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Abstract

In this paper we present a novel force-directed placement
algorithm, which is used to solve macro-cell placement
problems. A new wire model replaces the traditional clique
model and makes possible early awareness of routing
congestion. Issues such as cell orientation, overlap elimination,
and pad positioning are also considered. Experiments show
satisfactory performance and fast run time.

1. Introduction

The force-directed placement algorithm [2,3,7] simulates the
mechanics problem in which particles are attached to springs
and their movement obeys Hooke’s law. In the conventional
force-directed methods cells are regarded as points no matter
what real shapes and sizes they have. In addition, all the
terminals of a cell are concentrated onto a single point. One of
the benefits of the single point model is that it clusters wires that
connect terminals of the same pair of cells. This approximation
is acceptable in standard cell design, because standard cells are
small as compared to the entire placement region. However in
macro cell placement, such approximation cannot be adopted
because large inaccuracy will be introduced. In some cases the
largest cell can occupy over half of the entire placement region,
so approximating it as a point and gathering all its terminals to
that point is obviously not a good idea because of how it may
affect the compactness of the final placement. What this means
is that we have to use the real shapes and sizes of the macro
cells to form the force equation, resulting in a cell overlap
problem. The cell overlap problem has been well studied, and
several methods were suggested such as introducing repulsive
forces for non-connected modules [3], using additional forces to
make the placement area have an even density distribution [1],
using recursive partitioning [4], and creating some pseudo cells
called attractors in low density areas as well as repellors in
dense areas [5]. Cell orientation is another problem that is
encountered, since it allows more flexibility in placing a cell and
decreasing wire length. In addition, previous methods usually
require the pad ordering be fixed before placement can proceed.
Furthermore, in modern VLSI design flow, placers have to
foresee what may happen in routing because the quality of a
placement is convincing only after routing is done.

In our algorithm real cell shapes and sizes are used to form
the force equation, so terminal positions really matter. The
clique wire model is replaced by a star model where an
additional point, called star, is created for each net. Thus, while
placing macro cells, we also have to place the stars. This model
not only saves considerable computation time but also provides
a way for estimating routing congestion during placement. Cell

orientation is optimized by calculating the reduction in force
when taking a new orientation. To eliminate overlapping we
adopt a modified version of the density method [1]. Pad
positions are determined using a force method and a one
dimensional density method. The algorithm is iterative, allowing
other algorithms like don’t care wire choice to be easily
incorporated into the placement flow [9]. The resulting macro-
cell placer is fast as compared to modern commercial placers,
especially for large designs.

The rest of this paper is organized as follows. In Section 2,
we formulate the placement problem and describe our
algorithm. Section 3 presents the design flow. Experimental
results are given in Section 4, while Section 5 gives some
concluding remarks.

2. Algorithm

2.1 The Macro-Cell Placement Problem
A macro-cell is a hard rectangular block with fixed size and
shape that can flip and/or rotate during placement. Terminals are
connecting points fixed on the cell. Terminals are not restricted
to being on the cell boundary, and their position is defined
relative to the cell origin. Each cell has a position inside the
chip, which is represented as a soft rectangle with a flexible size
and shape, and where pads are terminals located on the
boundary. A net is a set of terminals physically implemented by
wires that connect those terminals. In our algorithm, a star wire
model is used where an additional connecting point other than
terminals is added for each net, where each terminal connects to
its corresponding star through a wire. The goal for a macro cell
placement problem is to minimize the chip area, minimize the
total wire length, or both. The constraint is that all cells lie
within the chip boundary and that no two cells overlap. A
further constraint is to find an implementable placement such
that it results in a valid routing; this is because a well-compacted
placement may not be completely routable.

2.2 Force-Directed Method Based on the Star Wire Model
The use of star wire model instead of a clique model is one
essential feature of our algorithm. Since a star is created even
for two terminal net, the new wire model causes the number of
wires to change. A comparison between those two models can
be made as follows. The total wire number for the clique model,
which is widely used in other force-directed algorithms, is:
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where Nn is the net number, TpN[i] is the percentage of nets that
have i terminals. The result of star model is:
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Statistic from the MCNC92 benchmark examples we use in our
experiments shows that averagely nC is 30% greater than nS, so
considerable computation time can be saved by using star wire
model. Another interesting feature of the star wire model is the
improved estimation of wire congestion, and this point will be
discussed in sub-section 2.5.

In force-directed methods, attractive forces, which obey
Hooke’s law, are applied on objects connected by wires. These
objects can be terminals, pads or stars. The attractive force of a
cell is the sum of attractive forces of its terminals:
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where NT[c] is the terminal number of cell c, PC[c] is the
position of the left bottom corner of cell[c], PS[S] is the star
position, OT[c][t] is the offset of a terminal with respect to the
left bottom corner of the cell it belongs to,  and k[c][t] is the
wire weight (more weight is assigned to wire with tight timing
constraint). If only attractive forces are applied, the new position
of a cell after one force directed movement is:
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where,

∑
=

−=
∂

∂ ][

1

]][[
][ cNT

t

A
tck

P

cF                                 (5)

Notice that there isn’t a factor 2 in the denominator of (4) as
described in [6]. The reason given in [6] is that when two cells
are moving towards each other, each of them just needs to move
half distance. But in our algorithm, cells are not connected
directly by wires. Instead they connect to stars. Similarly
attractive forces are computed for stars, and stars move
according to the same equation as (4).

2.3 Overlap Elimination
To eliminate cell overlap, we adopt the method in [1]. Instead of
adding a repulsive force for overlapping cells, we try to make
the cells distribute in the placement region more evenly by
introducing a filling force. So it’s natural to let regions with
higher density become sources of this filling force while regions
with lower density become sinks. A two-dimensional bin
structure is created on the chip. Square bins are used, so x and y
direction can have different bin numbers that depends on the
chip aspect ratio. Bin density is calculated as:
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in which, A[c] is the area that cell c covers the bin. Notice that a
cell's contribution is the its fraction of overlap with the bin in
question, so if a cell completely covers the bin, its contribution
is 1. The term DBAL is the balance density:

 
CHIP

TOTAL
BAL area

area
D =                                    (7)

where areaCHIP is the area enveloped by the chip boundary, and
areaTOTAL is the sum of area of all macro-cells and possible
routing space. Positive D[bx][by] means the bin is over filled
while negative D[bx][by] means the bin needs filling. The bin
size is an important factor in the algorithm. A small bin size can
ensure the detection of cell overlap but increases computation
time, while a large bin size saves time but can hardly detect
small overlaps. A reasonable bin size has been experimentally

determined as being half the minimum cell size. The additional
force formed with respect to bin density is:

∑ ∑
=′ =′ ′′−

′′−⋅′′×=
BinNumX

xb

BinNumY

yb ybxbPbybxP

ybxbPbybxP
ybxbDBinSizebybxf

1 1
2

2

]][[]][[

]][[]][[
]][[]][[

  (8)

where P[bx][by] is the center position of a bin. More efficient
computation can be achieved by using variable resolution based
on distance. Also, for adjacent bins, calculation is done bin by
bin, but for distant bins, average value of a group of bins can be
used.

The filling force FF a cell receives is the sum of filling forces
asserted by bins the cell covers. Combining the filling force with
the attractive force formulated above, we get a new force
equation:
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where a and d are weights that allows us to keep a balance
between the effects of these two forces. Notice that when
attractive and filling forces are combined, the equation (4) can
hardly be used, because the differential equation for FF is not
easy to compute. Thus the movement equation becomes:
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in which fLIMIT is a limit of the maximum distance a cell can
move.

2.4 Orientation Selection
A cell has a total of eight possible orientations, and these can be
derived by flipping, rotating, or the combination of these two
operations. To evaluate each of these orientations, a gain of
force reduction and/or density improvement is computed. Cells
with negative or zero gain are removed from the candidate list
immediately, while cells with larger positive gain are good
candidates. However we have to be very careful in choosing
cells to change orientation. If two or more cells simultaneously
change orientation, the overall result may sometimes get worse.
The reason is that the gain is calculated with the assumption that
all other cells are fixed. Therefore two additional criteria for
selecting the best orientation are added. First, we limit the
number of cells that can take new orientation. In the extreme
one can allow only one cell to change orientation at each step.
But this is inefficient, so after some experimentation a limit of
10% of total number of cells was chosen. The second criteria is
that if the current candidate has a large number of connections
to some already selected cell(s), then this cell is discarded.
Although chances might be that choosing this cell as well can
actually lead to better result, the cell, if discarded at the current
step, will still be among the candidates at the next step.

2.5 Routing Estimation
There exists two different routing modes, over-the-cell routing
and non over-the-cell routing [7,8]. Over-the-cell routing is
becoming more popular with the increasing number of metal
layers, so most modern integrated circuits belong to this
category. The flexibility of routing over the cell greatly relieves
the burden of routing estimation from the placement stage. We
consider three routing regions for non-over-the-cell routing, that
is, the star region, the terminal region, and the star-to-terminal



region. For over-the-cell routing, only the terminal region is
taken into account.

The star connects two or more wires, so additional density is
added to the bin the star stays in. The contribution to bin density
by a star is:
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where NT[s] is the number of terminals star s connects to, w is
the wire pitch, and L is number of metal layers. Equation (11) is
derived with the approximation that a wire consumes a metal
segment with length of half bin size and width of metal pitch to
leave that bin. We also assume that each layer has equal routing
area consumption.

Routing is estimated in the terminal region by calculating the
keep-out distance of a cell edge. The keep-out distance is
composed of two parts. The first part, denoted by KOc, is a
constant halo reserved for ground or power ring. The second
part is a variable that relates to the routing near the cell edge.
Suppose, for a horizontal edge e of cell c, left is the number of
wires going left and right the number of wires going right, the
keep out distance KO[c][e] is:
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where, KOC[c][e] is a constant keep-out distance reserved for
gound or power rings, and w is the wire pitch. Whether a wire is
left or right is determined by the relative position of the star to
the shadow of the cell edge. If the star is within the shadow of
the cell edge, then it’s neither left nor right. Vertical cell edges
have a similar equation. Clearly, if all wires have their stars on
one side of the cell shadow, the keep-out distance is at a
maximum.
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Figure. 1. Routing estimation in the region between terminal and star

The estimation for the star-to-terminal region is illustrated in
Figure 1, where a routing rectangle is bounded by terminal T
and star S. We assume the probability of a wire taking any bin
on the same wave front (the 45 degree line) is the same.
Therefore as shown in the left figure, the two bins nearest to T
both have 1/2 probability. Their neighbouring bins have 1/3 and
so on. There are special cases that one or more bins are fully
occupied (i.e. bin density ≥ 1) then wires are unlikely going
across these bins. As shown in the central figure, bin(3,3) is
completely covered by macro cells. In such case, this bin cannot
be used for routing, therefore the other bins on the same wave
front should share the left over routing density. If all bins on the
same wave front are fully occupied by macro cells, it is no way
of completing the connection within the routing region. To
simplify the problem we just put equal probability to each of
these bins as shown in the right figure. After deriving
probability pR for each bin, the density contributed to the bin by
routing is:
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in which w is the wire pitch, and L is the number of metal
layers. Notice that the computation of dR doesn’t include the bin
T and S occupies because KO and dS are formed to reflect their
effects respectively. However, directly employing the model
derived above may lead to an over estimation of routing
resources because in a multi-terminal net the bounding
rectangles formed for each terminal may overlap. Actually two
wires leaving from two different terminals can merge into one
wire before they reach the star. Thus, after calculating dR for
each terminal of a net independently with (13), we sum all dR’s
and then divide by R, the number of routing rectangles covering
the bin:
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d’R[bx][by] is then added to the corresponding bin density
D[bx][by] in (6).

2.6 Pad Positioning and Chip Boundary Determination
The chip itself is a kind of soft cell with variable size and aspect
ratio. The pads, terminals of this special cell, are also soft in the
sense that their positions are not determined. However, two
main constraints apply. First, the chip aspect ratio has an upper
limit. The other constraint is that a pad has its own size and
occupies a certain segment of the chip boundary. The force-
directed method is again used for pad positioning, where the
only difference is that movement is one-dimensional. To make
the pads spread evenly along the chip boundary, a one-
dimensional bin structure is built for the computation of density.
Similar to (8), we have
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where D[b] is the density of one-dimensional bin, and P[b] is
the position of the bin. Notice that the summation is within the
range of ±BM bins due to the circular nature of the one-
dimensional bin structure. BM is chosen to cover half the
perimeter of the chip boundary. The resultant filling force is
combined with attractive forces to determine the movement of
the pad. This enables pad positioning during placement.

3. The Iterative Placement Flow

A placement flow is designed to organize all the algorithmic
parts such that performance and speed goals are achieved by
tuning the order and weight of different part at different stage.
In the first stage, we focus on finding a good relative position
for each macro cell without paying much attention to cell
overlap and orientation. Macro-cells can move long distance to
reach their new position. The completion of this stage will give
a good starting point for the next stage where factors like cell
orientation and overlap are considered. In the following stage,
attractive and filling forces both take action but the latter plays a
more important role by receiving a gradually increasing weight.
In the final stage, cells are almost at their final position and are
unlikely to find a new and better orientation, so there is no big
change in total wire length. Filling forces dominate and cells
just move within a small range to eliminate overlap. Finally a
clean-up procedure is invoked to eliminate remaining cell



overlap that has not been detected because of limited bin
resolution. The placement flow is shown below.

//STAGE 1
Initialize_and_ZeroSize_Cells();
SetCellsSizeZero();
loop Stage1IterationNumber {

ComputeAttractiveForces_and_Move_Stars();
ComputeAttractiveForces_and_Move_Cells();
DetermineChipBoundary();
ComputeAttractiveAndFillingForce_and_Slide_Pads();

}
explode();
//STAGE 2
loop Stage2IterationNumber {

IncreaseCellSize();
ComputeAttractiveForces_and_Move_Stars();
ComputeAttractiveForces_Cells();
Routing_Estimation();
ComputeBinDensity();
ComputeFillingForces_Cells();
MoveWithLimit_Cells();
ComputeOrientationGain_and_ChooseOrientation_for_Cells();
DetermineChipBoundary();
ComputeAttractiveAndFillingForce_and_Slide_Pads();

}
//STAGE 3
while (exist bin, density > densityThreshold) {

ComputeAttractiveForces_and_Move_Stars();
ComputeAttractiveForces_Cells();
Routing_Estimation();
ComputeBinDensity();
ComputeFillingForces_Cells();
MoveWithLimit_Cells();
DetermineChipBoundary();
ComputeAttractiveAndFillingForce_and_Slide_Pads();

}
CleanUp()

4. Experimental Results

The entire placement system was written in JAVA. We
compared our algorithm with Cadence Silicon Ensemble version
5.0 with over-the-cell routing, and Cadence Block Ensemble 97
version with non-over-the-cell routing. Their routers are also
employed to route the designs placed by our algorithm. All the
experiments were done on a Sun Ultra2 workstation with 256M
memory and 2 CPUs. The JAVA interpreter is Sun’s jdk1.2 and
the operating system is SunOS5.5.1. A comparison is made in
terms of area, total wire length and run time. In Table 1, the
testbench examples are from MCNC92 block placement
benchmark [10], PLA based ICs [11] and randomly generated
macro cell ICs. Random1b is designed to have a large number of

cells number with similar sizes, and aspect ratios, and a
moderate number of nets. Random2b has a great difference in
cell sizes and aspect ratios. Random3b has a large number of
nets. The bold items in the table are where our algorithm gives
worse results. Experimental results show that our algorithm can
give satisfactory performance in most cases, and for large
examples runs relatively fast.

5. Conclusion

In this paper, we present a macro-cell placer based on a force-
directed method. Cell size and shape are taken into
consideration so that terminal positions affect the placement.
The star wire model reduces computation time and improves
routing estimation. Bin density is employed to make cells and
pads evenly distributed.  Experimental results show satisfactory
performance and fast speed.
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Characters Over-the-cell routing, 4 metal layers Non-over-the-cell routing, 2 metal layers
area (mm2) wire length(mm) run time(min) area (mm2) wire length(mm) run time(min)Example no.

cell
no.
pad

no.
term

no.
net

cell area (um2)
min/ave/max

cell aspect
min/ave/max SE This SE This SE This BE This BE This BE This

ami33 # 33 42 522 123 58/350/744 1.0/2.0/4.2 0.052 0.030 11.6 11.0 2.67 1.20 0.034 0.042 18.720.5 1.35 7.48
ami49 # 49 22 953 408 635/7.2k/55k 1.7/2.2/3.2 0.882 0.609 123.5 100.4 2.772.92 0.751 0.816 172.4 173.9 0.80 4.75
playout # 62 192 4.6k 1.6k 96/14.2k/150k 1.4/1.9/5.6 2.631 2.187 1599.6 1545.8 26.50 3.20 3.039 2.562 5250.9 4945.8 3.134.12
alu2_50 * 71 16 511 81 11/102/1k 3.9/11.6/23.0 0.091 0.057 24.6 21.5 5.03 4.40 0.063 0.061 55.8 55.7 2.626.28
apex6_50 * 142 234 1.2k 277 11/111/495 4.8/9.4/27.0 0.131 0.079 82.3 73.5 6.72 5.53 0.186 0.164 374.9 358.2 4.328.32
random1b& 2k 60 7.6k 1.8k 68/81/99 1.0/1.1/1.2 0.628 0.471 1465.5 1359.3 920.00 27.33 0.485 0.462 4519.8 4449.1 543.05 83.20
random2b& 100 60 3.3k 497 21/6.4k/36k 1.0/4.0/8.0 1.158 1.040 1044.1 928.1 141.33 15.75 3.543 3.494 3660.53681.6 30.33 25.20
random3b& 200 180 30.6k 8.1k 1k/14k/22k 1.0/1.1/1.2 --- 12.062 --- 78.6k >1000 37.43 41.254 38.147 228.2k 215.4k 114.4 72.33
Metal 1/2, 0.3um, spacing 0.3um; metal 3/4, 0.6um, spacing 0.6um. Area is measured without pads. Time out limit is 1000 minutes.
#  MCNC92 benchmark[10], cell size scaled by 10.   *  PLA[11].    & randomly generaged IC.

Table 1.  Testbench Examples and Results


