
Task Response Time Optimization Using Cost-Based
Operation Motion

Bassam Tabbara
EECS Department

University of California at Berkeley
Berkeley, CA 94720

+1-510-643-5187

tbassam@eecs.berkeley.edu

Abdallah Tabbara
EECS Department

University of California at Berkeley
Berkeley, CA 94720

+1-510-643-5187

atabbara@eecs.berkeley.edu

Alberto Sangiovanni-Vincentelli
EECS Department

University of California at Berkeley
Berkeley, CA 94720

+1-510-642-4882

alberto@eecs.berkeley.edu

ABSTRACT

We present a technique for task response time improvement
based on the concept of code motion from the software domain.
Relaxed Operation Motion (ROM) is a simple yet powerful
approach for performing safe and useful operation motion from
heavily executed portions of a design task to less visited
segments. We introduce here our algorithm, how it differs from
other code motion approaches, and its application to the
embedded systems domain. Results of our investigation indicate
that cost-guided operation motion has the potential to improve
task response time significantly.
Keywords

Response time, optimization, (cost-based) code motion.

1. Introduction
Embedded controllers are found in many of the components we
interact with daily, e.g., cell phones, pagers, security devices.
Increasingly synthesis is playing a crucial role in design
methodologies for embedded systems that advocate abstraction,
decomposition, and refinement [10]. If synthesis starting from the
high levels of abstraction is to be accepted by designers, its
quality must be adequate for the task. To that end, optimization
of the design before and after synthesis becomes essential for the
success of these design paradigms.

In this paper, we focus primarily on improving task runtime by
performing pre-synthesis optimizations. We deal with
computation or operation motion as one such valuable technique
that must permit rapid optimization to be reflected in better
output quality with respect to the runtime metric after synthesis.

We assume a heterogeneous control-dominated embedded system
target application, and an initial functional decomposition and
adequate front-end that capture the design as a network of
Extended Finite State Machines (EFSM’s) as in [11]. Since we
will be dealing with single task optimization we make no
assumptions on the model of computation that governs the
composition of tasks in the system as a whole.

2. Related Work
There is a body of work on code motion (hoisting) from the
software (high-level synthesis) domain(s). The goal of code
motion is to avoid unnecessary re-computations at runtime [1].
The creation of temporary variables (i.e. registers) to hold these
computations typically improves runtime for most target
architectures. Code must be relocated to valid program points
and this movement must be safe, in the sense that it must not
change what the program flow is intended to compute. The main
strategy for code motion is that of moving operations as early as
possible in the program as in [9] and [6].

In practice code movement to the earliest program points can
create pressure on the target architecture resources e.g. because
of register “spills”. A more practical approach involves also
performing temporary lifetime minimization as in the work on
Knoop [7]. Knoop’s approach is the best-in-class approach for
code motion since it involves unidirectional analysis techniques
in the program flow where reducible programs can be dealt with
in O(n log (n)) bit-vector steps (see [1]) where n is the number of
statements in the program in contrast to O(n2) complexity for
previously known techniques. Hailperin in [4] extended Knoop’s
method to incorporate cost into the code motion process.
However, the cost metric is based on individual operations (i.e.
*, +,...) and does not account for the frequency of execution
of program portions. The goal of the latter is to place the
instructions in (safe) positions in the program where the context
possibly permits simplification of the particular operation
through, for example, constant folding, or operation strength
reduction.

Castelluccia et. al. [3] used runtime cost to optimize protocols
but their techniques were based mainly on node re-ordering at
the CDFG for synthesis level.

3. Our Contribution and Overview
As in [3], our work incorporates cost into operation motion. The
cost is obtained from a task level static analysis to identify the
most frequently visited segments of the behavioral description of
the task. Our operation motion step itself is also fast; it has a
time complexity of O(n) in the number of statements in the
description. To achieve this simplicity, however, we give up
slightly on size where for a brief period after this step the space
needed is O(n2). We also rely on operation motion being part of a
general optimization flow and framework; in particular we take
advantage of two analysis and information gathering steps within
the flow: reachable variable definitions, and reached uses of

variables. So, the framework’s complexity of O(n2) is what
dominates the overall complexity. Of course, for this increase in
complexity we can get much better optimization results than [7]
since operation motion is applied to all candidate operations at
once and is tempered by other data flow and control analysis and
optimization steps.

As will be described in the sequel, the approach is therefore
much simpler (conceptually and in practice) than other
approaches as it tackles operation motion indirectly, and still
performs the job adequately as part of a comprehensive multi-
step data flow and control optimization approach [11]. Our
approach, dubbed Relaxed Operation Motion (ROM) is also
specialized to the embedded system domain. In this domain, we
are constrained by I/O schedule preservation, but we benefit
from the user’s insight by soliciting assistance in the cost
estimation mechanism since embedded systems have a
predictable (or pre-conceived) typical behavior.

We have implemented our approach in the POLIS public domain
co-design tool [2], and have used the software synthesis engines
therein for output generation.

4. Intermediate Design Representation
We briefly describe our intermediate design representation that
permits us to perform constrained task optimization at a high
level of abstraction. We use an implementation-independent
state-scheduled task representation referred to as Attributed
Function Flow Graph (AFFG) equivalent to the initial EFSM
representation. The AFFG is a refinement of the Function Flow
Graph (FFG) we have introduced in [11]. The FFG is quite
similar to the classical Control Flow Graph from the software
domain with the distinction of being concerned with safe
function optimizations that preserve the I/O semantics of the
task. The AFFG incorporates more information into the
representation by adding attributes to the FFG nodes, and
associated operations [10]. These attributes can either be
solicited from the user or obtained by inference or profiling. An
example of the former is the state schedule obtained from the
“front-end” (e.g. Esterel [2]) and used to qualify the AFFG
nodes. An example of the latter is the cost of operations like
addition and multiplication, and the visit probability of AFFG
node collections. The visit probability attribute is the “cost” that
guides the ROM algorithm, as we will see shortly.

4.1 Attributed Function Flow Graph (AFFG)
AFFG is the task representation used for guided design analysis,
optimization, and trade-off between the function the task
describes, and the architecture that implements this function.
Each EFSM state is captured by a collection of nodes while
edges in the graph represent control flow. This flow graph is the
data structure on which the task control flow analysis is
performed, and data flow information is gathered.

Definition 1: An Attributed Function Flow Graph (AFFG) is a
triple G = (V, E, N0) where

i. V is a finite set of nodes

ii. E ={(x,y)}, a subset of VxV, where (x,y) is an edge
from x to y such that x ∈ Pred(y), the set of predecessor
nodes of y.

iii. N0 ∈ V is the start node (header that leads to the
node(s) corresponding to the EFSM initial state(s)).

iv. Operations are associated with each node N.

v. Attributes are allied with nodes and operations. We
assume that at least a state attribute is obtained from
the font-end.

Operations consist of TESTs performed on the EFSM inputs and
internal variables, and ASSIGNs on the EFSM outputs and
internal variables. Operations are “un-ordered” per se as long as
data dependency and execution semantics are preserved. We
assume w.l.o.g. that the model of computation dictates that input
and output semantics must be preserved at the state boundary.

4.2 Task Optimization Flow
We perform data flow and control optimization at the design
representation level as shown in Figure 1. The purpose of the
approach is two-fold:

a) Incorporate powerful data flow and control
optimizations that have a considerable potential for
improving the quality of the synthesized output.

b) Raise the abstraction level, and allow function and
architecture optimization and trade-off to be reflected
in both hardware and software synthesis.

Figure 1. Data Flow and Control Optimization Flow

In order to implement (guided) task optimizations we have
developed an optimizer that examines the (A)FFG in order to
statically collect data flow and control information of the task
under analysis using an underlying data flow analysis framework
[5]. The EFSM in AFFG structure is shown in Figure 2 in Tree
form for a simple example. Nodes denoted with an F are AFFG
nodes that are labeled with the state assignment shown with an
S. A DAG form is also available where AFFG nodes (comprising
a DAG) are “shared” within and between states, but we will
limit our presentation in this paper to the former. The
optimization itself (shown in Figure 1) is broken into two phases
(we neglect the micro-architecture optimization here):

a) Architecture Independent phase: The FFG is analyzed
and optimized as a sequence of operations as in
classical software optimization approaches except that
I/O semantics are preserved (i.e. operations with inputs
and outputs have specialized handling).

b) Macro-Architecture Dependent phase: The AFFG is
considered where the state schedule is taken into
account, and operations within states are optimized
followed by an allocation of registers and computations
step.

Figure 2. EFSM in AFFG Tree Form: A Simple
Example

5. Illustrative Example
In order to illustrate our ROM approach we have adapted
Knoop’s “motivating example” from [7] as shown in Figure 3,
and made it reactive by adding inputs and outputs, and a loop
from the final node S10 back to S1 so that the system is running
continuously. Variables a, b, c are declared internal, and
initialized in S1 to a sampled input value, x, y, and z are
declared as outputs and therefore “fixed” to their respective
states since we always preserve I/O traces before and after the
optimization. As in [7], our goal is to eliminate the redundant
needless runtime re-evaluation of the a + b operation.

We focus our discussion on nodes S8 and S9 since they are
costly, as we will see in Section 7.2, and try to relocate the
aforementioned addition operation to other less expensive nodes.

Figure 3. Illustrative Example (from [7])

6. (Cost-guided) Relaxed Operation Motion
Our operation motion approach consists of 4 steps performed in
sequence:

1) Data Flow and Control Optimization: is an order of
steps that optimize the (A)FFG representation as stated
in Section 4.2.

2) Reverse Sweep: is the optimization step that we are
mainly addressing in this paper where code is relocated
from one or more AFFG nodes to others. This step can
either follow the as early as possible approach, or be

cost-guided. It consists of “indirect” operation motion
through:

a) Dead operation addition: where operations are
added to all or selected AFFG nodes based on
cost.

b) Normalization and Available Operation
Elimination: This optimization step effectively
replaces the operation motion candidates from the
targeted AFFG nodes to other less costly nodes as
a result of step (a).

c) Dead Operation Elimination: removes the useless
additions performed in (a).

3) Forward Sweep: tries to minimize the lifetime of
temporaries by pushing them as close as possible to
their use. It is similar in concept to step 2 but is based
on available operation addition. This step is optional.

4) Final Optimization Pass: performs the final clean up.

Our approach comes “naturally” in an optimization framework
[1], which allows us the use of relatively simple techniques to
accomplish our goal. The results after steps (1) and (2a) are
shown in Figure 4. Figure 5 shows the result after (2b), and (4),
step (3) is not applied here. Note that in the final result the
redundant computations in S8 and S9 are indeed relocated up to
S1 (earliest position, forward sweep not applied). In this
example, the final result is 60% better than Knoop’s Lazy Code
Motion of [7] if we count the remaining addition operations after
ROM. The improvement comes about because ROM is part of a
comprehensive optimization framework (i.e. flow has
normalization, copy propagation and dead elimination to name a
few useful steps, see [11]).

Figure 4. Result After Dead Addition

Figure 5. Result after Available Elimination

7. Cost Estimation
7.1 Background
The exact number of times a certain part of a program is
executed can be determined once each branch probability in the
program is known [3]. It can be shown that the number of times
each basic block (and, by analogy, each AFFG node) is executed,
can be calculated by solving a system of n linear equations,
where n is the number of basic blocks ([1]), assuming the
probabilities of control passing from one block to the next is
given [12]. This of course is a generalization of branch
prediction, which only determines the most probable outcome of
a branch [3]. The probabilities of all the TESTs outcomes in the
task are requested from the designer in an interactive fashion
before the estimation and subsequent optimization take place.

A Markov chain can be used to model and then compute
statically the probabilistic control flow execution as described in
[12] where it is also shown that this method is quite close to
extensive profiling (assumed to be the “exact” metric). Of
course, this estimation approach has the advantage of requiring
much less effort than profiling, which has to be exhaustive.
Hence, the method is quite applicable in the embedded system
domain where tasks are expected to perform a specific
functionality and the designer has typically a good idea of where
most of the execution occurs.

7.2 Our Approach: Bayesian Belief Networks
In order to identify the most frequently visited portions of the
task’s AFFG, we apply an approach similar to Markov chains but
based on Bayesian Belief Networks using the MSBN inference
engine from Microsoft Research [8]. The MSBN tool uses a
version of the proposed Bayes Net Interchange Format for
representing belief networks. In order to compute the
probabilities, we represent the state transition relation consisting
of current state, next state, and conditionals as shown in the
screenshot of Figure 6. We initially assign equal probabilities to
all the reachable states and then iterate the probability
computation until a fix-point is reached.

Figure 6. Belief Network for Knoop’s Example
(Courtesy Microsoft Research)

The frequency of execution results for the reactive version of
Knoop’s example (i.e. loop from S10 back to S1 added) with
uniform probability of the conditionals (i.e. P(True) = P(False) =
0.5) is shown in Table 1 including costs of S8, S9, (operation
motion candidates) and S7 (target of operation motion).

State Probability

S1 0.15

S3 0.15

S5 0.15

S10 0.15

S9 0.1

S8 0.09

S2 0.07

S4 0.07

S6 0.046

S7 0.024

Table 1. Frequency of Execution Distribution for
Uniform Conditionals

8. Synthesis
In order to perform synthesis, the AFFG is mapped into the
Software Hardware Intermediate FormaT (SHIFT) representation
of the POLIS co-design tool-set. SHIFT is a representation format
for describing a network of EFSMs. It is a hierarchical netlist [2]
of:

• Co-design Finite State Machines (CFSMs): finite state
machines with reactive behavior

• Functions: state-less arithmetic, Boolean, or user-
defined operations.

A CFSM execution consists of four phases:

1. Idle awaiting trigger inputs

2. Sample inputs when invoked

3. Compute chain of operations

4. Emit outputs, return to Idle mode

A CFSM in SHIFT is therefore composed of input, output, state
or feedback signals with initial values, as well as a transition
relation (TREL) that describes the reactive behavior. Functions
are used in the TREL to ASSIGN computation results to valued
outputs. A function can be thought of as a combinational circuit
in hardware or a function (with no side effects) in software.

We therefore decompose the AFFG representation of each task
into a single reactive control part, and a set of data path functions
consistent with the current default SHIFT macro-architecture.
We then use the POLIS engines to build the synthesis CDFG and
perform hardware and software co-synthesis [11].

The complete optimization and synthesis flow with ROM is
shown in Figure 7.

Figure 7. Optimization with ROM and Synthesis Flow

9. Results
We report here some results for yet another cost metric that can
be used in guided ROM: the task worst-case execution time
(WCET). The WCET corresponds to the longest computation path
if there is no task pre-emption [2]. This measure is very useful in
schedule validation to check if the system meets its timing
constraints, and also in processor resource utilization analysis,
and schedule optimization. We use ROM to optimize the WCET
path, which belongs to targeted state S2, and the next to worst
path, which belongs to targeted state S8. We collected results for
the 68hc11 and the ARM920T (from the ARMulator) using the
macro-modeling estimation method of [2]. The results collected
for the reactive Knoop example are shown in Table 2.

It can be seen from Table 2 that the number of nodes in the
CDFG for synthesis increases because of register addition. ROM
indeed improves the WCET; code size decreases as well because
of the redundancy removal. Thus, the operation motion benefit is
reflected in both code size and runtime.

Method
CDFG

(nodes)

68hc11

(bytes)

68hc11

(cycles)

ARM9

(bytes)

ARM9

(cycles)

w/out
ROM

125 934 454 1332 377

w/ ROM 126 904 432 1308 353

%
Improved

- 3.2 % 4.8 % 1.8 % 6.3 %

Table 2. Worst-Case Response Time Results of Reactive
Knoop’s Example

The table shows that the benefit of ROM is more apparent in the
register rich ARM9 (with THUMB extension) architecture.

10. Conclusions and Future Work
We presented a novel approach for task response time
optimization that borrows the concept of code motion from the
software and high-level synthesis domains and applies it to
embedded systems. We showed that a simple “indirect”
operation motion technique specialized to the embedded system
domain and guided by user input or profiling knowledge, dubbed
Relaxed Operation motion (ROM), can be used efficiently to
optimize task runtime before the synthesis step. Experimental
results on software synthesis are very encouraging. Future work
will be in the area of more extensive experimentation with our

technique on real embedded applications. Furthermore, we
would like to explore applying additional cost metrics to guide
operation motion such as the “context-dependent” costs used in
[3] in order to further improve our function/architecture
optimization and co-design framework [10].

ACKNOWLEDGMENTS
Our thanks to Luciano Lavagno, and Felice Balarin from
Cadence Berkeley Labs, Richard Newton, and Bob Brayton from
UC Berkeley for their insightful comments on and direction of
our work. Gratitude is also paid to the SRC for funding this
research under the Graduate Fellowship Program.

REFERENCES
[1] Aho, A. V.; Sethi, R.; Ullman, J.D., “Compilers: Principles,

Techniques, and Tools”, Addison-Wesley, 1988.

[2] Balarin F.; Chiodo M.; Giusto P.; Hsieh H.; Jurecska A.;
Lavagno L.; Passerone C.; Sangiovanni-Vincentelli A. L.;
Sentovich E.; Suzuki K.; and Tabbara B., “Hardware-
Software Co-Design of Embedded Systems: The POLIS
Approach”, Kluwer Academic Publishers, May 1997.

[3] Castelluccia, C.; Dabbous, W., “Generating Efficient
Protocol Code from an Abstract Specification”,
ACM/SIGCOMM, 1996.

[4] Hailperin, M., “Cost-Optimal Code Motion”, ACM
Transactions on Programming Languages and Systems, Vol.
20, No. 6, pp. 1297-1322, November 1998.

[5] Kam, J.B.; Ullman, J.D., “Monotone Data Flow Analysis
Frameworks”, Acta Informatica, 1977, pp. 305-307.

[6] Knoop, J.; Rüthing, O.; Steffen, B., “Lazy Code Motion”,
ACM SIGPLAN, Vo. 27, No. 7, pp. 224-234, 1992.

[7] Knoop, J.; Rüthing, O., “Optimal Code Motion: Theory, and
Practice”, ACM Transactions on Programming Languages
and Systems, Vol. 16, No. 4, pp. 1117-1155, July 1994.

[8] Microsoft Research: Decision Theory & Adaptive Systems
Group at: http://research.microsoft.com/msbn/default.htm

[9] Morel, E.; Renvoise C., “Global Optimization by
Suppression of Partial Redundancies”, Commun. ACM, Vol.
22, No. 2, pp. 96-103, 1979.

[10] Tabbara, B., “Function Architecture Optimization and Co-
design of Embedded Systems”, Ph.D. Dissertation,
University of California at Berkeley, in progress, May 2000.

[11] Tabbara, B.; Tabbara, A.; Sangiovanni-Vincentelli, A.,
“Hardware and Software Representation, Optimization, and
Co-synthesis for Embedded Systems”, Technical Report
UCB/ERL M00/7, January 2000.

[12] Trivedi, K., “Probability and Statistics with Reliability,
Queuing and Computer Science Applications”, Englewood
Cliffs; Prentice Hall, 1982.

[13] Wagner, T.; Maverick, V.; Graham, S.; Harrison, M.,
“Accurate Static Estimators for Program Optimization”,
ACM SIGPLAN, 1994.

