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System verification and control design 

• much of control theory is concerned with certifying 

system behavior (stability, robustness, reachability…) 

• usually performed on simple, abstract models 

• tools preclude complex dynamics, such as human 

behavior, economic implications 

 

In red, system 
may become 
unsafe 

In blue, 
system will 

stay safe 



Air traffic control 

• Controllers, pilots, passengers 

• Grouping and conflict classification 

• Uncertainty 

 

Energy Efficient Buildings 

Examples 

• Controller, occupants 

• Interlinked spaces with time-varying 

objectives 

• Uncertainty 

 

[with Hamsa Balakrishnan]  



Uncertainty from Humans 



Research Philosophy 



… but satisfy control requirements while learning 

• Control requirements: 

– A nominal model with error bounds 

– Reachable sets computed to ensure properties hold in worst case 

– Reachable sets computed using Model Predictive Control (MPC) 

• Performance: 

– Use online learning to update model 

– Cost function used to generate control action within the safe set 

• Insight:  performance and constraint satisfaction can be 

decoupled using reachability analysis 

• Learning-based (LB) Model Predictive Control (MPC) 

 

 

 

Learn models from data… 



Constraint satisfaction through Reachability 



• Unknown system dynamics represented 

using an oracle  

• At each time step 

– Optimization solved, Oracle updated 

Learning-based Model Predictive Control 

[Aswani et al., Automatica 2013] 



Learning-based Model Predictive Control 

[Aswani et al., Automatica 2013] 



 

• Linear model 

 

 

 

 

 

• Statistics augments 

physics 

 

Example 1:  Learning to fly 



video 

Example 1:  Learning to fly 



Example 2:  Energy-efficient buildings 

• 640 sq. ft. computer space 

• Networked thermostat 

• Newton’s law of cooling with 

heating load 

 

• 141,000 sq. ft. building 

• Seven floors of mixed-use 
space 

• Convective cooling with 
heating load 

 Berkeley Retrofitted and Inexpensive HVAC Testbed for  

Energy Efficiency (BRITE) [ with Aswani, Culler, Taneja, Krioukov] 



Temperature Modeling 

• Semi-parametric regression modeling 

– Parametric: Newton’s law of cooling 

– Nonparametric: Heating load 
 

 

– Estimate heating load using only temperature 

measurements of thermostat 
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Experiments on BRITE 

• LBMPC provides significant energy savings 

• Simulations and experiments used to compare 

controllers 

Experiment Method Energy 

Thermostat 

Controller 

LBMPC 23.6 kWh 

Thermostat 32.6 kWh 

LBMPC 

Controller 

LBMPC 11.8 kWh 

Thermostat 34.5 kWh 
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Experiments on BRITE-S 

• Comparisons using many experiments and 
nonparametric hypothesis testing 

• 1.5MWh energy saved on average per day 
– Statistically significant (p=0.002) 

– 95% Confidence Interval of 1MWh to 2MWh savings 



Incentive Design for Efficient Quality of Service 

[Aswani and Tomlin, Allerton, 2012] 



Fast Certification 

• Reachability specifications typically exponential in dimension 

of continuous state space 

• Fast approximations of “upper value” and “lower value” using 

an open loop game: 

– Result 1:  Open-Loop upper value can be computed exactly [Zhou, 

Huang, Ding, Takei, Tomlin, submitted 2012] 

– Result 2: A lower bound for the open-loop lower value can be 

computed [Zhou, Takei, Huang, Tomlin, CDC 2012] 

(upper) (lower) 



Characterizing human interaction 

Example:  reachability in air traffic control 

[from Alex Bayen, a long time ago] 



Contrails: Air traffic 

control game for 

Android 

Replay Engine on 

Server 

Trajectories, 

aircraft 

states, 

player inputs 

• Infeasible to get data from real controllers 

• Most experiments use retired controllers or student 

volunteers 

• Retired controllers are rare, students get bored, 

where to get more data? 

 

Example 3:  Automation to aid controllers 

[Huang and Tomlin 2012] 



A Typical ATC experiment1 

28 participants  

168 trials (6 each) 

 

Local US college students 

 

Max individual sample (est): 100 

planes 

 

 

 

1M. Stone et al., “Prospective memory in dynamic environments: Effects of load, delay, and phonological rehearsal.” Memory, 2001. 

Contrails to date 

3544 active installs 

63,583 games played 

Contrails install base 

as of 10/14/2012 
Android Market 

Statistics 

Users by country, as of 

10/14/2012 

10+ countries 

Most active user: 9489 planes 



21 

• Hypothesized hybrid model for controlled aircraft 

• Data is supportive; clustering suggests discrete set of 

maneuvers used 

Modeling using gathered data 



22 

• Predict the maneuver given the airspace 

• Avoidance maneuvers 

• How people sequence moving objects 

Modeling using gathered data 



Analytics and Incentives 

[Aswani and Tomlin, ACC 2011; with Krichene, Zhou, Bayen 2013] 



Conclusions and current work 

• Reachability-inspired control of hybrid systems 
– Control law directly from the reachable set calculation 

– Automated controller synthesis for switched systems 

• Under sampling and quantization 

– Learning-based control inside reachable sets 

• Physics augmented with learning from data 

• Current directions 
– Reachable set over-approximation methods 

• Control and “open loop” games allows for use of Fast Marching 

Methods 

– Capturing and using human behavior 

– Mechanisms in ATC (with Hamsa) 

– Stochastic hybrid systems:  Models, Reachability methods, and 

Trajectory optimization 

– Mean-field game representations; principal-agent models (see 

poster by Balandat and Yang) 
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