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ABSTRACT 

We present a technique for task response time improvement 
based on the concept of code motion from the software domain. 
Relaxed Operation Motion (ROM) is a simple yet powerful 
approach for performing safe and useful operation motion from 
heavily executed portions of a design task to less visited 
segments. We introduce here our algorithm, how it differs from 
other code motion approaches, and its application to the 
embedded systems domain. Results of our investigation indicate 
that cost-guided operation motion has the potential to improve 
task response time significantly.    
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1. Introduction 
Embedded controllers are found in many of the components we 
interact with daily, e.g., cell phones, pagers, security devices. 
Increasingly synthesis is playing a crucial role in design 
methodologies for embedded systems that advocate abstraction, 
decomposition, and refinement [10]. If synthesis starting from the 
high levels of abstraction is to be accepted by designers, its 
quality must be adequate for the task. To that end, optimization 
of the design before and after synthesis becomes essential for the 
success of these design paradigms. 

In this paper, we focus primarily on improving task runtime by 
performing pre-synthesis optimizations. We deal with 
computation or operation motion as one such valuable technique 
that must permit rapid optimization to be reflected in better 
output quality with respect to the runtime metric after synthesis.  

We assume a heterogeneous control-dominated embedded system 
target application, and an initial functional decomposition and 
adequate front-end that capture the design as a network of 
Extended Finite State Machines (EFSM’s) as in [11]. Since we 
will be dealing with single task optimization we make no 
assumptions on the model of computation that governs the 
composition of tasks in the system as a whole. 

 

 

 

 

 

 

2. Related Work  
There is a body of work on code motion (hoisting) from the 
software (high-level synthesis) domain(s). The goal of code 
motion is to avoid unnecessary re-computations at runtime [1]. 
The creation of temporary variables (i.e. registers) to hold these 
computations typically improves runtime for most target 
architectures. Code must be relocated to valid program points 
and this movement must be safe, in the sense that it must not 
change what the program flow is intended to compute. The main 
strategy for code motion is that of moving operations as early as 
possible in the program as in [9] and [6].  

In practice code movement to the earliest program points can 
create pressure on the target architecture resources e.g. because 
of register “spills”. A more practical approach involves also 
performing temporary lifetime minimization as in the work on 
Knoop [7]. Knoop’s approach is the best-in-class approach for 
code motion since it involves unidirectional analysis techniques 
in the program flow where reducible programs can be dealt with 
in O(n log (n)) bit-vector steps (see [1]) where n is the number of 
statements in the program in contrast to O(n2) complexity for 
previously known techniques. Hailperin in [4] extended Knoop’s 
method to incorporate cost into the code motion process. 
However, the cost metric is based on individual operations (i.e. 
*, +,...) and does not account for the frequency of execution 
of program portions. The goal of the latter is to place the 
instructions in (safe) positions in the program where the context 
possibly permits simplification of the particular operation 
through, for example, constant folding, or operation strength 
reduction. 

Castelluccia et. al. [3] used runtime cost to optimize protocols 
but their techniques were based mainly on node re-ordering at 
the CDFG for synthesis level.  

3. Our Contribution and Overview 
As in [3], our work incorporates cost into operation motion. The 
cost is obtained from a task level static analysis to identify the 
most frequently visited segments of the behavioral description of 
the task. Our operation motion step itself is also fast; it has a 
time complexity of O(n) in the number of statements in the 
description. To achieve this simplicity, however, we give up 
slightly on size where for a brief period after this step the space 
needed is O(n2). We also rely on operation motion being part of a 
general optimization flow and framework; in particular we take 
advantage of two analysis and information gathering steps within 
the flow: reachable variable definitions, and reached uses of 



variables. So, the framework’s complexity of O(n2) is what 
dominates the overall complexity. Of course, for this increase in 
complexity we can get much better optimization results than [7] 
since operation motion is applied to all candidate operations at 
once and is tempered by other data flow and control analysis and 
optimization steps. 

As will be described in the sequel, the approach is therefore 
much simpler (conceptually and in practice) than other 
approaches as it tackles operation motion indirectly, and still 
performs the job adequately as part of a comprehensive multi-
step data flow and control optimization approach [11]. Our 
approach, dubbed Relaxed Operation Motion (ROM) is also 
specialized to the embedded system domain. In this domain, we 
are constrained by I/O schedule preservation, but we benefit 
from the user’s insight by soliciting assistance in the cost 
estimation mechanism since embedded systems have a 
predictable (or pre-conceived) typical behavior. 

We have implemented our approach in the POLIS public domain 
co-design tool [2], and have used the software synthesis engines 
therein for output generation.  

4. Intermediate Design Representation 
We briefly describe our intermediate design representation that 
permits us to perform constrained task optimization at a high 
level of abstraction. We use an implementation-independent 
state-scheduled task representation referred to as Attributed 
Function Flow Graph (AFFG) equivalent to the initial EFSM 
representation. The AFFG is a refinement of the Function Flow 
Graph (FFG) we have introduced in [11]. The FFG is quite 
similar to the classical Control Flow Graph from the software 
domain with the distinction of being concerned with safe 
function optimizations that preserve the I/O semantics of the 
task. The AFFG incorporates more information into the 
representation by adding attributes to the FFG nodes, and 
associated operations [10]. These attributes can either be 
solicited from the user or obtained by inference or profiling. An 
example of the former is the state schedule obtained from the 
“front-end” (e.g. Esterel [2]) and used to qualify the AFFG 
nodes. An example of the latter is the cost of operations like 
addition and multiplication, and the visit probability of AFFG 
node collections. The visit probability attribute is the “cost” that 
guides the ROM algorithm, as we will see shortly.   

4.1 Attributed Function Flow Graph (AFFG) 
AFFG is the task representation used for guided design analysis, 
optimization, and trade-off between the function the task 
describes, and the architecture that implements this function. 
Each EFSM state is captured by a collection of nodes while 
edges in the graph represent control flow. This flow graph is the 
data structure on which the task control flow analysis is 
performed, and data flow information is gathered. 

Definition 1: An Attributed Function Flow Graph (AFFG) is a 
triple G = (V, E, N0) where 

i. V is a finite set of nodes 

ii. E ={(x,y)}, a subset of VxV, where (x,y) is an edge 
from x to y such that x ∈ Pred(y), the set of predecessor 
nodes of y. 

iii. N0 ∈ V is the start node (header that leads to the 
node(s) corresponding to the EFSM initial state(s)). 

iv. Operations are associated with each node N. 

v. Attributes are allied with nodes and operations. We 
assume that at least a state attribute is obtained from 
the font-end. 

Operations consist of TESTs performed on the EFSM inputs and 
internal variables, and ASSIGNs on the EFSM outputs and 
internal variables. Operations are “un-ordered” per se as long as 
data dependency and execution semantics are preserved. We 
assume w.l.o.g. that the model of computation dictates that input 
and output semantics must be preserved at the state boundary. 

4.2 Task Optimization Flow 
We perform data flow and control optimization at the design 
representation level as shown in Figure 1. The purpose of the 
approach is two-fold: 

a) Incorporate powerful data flow and control 
optimizations that have a considerable potential for 
improving the quality of the synthesized output.  

b) Raise the abstraction level, and allow function and 
architecture optimization and trade-off to be reflected 
in both hardware and software synthesis. 

 

Figure 1. Data Flow and Control Optimization Flow 

In order to implement (guided) task optimizations we have 
developed an optimizer that examines the (A)FFG in order to 
statically collect data flow and control information of the task 
under analysis using an underlying data flow analysis framework 
[5]. The EFSM in AFFG structure is shown in Figure 2 in Tree 
form for a simple example. Nodes denoted with an F are AFFG 
nodes that are labeled with the state assignment shown with an 
S. A DAG form is also available where AFFG nodes (comprising 
a DAG) are “shared” within and between states, but we will 
limit our presentation in this paper to the former. The 
optimization itself (shown in Figure 1) is broken into two phases 
(we neglect the micro-architecture optimization here): 

a) Architecture Independent phase: The FFG is analyzed 
and optimized as a sequence of operations as in 
classical software optimization approaches except that 
I/O semantics are preserved (i.e. operations with inputs 
and outputs have specialized handling). 

b) Macro-Architecture Dependent phase: The AFFG is 
considered where the state schedule is taken into 
account, and operations within states are optimized 
followed by an allocation of registers and computations 
step. 



 

Figure 2. EFSM in AFFG Tree Form: A Simple 
Example 

5. Illustrative Example 
In order to illustrate our ROM approach we have adapted 
Knoop’s “motivating example” from [7] as shown in Figure 3, 
and made it reactive by adding inputs and outputs, and a loop 
from the final node S10 back to S1 so that the system is running 
continuously. Variables a, b, c are declared internal, and 
initialized in S1 to a sampled input value, x, y, and z are 
declared as outputs and therefore “fixed” to their respective 
states since we always preserve I/O traces before and after the 
optimization. As in [7], our goal is to eliminate the redundant 
needless runtime re-evaluation of the a + b operation. 

We focus our discussion on nodes S8 and S9 since they are 
costly, as we will see in Section 7.2, and try to relocate the 
aforementioned addition operation to other less expensive nodes. 

 

Figure 3. Illustrative Example (from [7]) 

6. (Cost-guided) Relaxed Operation Motion 
Our operation motion approach consists of 4 steps performed in 
sequence: 

1) Data Flow and Control Optimization: is an order of 
steps that optimize the (A)FFG representation as stated 
in Section 4.2. 

2) Reverse Sweep: is the optimization step that we are 
mainly addressing in this paper where code is relocated 
from one or more AFFG nodes to others. This step can 
either follow the as early as possible approach, or be 

cost-guided. It consists of “indirect” operation motion 
through: 

a) Dead operation addition: where operations are 
added to all or selected AFFG nodes based on 
cost. 

b) Normalization and Available Operation 
Elimination: This optimization step effectively 
replaces the operation motion candidates from the 
targeted AFFG nodes to other less costly nodes as 
a result of step (a). 

c) Dead Operation Elimination: removes the useless 
additions performed in (a). 

3) Forward Sweep: tries to minimize the lifetime of 
temporaries by pushing them as close as possible to 
their use. It is similar in concept to step 2 but is based 
on available operation addition. This step is optional. 

4) Final Optimization Pass: performs the final clean up. 

Our approach comes “naturally” in an optimization framework 
[1], which allows us the use of relatively simple techniques to 
accomplish our goal. The results after steps (1) and (2a) are 
shown in Figure 4. Figure 5 shows the result after (2b), and (4), 
step (3) is not applied here. Note that in the final result the 
redundant computations in S8 and S9 are indeed relocated up to 
S1 (earliest position, forward sweep not applied). In this 
example, the final result is 60% better than Knoop’s Lazy Code 
Motion of [7] if we count the remaining addition operations after 
ROM. The improvement comes about because ROM is part of a 
comprehensive optimization framework (i.e. flow has 
normalization, copy propagation and dead elimination to name a 
few useful steps, see [11]). 

 

Figure 4. Result After Dead Addition 

 

Figure 5. Result after Available Elimination 



7. Cost Estimation 
7.1 Background 
The exact number of times a certain part of a program is 
executed can be determined once each branch probability in the 
program is known [3]. It can be shown that the number of times 
each basic block (and, by analogy, each AFFG node) is executed, 
can be calculated by solving a system of n linear equations, 
where n is the number of basic blocks ([1]), assuming the 
probabilities of control passing from one block to the next is 
given [12]. This of course is a generalization of branch 
prediction, which only determines the most probable outcome of 
a branch [3]. The probabilities of all the TESTs outcomes in the 
task are requested from the designer in an interactive fashion 
before the estimation and subsequent optimization take place. 

A Markov chain can be used to model and then compute 
statically the probabilistic control flow execution as described in 
[12] where it is also shown that this method is quite close to 
extensive profiling (assumed to be the “exact” metric). Of 
course, this estimation approach has the advantage of requiring 
much less effort than profiling, which has to be exhaustive. 
Hence, the method is quite applicable in the embedded system 
domain where tasks are expected to perform a specific 
functionality and the designer has typically a good idea of where 
most of the execution occurs. 

7.2 Our Approach: Bayesian Belief Networks 
In order to identify the most frequently visited portions of the 
task’s AFFG, we apply an approach similar to Markov chains but 
based on Bayesian Belief Networks using the MSBN inference 
engine from Microsoft Research [8]. The MSBN tool uses a 
version of the proposed Bayes Net Interchange Format for 
representing belief networks. In order to compute the 
probabilities, we represent the state transition relation consisting 
of current state, next state, and conditionals as shown in the 
screenshot of Figure 6. We initially assign equal probabilities to 
all the reachable states and then iterate the probability 
computation until a fix-point is reached. 

 

Figure 6. Belief Network for Knoop’s Example 
(Courtesy Microsoft Research) 

The frequency of execution results for the reactive version of 
Knoop’s example (i.e. loop from S10 back to S1 added) with 
uniform probability of the conditionals (i.e. P(True) = P(False) = 
0.5) is shown in Table 1 including costs of S8, S9, (operation 
motion candidates) and S7 (target of operation motion). 

 

 

State Probability 

S1 0.15 

S3 0.15 

S5 0.15 

S10 0.15 

S9 0.1 

S8 0.09 

S2 0.07 

S4 0.07 

S6 0.046 

S7 0.024 

Table 1.  Frequency of Execution Distribution for 
Uniform Conditionals 

8. Synthesis 
In order to perform synthesis, the AFFG is mapped into the 
Software Hardware Intermediate FormaT (SHIFT) representation 
of the POLIS co-design tool-set. SHIFT is a representation format 
for describing a network of EFSMs. It is a hierarchical netlist [2] 
of: 

• Co-design Finite State Machines (CFSMs): finite state 
machines with reactive behavior 

• Functions: state-less arithmetic, Boolean, or user-
defined operations. 

A CFSM execution consists of four phases: 

1. Idle awaiting trigger inputs 

2. Sample inputs when invoked 

3. Compute chain of operations 

4. Emit outputs, return to Idle mode 

A CFSM in SHIFT is therefore composed of input, output, state 
or feedback signals with initial values, as well as a transition 
relation (TREL) that describes the reactive behavior. Functions 
are used in the TREL to ASSIGN computation results to valued 
outputs. A function can be thought of as a combinational circuit 
in hardware or a function (with no side effects) in software. 

We therefore decompose the AFFG representation of each task 
into a single reactive control part, and a set of data path functions 
consistent with the current default SHIFT macro-architecture. 
We then use the POLIS engines to build the synthesis CDFG and 
perform hardware and software co-synthesis [11].  

The complete optimization and synthesis flow with ROM is 
shown in Figure 7. 



 

Figure 7. Optimization with ROM and Synthesis Flow 

9. Results 
We report here some results for yet another cost metric that can 
be used in guided ROM: the task worst-case execution time 
(WCET). The WCET corresponds to the longest computation path 
if there is no task pre-emption [2]. This measure is very useful in 
schedule validation to check if the system meets its timing 
constraints, and also in processor resource utilization analysis, 
and schedule optimization. We use ROM to optimize the WCET 
path, which belongs to targeted state S2, and the next to worst 
path, which belongs to targeted state S8.  We collected results for 
the 68hc11 and the ARM920T (from the ARMulator) using the 
macro-modeling estimation method of [2]. The results collected 
for the reactive Knoop example are shown in Table 2. 

It can be seen from Table 2 that the number of nodes in the 
CDFG for synthesis increases because of register addition. ROM 
indeed improves the WCET; code size decreases as well because 
of the redundancy removal.  Thus, the operation motion benefit is 
reflected in both code size and runtime. 

Method 
CDFG 

(nodes) 

68hc11 

(bytes) 

68hc11 

(cycles) 

ARM9 

(bytes) 

ARM9 

(cycles) 

w/out 
ROM 

125 934 454 1332 377 

w/ ROM 126 904 432 1308 353 

% 
Improved 

- 3.2 % 4.8 % 1.8 % 6.3 % 

Table 2. Worst-Case Response Time Results of Reactive 
Knoop’s Example 

The table shows that the benefit of ROM is more apparent in the 
register rich ARM9 (with THUMB extension) architecture. 

10. Conclusions and Future Work 
We presented a novel approach for task response time 
optimization that borrows the concept of code motion from the 
software and high-level synthesis domains and applies it to 
embedded systems. We showed that a simple “indirect” 
operation motion technique specialized to the embedded system 
domain and guided by user input or profiling knowledge, dubbed 
Relaxed Operation motion (ROM), can be used efficiently to 
optimize task runtime before the synthesis step. Experimental 
results on software synthesis are very encouraging. Future work 
will be in the area of more extensive experimentation with our 

technique on real embedded applications. Furthermore, we 
would like to explore applying additional cost metrics to guide 
operation motion such as the “context-dependent” costs used in 
[3] in order to further improve our function/architecture 
optimization and co-design framework [10]. 
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