

e
r 

o
f 

S
u

p
p

o
rt

 S
c
e

n
a

ri
o

s
 i
n

 A
C

−
Q

P
 p

O
P

F

14 Bus with 2 Wind Nodes: Number of Support Scenarios
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Fig. 7. Empirical violation compared to a-posteriori theoretical violation.

We observe a positive difference, which highlights that the
solution of the AC-QP pOPF algorithm results in an empirical
probability of violation that is always satisfying the theoretical
bounds.

To ensure the reliability of a system, large numbers of
scenarios may need to be included in the pOPF problem. The
scalability of any proposed algorithm is therefore an important
factor that must be assessed. For the purposes of real-time
operation, a threshold of 5 minutes (300 seconds) is assumed
to be an acceptable limit on total execution time. Figure 8
summarizes the timing results for the proposed AC-QP pOPF
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Fig. 8. AC-QP timing results.

algorithm. As these results show, the timing requirement is
clearly satisfied even for the 1500 scenario case, which has an
average solution time of less than 20 seconds. These results
suggest the proposed method scales well with the number
of scenarios included in the pOPF problem. In general, the
algorithm is promising with respect to scalability properties
over the network size since it involves simple, not substantially
time-consuming steps. Future work will further investigate the
practical limits of the algorithm.

IV. CONCLUSIONS

The AC-QP OPF solution method has been extended to
include wind power uncertainty, captured through the addition
of a finite number of possible wind scenarios. The scalability
of this algorithm with respect to large numbers of scenarios has
been demonstrated, and the timing results support its utility for
real-time applications. A modified SOCP with wind scenarios
is used both to initialize the AC-QP method and to assess the
optimality of the resulting solution. The algorithm fits in the
framework of a randomized optimization technique that can
characterize the solution with a-posteriori theoretical proba-
bilistic guarantees. The empirical reliability of the solution has
been evaluated to assess the quality of the AC-QP solution and
verify the theoretical bound.

The modified AC-QP pOPF algorithm offers several advan-
tages. Firstly, it does not rely upon model approximations as
in DC OPF formulations. Secondly, it produces an AC feasible
solution, where convex relaxations may not be tight. Thirdly, it
maintains scalability with respect to the number of scenarios to
be optimized over, which is a limitation of convex relaxations.
Finally, it provides a probabilistically robust solution with a-
posteriori probabilistic violation guarantees.
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